
I4E: Interactive Investigation of Iterative Information
Extraction

Anish Das Sarma
Yahoo Research CA, USA

anishdas@yahoo-inc.com

Alpa Jain
Yahoo Research CA, USA
alpa@yahoo-inc.com

Divesh Srivastava
AT&T Labs-Research NJ, USA
divesh@research.att.com

ABSTRACT
Information extraction systems are increasingly being used to mine
structured information from unstructured text documents. A com-
monly used unsupervised technique is to build iterative informa-
tion extraction (IIE) systems that learn task-specific rules, called
patterns, to generate the desired tuples. Oftentimes, output from
an information extraction system may contain unexpected results
which may be due to an incorrect pattern, incorrect tuple, or both.
In such scenarios, users and developers of the extraction system
could greatly benefit from an investigation tool that can quickly
help them reason about and repair the output.

In this paper, we develop an approach for interactive post-extraction
investigation for IIE systems. We formalize three important phases
of this investigation, namely, explain the IIE result, diagnose the in-
fluential and problematic components, and repair the output from
an information extraction system. We show how to characterize the
execution of an IIE system and build a suite of algorithms to answer
questions pertaining to each of these phases. We experimentally
evaluate our proposed approach over several domains over a Web
corpus of about 500 million documents. We show that our approach
effectively enables post-extraction investigation, while maximizing
the gain from user and developer interaction.

Categories and Subject Descriptors
H.0 Information Systems [Investigation]

General Terms
Algorithms, Experimentation, Management

Keywords
Information extraction, interactive investigation, debugging, explain,
diagnose, repair

1. INTRODUCTION
Recent developments in knowledge-driven tasks such as ques-

tion answering, opinion mining, and trend analysis have led to a
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significant interest in automatically extracting structured informa-
tion from text documents such as newspaper articles, emails, etc.
Along this direction, several information extraction (IE) systems
have been built that generate an instance of some entity (e.g., com-
pany name, president of a country) or an instance of a relation (e.g.,
senators and their affiliations or books and their authors). Examples
of real-life extraction systems include, Gate1, DBLife2, DIPRE [4],
KnowItAll [15], Rapier [7], Snowball [2]. While existing extrac-
tion systems have been a fundamental block in bridging the gap
between unstructured and structured information, oftentimes, out-
put from an information extraction system may contain unexpected,
and potentially incorrect data. The goal of this paper is to build an
approach that would allow users to interactively understand IE re-
sults and rectify the system through feedback.

A commonly used information extraction technique for large-
scale information extraction is called iterative information extrac-
tion (IIE) [19, 2, 30, 29, 28]. (We discuss other information extrac-
tion approaches later in this paper.) Iterative information extraction
systems follow a working hypothesis that tuples from a relation
tend to occur in similar contexts. Naturally, in most real-world ex-
traction applications, it is not feasible to know apriori all possible
contexts in which tuples of a relation may occur, thus, necessitat-
ing an iterative process: Starting with a relatively small set of seed
tuples, these extractors iteratively learn patterns that can be instan-
tiated to identify new tuples.

EXAMPLE 1. Consider a relation actor〈Movie, Actor〉
seeded by a tuple, 〈Top Gun, Tom Cruise〉 which occurs in the
text, “Top Gun, movie starring Tom Cruise.” Using this occur-
rence, an IIE system may learn the pattern, “〈Movie〉, movie star-
ring 〈Actor〉.” Extraction patterns are, in turn, applied to text to
identify new instances of the relation at hand. For instance, the
above pattern when applied to the text, “Star Wars, movie star-
ring Alec Guinness,” can generate a new instance, 〈Star Wars, Alec
Guinness〉.

At each iteration, the newly found tuples are augmented to the list
of seed tuples, and the process terminates when a termination con-
dition is met. In practice, extraction methods may assign an ex-
traction score to each tuple and instead of augmenting all identified
tuples to the seed tuples, it may augment only the top-k tuples as
determined by the extraction scores.

EXAMPLE 1. (continued) Upon adding the newly generated
tuple 〈Star Wars, Alec Guinness〉 to our seed instances, we may
learn a new extraction pattern, “〈Movie〉 films starring 〈Actor〉”,
from the sentence, “Star Wars films starring Alec Guinness.” Let us
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refer to this pattern as p1. Using p1 on “Hollywood films starring
Brad Pitt,” we may generate a tuple 〈Hollywood, Brad Pitt〉 and
similarly also generate “〈Walt Disney, Johny Depp〉”.

Given a relation instance consisting of tuples such as in the ex-
ample above, a natural question to ask is: How was the tuple 〈Hollywood,
Brad Pitt〉 generated? Furthermore, given that we know that pat-
tern p1 generated it, some follow up questions may be: Were there
other tuples generated by p1? Were there any other patterns gen-
erated by these tuples extracted using p1? Can we distinguish be-
tween tuples that are only associated with p1 and those that have
patterns other than p1 supporting it? If we eliminate p1, which tu-
ples will be eliminated from the output? At first glance, some of
these questions may appear identical; however, we shall later see
that there are subtle differences in answering these questions.

There are multiple benefits of building an investigation tool for
IIE, in addition to the obvious benefit of giving users useful in-
sight into the extraction result. First, it helps in explaining to the
user and system developer, the output from running an IIE over a
collection of documents. (Traditionally, upon termination, the ex-
traction method generally presents a set of tuples along with their
extraction scores, offering limited or no insights into how a tuple
was generated or how a given tuple impacted or interacted with
other tuple generation.) Second, the investigation tool can help in
diagnosing an IIE system. Similar to a program execution, IIE in-
volves data flow and control flow which together reason about the
output from the execution. In case of IIE, we may want to reason
about the effect of altering thresholds (i.e, control flow) or remov-
ing an extraction pattern (i.e., data flow). Finally, investigations can
lead to repairing the IIE system by fixing patterns and thresholds,
thus improving the IIE result: Understanding the overall impact of
a pattern or tuple on the output of an IIE system can help users
understand the tradeoffs of eliminating parts of the system.

