
Augmenting the kappa statistic to determine interannotator reliability
for multiply labeled data points

Andrew Rosenberg
Department of Computer Science

Columbia University
amaxwell@cs.columbia.edu

Ed Binkowski
Department of Mathematics & Statistics

Hunter College
ebinkowski@juno.com

Abstract

This paper describes a method for evaluating
interannotator reliability in an email corpus
annotated for type (e.g., question, answer, so-
cial chat) when annotators are allowed to as-
sign multiple labels to a message.  An
augmentation is proposed to Cohen’s kappa
statistic which permits all data to be included
in the reliability measure and which further
permits the identification of more or less re-
liably annotated data points.

1 Introduction

Reliable annotated data are necessary for a wide variety
of natural language processing tasks.  Machine learning
algorithms commonly employed to tackle language
problems from syntactic parsing to prosodic analysis
and information retrieval all require annotated data for
training and testing. The reliability of these computa-
tional solutions is intricately tied to the accuracy of the
annotated data used in their development. Human error
and subjectivity make deciding the accuracy of annota-
tions an intractable problem. While the objective cor-
rectness of human annotations cannot be determined
algorithmically, the degree to which the annotators
agree in their labeling of a corpus can be quickly and
simply statistically determined using Cohen’s (1960)
kappa measure.  Because human artifacts are less likely
to co-occur simultaneously in two annotators, the kappa
statistic is used to measure interannotator reliability.

This paper will describe an email classification and
summarization project which presented a problem for
interlabeler reliability computation since annotators
were allowed to label data with one or two labels
(Rambow, et al., 2004). The existing kappa statistic

computation does not obviously extend to accommodate
the presence of a secondary label.  The augmentation to
the algorithm presented in this paper allows for both a
more accurate assessment of interannotator reliability
and a unique insight into the data and how the annota-
tors have employed the optional second label. Section 2
will describe the categorization project. Section 3 will
present a description of the annotated corpus. Section 4
will describe why the kappa statistic for determining
interannotator agreement in its basic form cannot effec-
tively be applied to this corpus. Section 5 will present a
way to augment the algorithm computing kappa statistic
to provide greater insight into user annotations. Section
6 will analyze the results of applying this new algorithm
to the annotated corpus.

2 Project Description

This inquiry into interannotator reliability measure-
ments was spawned by problems encountered during a
project classifying and summarizing email messages.  In
this project email messages are classified into one of ten
classes.  This classification facilitates email thread re-
construction as well as summarization.  Distinct email
categories have distinct structural and linguistic ele-
ments and thus ought to be summarized differently. For
the casual email user, the luxuries of summarization and
automated classification for the dozen or so daily mes-
sages may be rather superfluous, but for those with hun-
dreds of important emails per day, automatic
summarization and categorization can provide an effi-
cient and convenient way to both scan new messages
(e.g., if the sender responds to a question, the category
will be “answer”, while the summary will contain the
response) and retrieve old ones (e.g., “Display all
scheduling emails received last week”).  While the pro-
ject intends to apply machine learning techniques to
both facets, this paper will be focusing on the
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categorization component.

3 Corpus Description

The corpus used is a collection of 380 email messages
marked by two annotators with either one or two of the
following labels: question, answer, broadcast, at-
tachment transmission, planning-meeting schedul-
ing, planning scheduling, planning, action item,
technical discussion, and social chat.  If two labels are
used, one is designated primary and the other secondary.
These ten categories were selected in order to direct the
automatic summarization of email messages.

This corpus is a subset of a larger corpus of ap-
proximately 1000 messages exchanged between mem-
bers of the Columbia University chapter of the
Association for Computing Machinery (ACM) in 2001.
The annotation of the rest of corpus is in progress.

4 Standard Kappa Shortcomings

Commonly, the kappa statistic is used to measure inter-
annotator agreement.  It determines how strongly two
annotators agree by comparing the probability of the
two agreeing by chance with the observed agreement.  If
the observed agreement is significantly greater than that
expected by chance, then it is safe to say that the two
annotators agree in their judgments.  Mathematically,
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the probability of the actual outcome and p(E) is  the
probability of the expected outcome as predicted by
chance.

When each data point in a corpus is assigned a single
label, calculating p(A) is straightforward: simply count
up the number of times the two annotators agree and
divide by the total number of annotations.  However, in
labeling this email corpus, labelers were allowed to se-
lect either a single label or two labels designating one as
primary and one as secondary.

The option of a secondary label increases the possi-
ble labeling combinations between two annotators five-
fold.  In the format “{<A’s labels>, <B’s labels>}” the
possibilities are as follows: {a,a}, {a,b},  {ab,a},
{ab,b},  {ab,c}, {ab,ab}, {ab,ba}, {ab,ac}, {ab,bc},
{ab,cd}.  The algorithm initially used to calculate the
kappa statistic simply discarded the optional secondary
label.  This solution is unacceptable for two reasons. 1)
It makes the reliability metric inconsistent with the an-
notation instructions.  Why offer the option of a secon-
dary label, if it is to be categorically ignored? 2) It
discards useful information regarding partial agreement
by treating situations corresponding to {ab,ba},
{ab,bc} and {ab, b} as simple disagreements.