In this paper, we focus on the problem of building an interac-
tive investigation tool for iterative information extraction, called
I4E. We shall see that in addition to supporting investigations, I4E
is able to provide guidance by showing influential tuples and pat-
terns, and thus make recommendations to aid the repair process.
Beyond the conceptualization of I4E to support the three phases
of investigation—explain, diagnose, and repair—described above
(and formalized later), the main contributions of this paper are:

• Representing iterative IE: We propose a principled graph-
based network that integrates tuples, patterns, and various
trace information at each iteration, for representing IIE. Our
representation captures sufficient information to carry out com-
plex investigation operations, yet is simple and succinct enough
to scale to large-scale extraction scenarios such as the Web.

• Explain, diagnose, and repair operations: We present a
set of fundamental queries that users may be interested in,
for each stage of explain, diagnose, and repair. We give ef-
ficient algorithms for answering these questions. As we will
see, some of these questions have optimal algorithms that are
tractable at Web-scale, whereas some other questions have
NP-hard worst-case complexity, for which we provide effi-
cient approximate solutions.

• Chaining operations: We present techniques for chaining
the fundamental operations of explain, diagnose, and repair
to perform more sophisticated, interleaved investigations.

• Experimental evaluation: We perform an extensive ex-
perimental evaluation over six real-world datasets generated
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Figure 1: Architecture of iterative information extraction.

from a Web corpus of 500 million documents. Our experi-
ments show that we are able to maximize the benefit of inter-
active investigation, thus significantly improving the quality
of IE with minimal feedback. We examine the space and time
overhead incurred by our investigation algorithms and show
that our techniques can be applied efficiently at Web-scale.

The rest of the paper is structured as follow: Section 2 presents
necessary background on IIE, shows how we characterize it, and
discusses the problem we focus on. Section 3 presents fundamen-
tal blocks for explain, diagnosis, and repair and Section 4 then
shows how these blocks can be interleaved for chained investiga-
tions. Section 5 reports our extensive experimental evaluation. Sec-
tion 6 presents related work, and we conclude with future work in
Section 7.

2. ITERATIVE INFORMATION EXTRACTION
We begin our discussion by briefly describing the steps in an

iterative information extraction (Section 2.1). Then, we present our
approach to representing the execution of an IIE (Section 2.2), and
discuss the problem we focus on (Section 2.3).

2.1 Background
The primary goal of information extraction systems is to ob-

tain a set of tuples of a pre-defined relation, from a set of un-
structured text documents. Under the iterative information extrac-
tion paradigm, these tuples are obtained by applying certain task-
specific rules, called extraction patterns. Extraction patterns cap-
ture common ways of representing tuples of the target relation in a
natural-language form.

IIE systems follow a working hypothesis that tuples from a rela-
tion tend to occur in similar contexts. Naturally, in most real-world
extraction applications, it is not feasible to know apriori all possible
contexts in which tuples of a relation may occur, thus, necessitating
an iterative process. IIE is typically bootstrapped with a relatively
small set of seed tuples T from the target relation, a (potentially
empty) set of patterns P , and a database of documents D, which is
typically a slice of the Web. Starting with the seed tuples an IIE sys-
tem iterates over the following main stages, as shown in Figure 1:

(1) Discover patterns: For each tuple t ∈ T , an IIE system identi-
fies occurrences of each tuple in the documents in D. Based on the
textual context in which t occurs, candidate extraction patterns are
identified. For each tuple t, we denote by Pp(t) the set of patterns
produced using t; similarly, for each pattern p, we denote by Tg(p)
the set of tuples that generated pattern p.
(2) Discover tuples: Apply the current set of patterns on each doc-
ument in D and obtain a set T ′ of new tuples. For each tuple t, we
denote by Pg(t) the set of patterns that generated t; similarly, for
each pattern p, we denote by Tp(p) the set of tuples produced by p.



(3) Prune patterns: Unfortunately, information extraction is a noisy
process and oftentimes, we may learn unreliable patterns that can,
in turn, produce erroneous tuples. Therefore, IIE systems assign
a confidence score to each pattern based on individual tuples that
generate the pattern as well as the collective set of tuples produced
by the pattern.

DEFINITION 2.1. [Pattern confidence score] Consider a pat-
tern p that was generated using a tuple t after processing a doc-
ument d in D. Let sp(t, o) be a function that assigns a score to p
based on the tuple t and the context o in which pattern p occurs. Af-
ter processing all the documents inD, let Tg(p) be the set of tuples
that generated p and Tp(p) be the set of (new) tuples produced us-
ing p. The confidence score for p, Sp(p) = Fp(Tg(p), Tp(p), sp).
2

Several methods have been proposed to assign confidence scores
to patterns [2]; As a concrete example, Fp may be defined as the
fraction of tuples in Tp(p) that occur in our seed set of tuples. In
this paper, we assume that the score function Fp(Tg(p), Tp(p), sp)
has been provided, such as in [2, 13, 30, 14]. Upon assigning a
confidence score to each pattern in P , IIE systems eliminate from
P all patterns with confidence scores below a threshold τp.
(4) Prune Tuples: Analogous to pattern confidence scores, discov-
ered tuples are also assigned a confidence score. The confidence
score of a tuple may depend on the confidence score of the patterns
that generated it; additionally, we may also corroborate evidence
and confidence scores from different patterns to assign an aggre-
gate tuple confidence score.

DEFINITION 2.2. [Tuple confidence score] Consider a tuple
t that was generated using a pattern p after processing D. Let
st(p, o) be a function that assigns a score to t based on the pattern
p and the context o in which tuple t occurs. After processing all the
documents in D, let Pg(t) be the set of patterns that generated t.
The confidence score for t, St(t) = Ft(Pg(t), st). 2

We assume that a scoring function to assign a tuple confidence
score has been provided [2, 13, 30, 14]. After assigning a con-
fidence score to each tuple in T ′, IIE systems eliminate from T ′

all tuples that have a score less than a threshold τt, then set T =
T∪T ′. For cases where the minimum confidence threshold τt is not
constant across different iterations, we may need to recompute the
confidence scores for all the tuples in T ′ as well as T to eliminate
tuples with scores less than τt.
Note that the four steps outlined above present a high-level overview
of IIE. Several details are omitted. For instance, the various steps
need not all be performed in every iteration, or may be performed
in different orders. Further, we may wish to perform pruning only
at the end of all iterations, or in batches. And, at each iteration,
for efficiency we may choose to perform discovery (of patterns or
tuples) only based on “new” tuples or patterns obtained in this it-
eration. These challenges and tradeoffs are not a focus of the pa-
per and only touched upon when they impact our results; our goal
in this paper is to interactively investigate any IIE, irrespective of
which stages were applied when.

We summarize our notation in Table 1 and discuss examples that
illustrate the above concepts.

EXAMPLE 2. Consider the task of extracting a disease
outbreak 〈disease, location〉 [35] relation, for which
an IIE has learnt an extraction pattern p1 =‘〈d〉 outbreak sweep-
ing throughout 〈l〉,’ where d and l are instantiated over values for
disease and location, respectively. A simple example of tuple confi-
dence score function, i.e., st(p, o), assumes an edit-distance-based
similarity matching between the context of a candidate tuple and

Symbol Description

P Set of patterns learned by IIE
T Set of tuples produced by IIE

Pg(t) Set of patterns that generated tuple t
Pp(t) Set of patterns produced using tuple t
Tg(p) Set of tuples that generated pattern p
Tp(p) Set of tuples produced using pattern p

Fp Score function to assign confidence to patterns
Ft Score function to assign confidence to tuples

Table 1: Notation

Fp(p1)

Fp(p2) = 0.2

Ft(t1) = 1.0

Ft(t2) = 1.0

Ft(t3)

Ft(t4)

st(p1, o11) = 1.0

st(p2, o22)

st(p2, o24)

s p(t
1, 
o 12

)

st(p2, o23)

Figure 2: Sample EBG graph.
the pattern. Specifically, if max is the maximum number of terms in
an extraction pattern and x is the number of word transformations
for a tuple context to match the pattern, then the confidence score
is computed as 1 − x

max
(x ≤ max). Given a text fragment, “A

H1N1 flu outbreak sweeping throughout Mexico alarmed ...,” and
max = 4, the extraction system generates the tuple t1 = 〈H1N1
flu, Mexico〉 with a score of 1.0 (x = 0).

A tuple may also be associated with multiple st(p, o) scores, since
facts are often repeated across text documents or a tuple may be
produced by multiple non-identical patterns [13].

EXAMPLE 2. (continued). Another pattern, ‘〈d〉 outbreak is
sweeping 〈l〉’ may process the same text fragment to generate the
same tuple but now with a score of 0.5 (x = 2). The total tuple
confidence score for t2 is aggregated using Ft(Pg(t), st).

2.2 Characterizing IIE
In this section, we describe a simple graph-based representation

to capture the necessary tracing information in an IIE, so as to allow
users and developers to effectively carry out post-extraction inves-
tigations. Given an iteration Ii, we focus on the set of tuples and
patterns that were retained at the end of iteration Ii

3. To charac-
terize iteration Ii (and all other iterations), we define an enhanced
bipartite graph (EBG):

DEFINITION 2.3. [EBG] An enhanced bipartite graph (EBG)
G = (P, T,E1, E2) is a directed bipartite graph consisting of two
classes of nodes: the set P of patterns’ nodes (“p” nodes) and
the set T of tuples’ nodes (“t” nodes), and a set of directed edges
E = E1 ∪ E2, where E1 ⊆ P × T and E2 ⊆ T × P . An edge
(p, t) ∈ E1 (denoted p → t) connects a p node to a t node, and
depicts that tuple t was generated by applying pattern p; an edge
(t, p) ∈ E2 (denoted t → p) connects a t node to a p node and
depicts that pattern p was generated using tuple t. Multiple edges
may originate from or reach to a node. 2

Each node is annotated with the confidence score assigned to the
pattern or tuple represented by the node as well as the first iteration
in which it was created. Each edge in the graph stores information
about the score generated using the tuple and pattern that it con-
nects, and also maintains the iteration number i in which the edge
3In this paper we focus on actual IIE execution that took place.
Extending our approach to support “why not”-style questions in the
spirit of [21] would require tracing eliminated tuples and patterns.



was generated. We also store separately the threshold that was ap-
plied at each iteration to prune out tuples. As an example, consider
the EBG graph in Figure 2 for patterns p1 and p2 from Example 2.
Pattern p1 generated t1 which, in turn, generated p2, as indicated
by the directional edges. The confidence scores for t1 and p2 are
1.0 and 0.2 respectively. We note that EBG may contain cycles; for
instance, the tuple t3 may re-generate pattern p1.

At the end of an iteration Ii, for each pattern p and tuple t to
be retained, our algorithm to generate EBG, G = (P, T,E1, E2)
performs the following steps:

1. If p 6∈ P , add a node p to P . If t 6∈ T add a node for t to T .
2. Introduce into E1 an edge (p, t), from p to a tuple t, if t was

produced using p.
3. Annotate each edge p→ t ∈ E1 with the score of t obtained

from p applied to the document from which t was derived.
4. Introduce into E2 an edge (t, p), from t to a pattern p if p

was produced using t.
5. Annotate each edge t→ p with the score of p obtained from
t applied to d.

We now develop a suite of techniques to enable explain, diagnose,
and repair, collectively named EDR, each extending the EBG rep-
resentation.

2.3 The Need for an Investigation Approach
EXAMPLE 2. (continued) Suppose tuple t1 is used to generate

a new pattern after identifying the tuple’s occurrence in the text ‘...
checking of H1N1 flu is Mexico’s way of avoiding ...’. Suppose
the IIE, using Fp(Tg(p), Tp(p), sp), assigned a confidence score
of 0.2 to p2 = 〈d〉 is 〈l〉. Applying p2 to ‘Measles is America’
may generate an incorrect tuple t2 = ‘〈Measles, America〉’ with
confidence score of 1.