Despite this complication, the objective in comput-
ing p(A) remains the same, count the agreements and
divide by the number of annotations.  But how should
the partial agreement cases ({ab, a}, {ab, b}, {ab,ba},
{ab,ac}, and {ab,bc}) be counted?  For example, when
considering a message that clearly contained both a
question and an answer, one annotator had labeled the
message as primarily question and secondarily answer,
with another primarily answer and secondarily ques-
tion.  Should such an annotation be considered an
agreement, as the two concur on the content of the mes-
sage? Or disagreement, as they differ in their employ of
primary and secondary?  To what degree do two annota-
tors agree if one labels a message primarily a and
secondarily b and the other labels it simply a or simply
b?  What if there is agreement on the primary label and
discrepancy on the secondary? Or vice versa?  In the
traditional Boolean assignment, each combination
would have to be counted as either agreement or dis-
agreement.  Instead, in order to compute a useful value
of p(A),  we propose to assign a degree of agreement to
each.  This is similar in concept to Krippendorff’s
(1980) alpha measure for multiple observers.

5 Kappa Algorithm Augmentation

To augment the computation of the kappa statistic, we
consider annotations marked with primary and secon-
dary labels not as two distinct selections, but as one
divided selection.1  When an annotator selects a single
label for a message, that label-message pair is assigned
a score of 1.0.  When an annotator selects a primary and
secondary label, a weight p is assigned to the primary
label and (1-p) to the secondary label for the corre-
sponding label-message pair. Before computing the
kappa score for the corpus, a single value p where 0.5 
p  1.0 must be selected.  If p = 1.0 the secondary labels
are completely ignored, while if p = 0.5, secondary and
primary labels are given equal weight.  By examining
the resulting kappa score at different values of p, insight
into how the annotators are employing the optional sec-
ondary label can be gained. Moreover, single messages
can be trivially isolated in order to reveal how each data
point has been annotated with respect to primary and
secondary labels.  Landis and Koch (1977) present a
method for calculating a weighted kappa measure.  This
method is useful for single annotations where the cate-
gories have an obvious relationship to each other, but
does not extend to multiply labeled data points where
relationships between categories are unknown.

1 Before settling on this approach, we considered count-
ing each annotation equivalently whether primary or secon-
dary.  This made computation of p(A) and p(E) more
complex, and by ignoring the primary/secondary distinction
offered less insight into the use of the labels.



5.1 Compute p(A)

To compute p(A), the observed probability, two annota-
tion matrices are created, one for each annotator.  These
annotation matrices, Mannotator, have N rows and M col-
umns, where n is the number of messages and m is the
number of labels.  These annotation matrices are propa-
gated as follows.

1],[ =yxM A , if A marked only label y for mes-
sage x.

pyxM A =],[ , if A marked label y as the primary
label for message x.

pyxM A −= 1],[ , if A marked label y as the sec-
ondary label for message x.

0],[ =yxM A , otherwise.
Table 1 shows a sample set of annotations on 5 mes-
sages by annotator A. Table 2 shows the resulting MA
based on the annotation data in Table 1 where p=0.6.

Msg1 Msg2 Msg3 Msg4 Msg5
a,b b,a b c c,b

Table 1. Sample annotation data from labeler A

 a  b  c  d
Msg1 0.6 0.4 0 0
Msg2 0.4 0.6 0 0
Msg3 0 1 0 0
Msg4 0 0 1 0
Msg5 0 0.4 0.6 0
Total 1 2.4 1.6 0 5

Table 2. MA based on Table 1 data (p=0.6;N=5).

With the two annotation matrices, MA and MB, an
agreement matrix, Ag, is constructed where

],[*],[],[ yxMyxMyxAg BA= .  A total, , is set

to the sum of all cells of Ag.  Finally,
N
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5.2 Compute p(E)

Instead of assuming an even distribution of labels, we
compute p(E), the expected probability, using the rela-
tive frequencies of each annotator’s labeling preference.
Using the above annotation matrices, relative frequency
vectors, Freqannotator, are generated.  Table 3 shows
FreqA based on MA from Table 2.
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a b c d
0.2 0.48 0.32 0

Table 3. FreqA from MA in Table 2 (p=0.6;N=5).

Using these two frequency vectors,
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5.3 Calculate

The equation for the augmented kappa statistic remains
the same in the presence of this augmentation.
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6 Results

This technique is not meant to inflate the kappa scores,
but rather to provide further insight into how the annota-
tors are using the two labels. Execution of this aug-
mented kappa algorithm on this corpus suggests that the
annotation guidelines need revision before the superset
corpus is completely annotated.  (Only 150 of 380 mes-
sages present a label for use in a machine learning ex-
periment with >0.6.) The exact nature of the
adjustments is yet undetermined. However, both a strict
specification of when the secondary label ought to be
used, and reconsideration of the ten available labels
would likely improve the annotation effort.