As discussed earlier, users may be interested in investigating the
sequence of steps leading to any tuple. Specifically, users may be
interested in learning about t2. As an explanation for t2, we could
present the set of patterns, {p2}, that generated it, or the confi-
dence score for patterns τp used in this iteration, e.g., τp = 0.1.
Armed with this information, the user may run further diagnosis
via follow-up queries such as, What is the influence of eliminating
p2?, for which we may present the set of affected patterns and tu-
ples. Suppose the answer to this query is that only pattern p2 and
tuple t2 are affected. Now, the user may want to repair the output
by modifying the value for τp or eliminating p2. As a key contribu-
tion, we formalize three main phases of an investigation approach:

1. Explain involves retracing the “history” of IIE execution start-
ing from a set of extracted tuple(s) (Section 3.1).

2. Diagnose studies the effect of various components of IIE and
identifies components on which feedback would be most use-
ful in improving the result of IIE (Section 3.2).

3. Repair modifies the result of extraction incrementally after
rectifying the problematic components of extraction (i.e., delet-
ing some patterns, updating their scores, or changing some
thresholds) (Section 3.3).

We now describe the problem that we focus on in this paper.
PROBLEM 2.1. Let I1, I2, · · · , In be consecutive iterations of

an iterative information extraction over a text database D with
score functions to assign confidence scores for extraction patterns
and tuples. Develop techniques to efficiently support explanations,
diagnosis, and repair of the output generated by the extraction sys-
tem after any iteration Ik, for any tuple t, or for any pattern p.

The problem we address is generic and can subsume several other
scenarios. For instance, in addition to patterns and tuples, expla-
nations may involve source text that generated a pattern or a tuple.
For our discussion, we assume that we are given as “black boxes,”
the scoring functions for assigning pattern and tuple confidence
scores, and information pertaining to the text source is available to
the black box. Nevertheless, the algorithms and representation pre-
sented in this paper do not rely on this interaction, and we believe
that our algorithms can be easily extended to support text source for
cases where such a black box interaction is unavailable. We note
that any subset of the three stages above may be performed in any
sequence. The rest of the paper presents algorithms for each stage
which are independent of other stages.

3. EXPLAIN, DIAGNOSE AND REPAIR
We now lay out the fundamental building blocks for enabling ex-

planations (Section 3.1), diagnosis (Section 3.2), and repair (Sec-
tion 3.3). In this section, we focus on “one-step EDR”; more com-
plex investigations based on chaining these fundamental blocks is
considered in Section 4. Our discussion for each stage presents il-
lustrative questions that naturally arise in this phase, followed by
algorithms to answer the questions using EBG.

3.1 Explaining Extraction Output
Intuitively, given a set of tuples, explanation traverses its lineage

backward, and so we are interested in building the history for each
tuple. More concretely, we need to address the following questions:

E1 Given a tuple t, determine the set Pg(t) of patterns that gen-
erated t, i.e., contributed to increasing t’s score?

E2 Given a tuple t, which pattern contributed to t the most? That
is, dropping which pattern would reduce the score of t the
most?

E3 Given a tuple t, which was the first iteration that discovered
t?

E4 Determine the most influential patterns in the entire IIE re-
sult, i.e., rank the patterns in order of their impact on the
final result. We consider various definitions of impact for a
pattern p: (a) It(p), using the number of result tuples p pro-
duced, i.e., |Tp(p)|, (b) Io(p), using the number of tuples
only p produced, and (c) Is(p), using the total score contri-
bution of p aggregated over all tuples. Roughly, E4 aims to
answer E1 and E2 for the entire batch of tuples in the result.
In addition to ranking all patterns, we also consider the prob-
lem of returning the set of K most influential patterns based
on each of the three measures of impact.

Before proceeding, we note that some EDR operations (notably
E1–E3 above) are easily answered using an EBG. We briefly dis-
cuss these operations, before proceeding to the significantly more
challenging E4; also recall, we consider chaining to perform more
sophisticated investigations in Section 4.

3.1.1 Algorithms for Enabling Explanations
Given the EBG G = (P, T,E1, E2) and tuple t ∈ T , we can

return as answer to E1 all patterns p ∈ P with an outgoing edge to
t. LetPg(t) = {p1, . . . , pk} be the set of all patterns that generated
t. For E2, we sort patterns associated with each incoming edge to
t, by their contribution st and return as answer the highest ranking
pattern4. Answers for E3 can be trivially generated from G.

4We assume the tuple scoring function, st, is uniform, i.e., does not
discriminate between different patterns, and is monotonic. If the



Require: G = (P, T,E1, E2), where P = {p1, . . . , pn}
1: ∀i : c1(pi) = c2(pi) = c3(pi) = 0
2: for i ∈ 1 . . . n do
3: for (pi, tj) ∈ E1 do
4: c1(pi)++
5: if indeg(tj) == 1 then
6: c2(pi)++
7: end if
8: c3(pi)+ = f(si, d(i,j))

9: end for
10: end for
11: Sort P based on c1, c2, c3 and return these rankings.

Algorithm 1: Algorithm for E4

We now turn to answering E4. Algorithm 1 shows how to solve
E4, given the EBG G, assuming a primitive function indeg that re-
turns the in-degree of any node in G. In effect, we maintain three
counts for a pattern, each corresponding to the three notions of
impact. For It(p), we are interested in ranking purely based on
|Tg(p)|, and thus, we rank patterns based on the number of edges
in G; for Io(p), we count the tuples only contributed to by a single
pattern, and thus, we discard edges to t nodes in G with in-degree
greater than 1; for Is(p), we rank by score contribution, and thus,
for every pattern pi we scan each outgoing edge pi, tj and aggre-
gate the scores st(p, tj) associated with it. We show the correctness
and complexity of Algorithm 1 using the following theorem.

THEOREM 3.1. Given an EBGG = (P, T,E1, E2), Algorithm 1
returns the solution to E4 in O(M + N logN), where N = |P |
and M = |E1|, assuming f(·) returns the score contribution of a
pattern to a tuple in O(1).

Next we consider answering a variant of E4 where we are inter-
ested in returning the set of K patterns that have the highest aggre-
gate impact, as determined by each of the three measures, namely,
It(p), Io(p), and Is(p). For this, we reuse Algorithm 1, and then
return the K patterns in sorted order. Interestingly, as captured
by the following theorem, while picking the top K using Algo-
rithm 1 gives us the optimal solution based on impact measures
Io(p) and Is(p) it only returns an approximate solution for It(p).
The following theorem also shows that finding the optimal solution
for It(p) is intractable, hence the approximate solution returned by
Algorithm 1 is a practical solution.

THEOREM 3.2. Given an EBGG = (P, T,E1, E2) whereN =
|P | and M = |E1|:

1. We can obtain optimal set of K patterns based on impact
measures Io(p) and Is(p) by picking the top K patterns
based on the sorted order of Algorithm 1 inO(M+N logN).

2. Finding the optimal set of K patterns based on impact mea-
sure It(p) is NP-complete in M and N .

3. Returning the top K patterns based on the sorted order of
Algorithm 1 gives a (1 − 1

e
)-approximation to E4 based on

impact measure It(p).

PROOF.
1. Note that the impact of a pattern pi based on measure Io(p)

or Is(p) is independent of whether pattern pj is picked in the set
for E4. Therefore, the total impact of a set of patterns is given by
the sum of impacts of each pattern. Therefore, greedily picking

tuple scoring function is a complete black-box, we must evaluate
the score by dropping one pattern at a time and pick the pattern that
caused the largest reduction in the tuple score.

the best K patterns based on their independent impacts yields an
optimal solution to E4.
2. To show NP-hardness of E4 under impact measure It(p), we
give a reduction from the NP-hard set cover problem [16]: Given a
universal set U = {1, 2, . . . , n} and subsets Si ⊆ U , 1 ≤ i ≤ m,
find the fewest subsets whose union isU . We reduce set cover to E4
by constructing m patterns p1, . . . , pm and n tuples t1, . . . , tn. pi

contributes to tuple tj if and only if j ∈ Si. There exists a solution
to the set cover of size K if and only if there is a set of K pat-
terns whose combined impact under measure It(p) is all n tuples,
proving the NP-hardness of E4 under impact measure It(p). Fur-
ther, it can be seen easily that E4 is in NP: Given a set of patterns,
we can compute in PTIME the total impact of the set of problems.
Therefore, E4 is NP-complete.
3. Using an inverse construction as in (2) above, we can reduce
E4 to an identical K-coverage problem, whose goal is to pick k
sets such that the union of the k sets is the largest possible. Since
this construction is an L-reduction (approximation-preserving re-
duction), and since the greedy algorithm for K-coverage yields a
(1− 1

e
)-approximation [20], our result follows.

3.2 Diagnosing the Extraction Output
Intuitively, diagnosis performs a “forward pass” to determine all

extraction results that were affected by specific pattern(s) or thresh-
old(s). The fundamental questions answered by this phase are:

D1 Given a pattern p, determine the set Tp(p) of tuples produced
by p.

D2 Given a pattern p, determine all tuples that would get elim-
inated if p is removed. (Note the subtle difference between
D1 and D2. D1 asks for all tuples generated by p and possi-
bly other patterns, while D2 asks for all tuples contributed to
only by p.)

D3 Given a pattern p, which was the first iteration that discov-
ered p?

D4 Find a set of K most influential tuples, i.e., find the set of
K tuples that are contributed to by the largest number of pat-
terns. Note this question is analogous to E4 from Section 3.2.
However, here we are only interested in findingK tuples and
not ranking all tuples: the total number of tuples is likely to
be large and ideally, we would like to present users with a
small set of tuples to obtain feedback on whether these tu-
ples are correct. Therefore, these tuples have to be carefully
picked to maximize the impact of the feedback on the output.

3.2.1 Algorithms for Enabling Diagnosis
D1, D2, and D3 are answered in a very similar fashion as the cor-

responding explanation questions. Given the EBGG = (P, T,E1, E2)
and pattern p ∈ P , to answer D1, we identify Tp(p) as all t ∈ T
with incoming edges (pi, t) to t. To answer D2, we eliminate from
Tp(p) all tuples that have an in-degree of greater than one, while
D3 is answered simply based on the iteration numbers stored in G.

Next let us turn to D4, which is the most challenging diagnosis
question. In fact, finding the optimal set of K tuples that are in-
fluenced by the largest number of patterns is intractable in general.
Once again, greedily picking the best K tuples based on their in-
dividual number of patterns contributing to them gives an efficient
approximate solution. We don’t repeat a detailed algorithm here as
it is very similar to Algorithm 1.

THEOREM 3.3. Given an EBGG = (P, T,E1, E2) whereN =
|T | and M = |E1|, finding an optimal solution to D4 is NP-
complete inM andN . A greedy algorithm picking the topK tuples



Require: G = (P, T,E1, E2), K
1: for i ∈ |P | . . . 1 do
2: for S ⊆ P , |S| = i do
3: for Every partitioning SK of S into K partitions do
4: bool=true
5: R = ∅
6: for Every partition s ∈ SK do
7: if ∃t ∈ T s.t. every p ∈ s contributes to t then
8: R = R ∪ {t}
9: else

10: bool=false
11: break
12: end if
13: if bool then
14: return R; exit
15: end if
16: end for
17: end for
18: end for
19: end for

Algorithm 2: Algorithm for D4 when the number of patterns is
small compared to the number of tuples.

yields a (1− 1
e
)-approximation to the total number of contributing

patterns.

PROOF. The hardness proof is by a reduction from set cover,
similar to that for Theorem 3.2, with sets and elements interchanged.
Details are omitted. Similarly, the approximation guarantee follows
from the greedy approximation of the K-coverage Problem.

While the above presents a practical solution to D4, we can obtain
an even better algorithm based on the fact that in practice the to-
tal number of patterns is significantly smaller than the number of
tuples. A single pattern typically generates many tuples, while a
single tuple is contributed to by few patterns. Next we present an
efficient algorithm when the number of patterns is small, whereas
the number of tuples can be large.