When we examine our labeled data, we find the
average kappa statistic across the three annotators did
not increase through examination of the secondary la-
bels.  If we ignore the secondary labels (p=1.0), the av-
erage =0.299.  When primary and secondary labels
are given equal weight (p=0.5), the average =0.281.

By examining the average kappa statistic for each
message individually at different p values, messages can
be quickly categorized into four classes: those that dem-
onstrate greatest agreement at p = 1.0; those with great-
est agreement at p = 0.5; those that yield a nearly
constant low kappa value and those that yield a nearly
constant high kappa value. These classes suggest certain
characteristics about the component messages, and can
be employed to improve the ongoing annotation proc-
ess. Class 1) Those messages that show a constant, high
kappa score are those that are consistently categorized
with a single label.  (92/380 messages.) Class 2) Those
messages with a constant, low kappa are those messages
that are least consistently annotated regardless of
whether a secondary label is used or not.  (183/380 mes-
sages.) Class 3) Messages that show greater agreement
at p = 1.0 than at p = 0.5 demonstrate greater inconsis-
tency when the annotators opt to use the secondary la-
bels but are in (greater) agreement regarding the
primary label. Whether the primary label is more gen-
eral or more specific depends on, hopefully, annotation
standards, but in the absence of rigorous instructions,



individual annotator preference.  (58/380 messages.)
Class 4) Messages that show greater agreement at p =
0.5 than at p = 1.0 are those messages where the pri-
mary and secondary labels are switched by some anno-
tators, the above {ab,ba} case.  From inspection, this
most often occurs when the two features are not in a
general/specific relationship (e.g., planning and ques-
tion being selected for a message that contains a ques-
tion about planning), but are rather concurrent features
(e.g., question and answer being labeled on a message
that obviously includes both a question and an answer).
(47/380 messages.) Each of the four categories of mes-
sages can be utilized to a distinct end towards improve-
ment of annotation instructions and/or annotation
standards.  Class 1 messages are clear examples of the
labels.  Class 2 messages are problematic.  These mes-
sages can be used to redirect the annotators, revise the
annotation manual or reconsider the annotation stan-
dards.  Class 3 messages are those in which annotators
use the optional secondary label, but not consistently.
These messages can be employed to reinstruct the anno-
tators as to the expected use of the secondary label.
Class 4 messages pose a real dilemma.  When these
messages in fact do contain two concurrent features,
they are not going to be good examples for machine
learning experiments.  While representative of both
categories, they will (most likely) at feature analysis
(the critical component of machine learning algorithms)
be poor exemplars of each. While the fate of Class 4
messages is uncertain2, identification of these awkward
examples is an important first step in handling their
automatic classification.

7 Conclusion

Calculating a useful metric for interannotator reliability
when each data point is marked with optionally one or
two labels proved to be a complicated task.  Multiple
labels raise the possibility of partial agreement between
two annotators.  In order to compute the observed prob-
ability (p(A)) component of the kappa statistic a con-
stant weight, p, between 0.5 and 1.0 is selected. Each
singleton annotation is then assigned a weight of 1,
while the primary label of a doubleton annotation is
assigned a weight of p, the secondary 1-p.  These
weights are then used to determine the partial agreement
in the calculation of p(A).  This augmentation to the
algorithm for computing kappa is not meant to inflate
the reliability metric, but rather to allow for a more
thorough view of annotated data.  By examining how

2 One potential solution would be to create a new anno-
tation category for each commonly occurring pair.  While
each Class 4 message would remain a poor exemplar of each
component category, it would be a good exemplar of this
new “mixed” type.

the annotated components of a corpus demonstrate
agreement at varying levels of p, insight is gained into
how the annotators are viewing these data and how they
employ the optional secondary label.

8 Future Work

The problem that spawned this study has led to further
discussions about how to get the most information out
of apparently unreliably labeled data.  The above proc-
ess shows how it is possible to classify messages into a
few categories by their reliability at different levels of p.
However, even when interlabeler reliability is relatively
low, annotated data can be leveraged to improve the
confidence in assigning labels to messages.  Annotators
can be ranked by “how well they agree with the group”
using kappa. Messages (or other labeled data) can be
ranked by “how well the group agrees on its label” us-
ing variance or –p*ln(p).  Annotator rankings can be
used to weight “better” annotators greater than “worse”
annotators. Similarly, message rankings can be used to
weight “better” messages greater than “worse” mes-
sages.  The weighted annotator data can be used to re-
compute the message weights.  These new message
weights can then be used to recompute annotator
weights. Repeating this alternation until the weights
show minimal change will minimize the contributions
of unreliable annotators and poorly annotated messages
to the assignment of labels to messages, thereby increas-
ing confidence in the results.  An implementation of this
“sharpening” algorithm is currently under development.
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