Consider an EBG G = (P, T,E1, E2) with M = |P | and
N = |T |, and M � N . Algorithm 2 presents an efficient ex-
act solution for D45. Intuitively, given the input K, we consider all
subsets S ⊆ P of patterns that may be in the contributing set forK
tuples, in descending order of the size of S. Whenever we find an S
that contributes toK tuples, we return S and terminate. For a given
S, to check whether there are K tuples that are contributed to by S
we use the following property: If all patterns in S contribute to at
least one tuple in a set of K tuples, then there exists a partition of
S into K sets {S1, . . . , SK} such that for each Si there is a tuple
ti that is contributed to by every pattern in Si. Therefore, Algo-
rithm 2 returns an optimal solution of D4. The following theorem
establishes the running time complexity of Algorithm 2. Note that
the running time is linear in N when the number of patterns is con-
stant, and nearly polynomial (i.e., exponential in logN log logN )
when M is O(logN). (We shall see in Section 5 that our exper-
iments over real-world datasets corroborate the assumption of the
following theorem. For example, in the directors domains, the
top-5 patterns generated more than 150K tuples (see Section 5).)

THEOREM 3.4. Given an EBG G = (P, T,E1, E2) with M =
|P |, N = |T | tuples, Algorithm 2 returns an optimal solution to
D4 in O(NM2MKM+1). In particular, if M is a fixed constant,
the running time is O(N) since K ≤ M . Alternatively, if M =
O(logN), Algorithm 2 runs in O(N log log N ).

5Details of standard procedures like finding subsets of a given size,
and partitioning a set into K pieces are omitted from Algorithm 2.

PROOF. The optimality of Algorithm 2 is evident from the dis-
cussion above. The total number of subsets of P is 2M . For each
subset S, which is of size ≤ M , we consider all possible parti-
tions of S into K partitions. Finally, for each partition, we need to
check if there is a single tuple that is contributed to by each pattern
in the partition. This check for all partitions can be performed in
O(NMK). Therefore, the total running time isO(NM2MKM+1).
If M is O(logN), the running time is

N logN2log NK log N+1 ≤ N2 logN(logN)log N+1

= N2 log2N(logN)log N ∼ O(N log log N )

The above algorithms can subsume several other notions of influ-
ence for D4. For instance, if we used tuple confidence scores to
measure influence, there is a tractable algorithm to solve D4 opti-
mally, as in the case of Theorem 3.2. If we considered influence
based on |Pp(t)|, size of the set of patterns produced by tuples (as
opposed to set Pg(t) of patterns that generated tuples), we use sim-
ilar techniques as above using E2 edges in the EBG instead of E1

edges. Finally, if we want influence based on a combination of
patterns that generate a tuple as well as those produced by it, we
consider the set E = E1 ∪ E2 of edges.

3.3 Repairing the Extraction Output
To incrementally revise the result of IIE, the fundamental opera-

tions we consider are:

R1 One or more patterns are deleted.
R2 The score of one or more patterns is modified. (Setting the

score of a pattern to 0 is equivalent to deleting it.)
R3 Some thresholds on tuples or patterns are modified.
R4 Each of a (small) set of tuples has been annotated (by a user)

as correct or incorrect. We would like to modify the IIE so
that the users annotations are respected, i.e., revise the scores
of other tuples and patterns to reflect the users annotations.
(Note that similar annotations of patterns by a user are ex-
ecuted by setting the score of correct patterns to 1, deleting
incorrect patterns and then using R1 and R2.)

3.3.1 Algorithms for Enabling Repair
Given the EBG G = (P, T,E1, E2) and a pattern p ∈ P that

needs to be deleted, we solve R1 as follows. Consider the set
Tp(p) = {t ∈ T |(p, t) ∈ E1} and the set only(p) = {t ∈
T |(p, t) ∈ E1, in-deg(t) = 1}. All tuples in only(p) are deleted,
and the score of every tuple in (Tp(p) − only(p)) is recomputed.
(Clearly, deleted tuples now may cause further deletion of patterns,
and so on. Recall in this entire section we only consider one-step
modifications. Chaining sequences of modifications is discussed in
Section 4.) To solve R2, we recompute the score of every tuples
in Tp(p) using Definition 2.2. Note that if p’s score is increased, a
tuple t that was pruned out in earlier iterations may now satisfy the
threshold, because of a boosted score due to p. Such tuples aren’t
added in the EBG for efficiency. We briefly discuss this point fur-
ther in future work (Section 7).

To solve R3, we have two options: (1) Augment the EBG to ex-
plicitly record, for each pattern and tuple, the sequence of scores
through every iteration; (2) Use the iteration numbers stored in
EBG. Option 2 requires more time to solve R3 but has a lower
space overhead. On the other hand, if pattern and tuple scores don’t
change frequently, the space overhead of Option 1 isn’t too much,
and the running time of R3 is lower. To solve R3, when we store the
sequence of scores for each pattern and tuple (Option 1 above), we
simply remove tuples and patterns that did not satisfy the modified
threshold at the specified iteration.



Require: G = (P, T,E1, E2), iteration I , modify τ → τ ′

1: if τ ′ > τ then
2: for t ∈ T do
3: PI(t) = ∅
4: for (p, t) ∈ E1 do
5: if iter(p, t) ≤ I then
6: PI(t) = PI(t) ∪ (p, t)
7: end if
8: end for
9: if PI(t) 6= ∅ then

10: Recompute score St(t) = Ft(PI(t), st) (Def. 2.2).
11: end if
12: if St(t) < τ ′ then
13: remove(t, G).
14: end if
15: end for
16: else
17: return
18: end if

Algorithm 3: Algorithm for R3: Repairing the threshold for tuple
pruning.

When we store only the iteration number on every edge and the
threshold applied at each iteration (Option 2 above), we distinguish
two cases for R3. First, when the threshold in some iteration for
tuples or patterns is reduced, no change is made: All tuples and pat-
terns that survived the pruning continue to remain in the result. As
mentioned earlier, some tuples or patterns that were eliminated may
now survive pruning, but these tuples and patterns weren’t stored
in the EBG. Second, suppose the threshold at iteration I of tuples
is increased from τ to τ ′. (Modifications to pattern thresholds are
handled in a similar fashion.) We consider the set TI of all tuples
that were born in iteration I , obtained by selecting fromG all tuples
whose incoming edges have labels I and greater only. We recom-
pute the scores of these tuples and eliminate tuples whose revised
scores are below τ ′. Further chaining of the effect of removing
these tuples is considered in Section 4. Algorithm 3 summarizes
the algorithm for solving R3 when the threshold for tuples in itera-
tion I is modified from τ to τ ′. It assumes a function iter(e) that
returns the iteration number at which edge e was created. Further,
the algorithm uses a function remove that removes a node, its edges,
and optionally applies chaining. The following fairly evident theo-
rem states the correctness and complexity of Algorithm 3 assuming
suitable indexes to retrieve edges of nodes quickly.

THEOREM 3.5. Algorithm 3 correctly repairs IIE for R3 inO(|T |+
|E1|).

Finally, let us consider R4. Suppose a user annotates a set T+

of tuples as correct and a set T− of tuples as incorrect. We modify
the execution of IIE as follows. For every pattern p that generates
a tuple in T−, we delete pattern p and solve R1. For every tuple in
T+, we set the score of T+ to 1, delete all tuples in T−, and recom-
pute the score of every pattern p generated through some tuple(s) in
T+ ∪ T−. We then apply R2 to repair IIE based on the new scores
of affected patterns. We note an important subtlety underlying R4:
A set of annotations T+ and T− may be inconsistent, e.g., there
may not exist any assignment of scores to patterns that are consis-
tent with all tuples in T+ being present (with score 1) and all tuples
in T− being absent. As an extreme example, if a tuple t ∈ T+ and
t ∈ T−, we have an inconsistency which can be resolved by appro-
priately notifying the user. In case of such inconsistent input, I4E
is able to use EBG to pinpoint the conflicting patterns and tuples
causing the inconsistency; these conflicts are then presented to the
user or developer for resolution.

Require: G = (P, T,E1, E2), tuple t
1: Qt = {t}, Qp = ∅, P = ∅
2: traversed=∅
3: while ((Qt 6= ∅) OR (Qp 6= ∅)) do
4: if Qt 6= ∅ then
5: tn = pop(Qt)
6: for p′ ∈ (E(tn)− traversed) do
7: Qp = Qp ∪ {p′}
8: end for

traversed=traversed ∪{tn}
9: else

10: pn = pop(Qp)
11: P = P ∪ {pn}
12: for t′ ∈ (E(pn)− traversed) do
13: Qt = Qt ∪ {t′}
14: end for

traversed=traversed ∪{pn}
15: end if
16: end while
17: return P
Algorithm 4: Algorithm for E5: Finding all patterns that con-
tribute to tuple t

4. CHAINING EDR OPERATIONS
So far, we looked at operations fundamental to interactive IIE,

and provided “one-step” algorithms that traverse a fixed number of
directed edges in the EBG. For instance, in response to E1, we were
interested only in patterns that contributed directly by generating
tuple t; however, there may be a sequence of tuple and pattern gen-
erations leading up to tuple t. Alternatively, we may want to know
the impact of modifying the score of p not just on tuples p generated
directly, but also on tuples indirectly generated from p through a se-
quence of patterns and tuples. In this section, we consider complex
(multi-step) investigations by interleaving the fundamental opera-
tions. Obviously, the total number of possible investigative ques-
tions is infinite, and hence it is impossible to enumerate all possible
algorithms. However, using a series of examples, we argue that the
explain, diagnose, and repair operations from Section 3 form the
basis for more complex investigations through chaining. Next, we
consider complex interactions based on each of the three phases—
explain, diagnose, and repair—a user may want to perform on the
result of IIE, and show how they are implemented by chaining the
individual operations from Section 3.

4.1 Chaining Explanations
We study two examples of chained explanations, obtained by ex-

tending E1 and E4 from Section 3.1 respectively. First consider the
following extension of one-step E1 from Section 3.1:

E5 Given a tuple t, find all patterns that (directly or indirectly)
contributed to t.

Given an EBG G = (P, T,E1, E2) and tuple t ∈ T , we are in-
terested in P = {p ∈ P | ∃ path from p to t}. We can obtain the
set P using a standard traversal of G through edges in E1 ∪ E2,
avoiding cycles, to find all reachable nodes. We restrict the set of
reachable nodes to those in P to obtain the solution to E5. Algo-
rithm 4 describes the traversal and the theorem below summarizes
our result for E5. Note that Algorithm 4 assumes a function E(·)
that performs the explanation from Section 3.1 for a tuple (pattern
resp.) to return the set of patterns (tuples resp.) that generated it.

THEOREM 4.1. Algorithm 4 returns the correct solution to E5
in O(N logN), where N = |G| gives the total number of nodes
and edges in the EBG G.



Note that E5 only asked for the set of contributing patterns, and
not the exact nature of contribution. For instance, we may wish
to know that pattern p1 contributes to t2 as p1 generated tuple t1,
which generated pattern p2, which in turn generated t2. In general,
we may wish to obtain the entire “derivation tree” of a tuple. The
traversal ofG can be extended easily to record edges, so as to obtain
the subgraph of G that has a directed path to the input tuple t.

Next we briefly consider the extension of one-step E4 from Sec-
tion 3.1. Under impact measure Io(p), the result of one-step E4 is
identical to chaining because Io(p) only considers tuples that are
generated by exactly one pattern. If however, we are interested in
impact measure It(p), given a pattern we need to determine all tu-
ples that p (directly or indirectly) contributed to. That is, given the
EBG G = (P, T,E1, E2), p ∈ P , we need to determine all t ∈ T
such that there exists a path from p to t. We can determine the set of
all reachable tuples for every p using a standard breadth-first short-
est path algorithm [11]. Once the set of reachable tuples has been
obtained, we can simply rank all patterns, or employ an approach
similar to Theorem 3.2 to pick the K most influential patterns. Fi-
nally, we solve chained E4 under impact measure Is as follows.
For every pattern p, we update p’s score to 0 and compute the up-
dated scores of all tuples (as shown under chained repair below),
and aggregate all tuple scores. We then pick the K most influential
patterns or rank them, as appropriate.

4.2 Chaining Diagnosis
We consider the following extension of D2 from Section 3.2:

D5 Given a pattern p, find all tuples that would get deleted if p
were removed.

In Section 3.2 we only considered tuples that were directly gener-
ated from a pattern. However, if a pattern is deleted, all tuples gen-
erated from it are deleted, which in turn may cause several other
tuples and patterns to be deleted. Just as E5 was solved using the
building block of E1, D5 can be solved in an identical fashion us-
ing the building blocks corresponding to D2: Determining all tu-
ples (patterns respectively) that would get deleted if a given pattern
(tuple respectively) is deleted. As in Algorithm 4, we traverse G
and iteratively find tuples and patterns that are necessarily deleted;
the exact algorithm is omitted.

THEOREM 4.2. Given an EBG G = (P, T,E1, E2), pattern p,
D5 can be solved in O(N logN), where N = |G| gives the total
number of nodes and edges in G.

4.3 Chaining Repair
We consider repairing the score of all affected tuples when a

pattern’s score is modified, an extension of R2:

R5 When the score of a pattern p is modified, repair the scores
of all extracted tuples.

Recall from Section 2 that we assume a black-box scoring function
for tuples and patterns. One option for solving R5 would be to
repeatedly solve R2: determine the modified scores for the set of
tuples directly contributed to by p, then modify scores of patterns
based on the modified tuples, and so on. However, in the presence
of cycles in the EBG, the above procedure may result in a large
number of iterations (even infinite if the scoring function doesn’t
converge to a fixed point). An alternative approach, facilitated by
EBG, is to effectively redo the scoring in an iterative fashion, by
applying R2 to snapshots of EBG at the end of every iteration.

DEFINITION 4.1. Given an EBGG = (P, T,E1, E2) resulting
from I iterations of IIE, the snapshot of G at iteration 1 ≤ i ≤ I
denoted G|i is the EBG at the end of iteration i of IIE. 2

Require: G = (P, T,E1, E2), pattern p, iteration i, score s→ s′

1: Gs = G|i
2: score(p) = s′

3: apply(Gs, G)
4: for j = i..I do
5: Gs = G|i
6: Gs = S(Gs)
7: apply(Gs, G)
8: end for

Algorithm 5: Algorithm for R5: Repair scores of an IIE result
when the score of pattern p at iteration i is modified from s to s′

We can compute the snapshot of G in linear time when we main-
tain iteration numbers on each edge during IIE. To solve R5, we
start with the iteration in which p’s score is modified. We succes-
sively (1) revise scores for each snapshot of G, (2) apply the mod-
ified scores to the entire EBG, (3) proceed to the next snapshot.
Algorithm 5 provides the pseudo code for solving R5, assuming
a function S that executes the black-box function for computing
scores in an EBG, and a function apply that copies modified scores
from a snapshot to an entire EBG.

THEOREM 4.3. Given an EBG G = (P, T,E1, E2), pattern
p whose score at iteration i is repaired from s to s′, Algorithm 5
solves R5 in O((I − i)K|G|), where I is the total number of it-
erations of IIE, K is the time taken for one call of the black-box
scoring function.

5. EXPERIMENTAL EVALUATION
We now present our experimental evaluation of our proposed

techniques. We begin by describing our data collection methods
(Section 5.1). Then, we discuss our experiments on examining the
utility of I4E—our interactive investigation approach—, for a di-
verse set of relations (Section 5.2). We then experimentally eval-
uate the space and time overhead introduced by our EBG-based
framework (Section 5.3). As we will see, our approach provides
significant “return on investment”: we are able to effectively uti-
lize I4E’s algorithms to explain and diagnose IIE results, and fix
them through minimal interaction, while introducing acceptable
overheads. We present results on the related issue of trading off
overhead and completeness of an EBG representation (Section 5.4).

5.1 Experimental Settings
Data sources: We used a collection of 500 million web pages
crawled by Yahoo! search engine crawl.
Iterative information extraction method: For our IIE, we reim-
plemented a state-of-the-art bootstrapping exraction technique de-
scribed by Pasca et al. [29] for large-scale datasets such as Web cor-
pora. Other related IIE systems such as Snowball [2], Espresso [30]
follow a similar paradigm varying in their scoring methods.
Extracted relations: As extraction tasks, we focus on six relations:

1 actors: 〈movie, actor〉
2 books: 〈book, author〉
3 directors: 〈movie, directors〉
4 mayor: 〈U.S. city, mayor〉
5 sen-party: 〈senator, affiliated party〉
6 sen-state: 〈senator, state〉

For each relation, we run our IIE methods for 10 iterations. Ta-
ble 2 shows the number of tuples generated for each relation. We
also studied the distribution of |Tg(p)|, i.e., the number of tuples
that generate a pattern, and |Pg(t)| the number of patterns that gen-
erate a tuple. Figure 3 shows these distributions for actors, and
Figure 4 shows these distributions for books. (We omit graphs for



domain size domain size

actors 14,414 mayor 28,514
books 142,337 sen-party 2,119
directors 230,766 sen-state 14,582

Table 2: Size of the relations in our experiments.
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Figure 3: Actors relation: (a) Number of patterns generating a
tuple (b) Number of tuples generated by a pattern

other domains due to space restrictions, but the trends are similar.)
As seen in Figures 3 and 4, a large proportion of the patterns are
generated from a few tuples; similarly a large proportion of tuples
are generated using a few patterns. Comparing Figures 3 and 4
with the data in Table 2, we also confirm our hypothesis from Sec-
tion 3.2 that the number of extraction patterns learned by an IIE are
relatively small compared to the number of generated tuples.

5.2 Effectiveness of I4E Algorithms
To examine the utility of the proposed I4E algorithms, we re-

cruited a human annotator to prototype a repair scenario. Based on
the IIE output, for a relation, we carried out two experiments: (1)
patterns-based repair and (2) tuples-based repair. For the patterns-
based repair, the annotator was shown a pattern and requested to
identify whether the pattern is valid for the relation for which it
was generated, after being given a brief description of components
like information extraction, patterns, and tuples. For instance, for
actors, users maybe asked: Is the pattern, ‘<Movie>-based films
starring <Actor> going to generate only valid tuples for our actors
relation?’ The annotation response was recorded to be either ‘cor-
rect’ or ‘wrong.’ Analogously, for the tuple-based repair, the anno-
tator was shown a tuple and requested to identify whether the tuple
is a valid instance of the relation. It is noteworthy that since the
number of patterns is relatively smaller than the number of tuples
used, an investigation scenario in practice may begin with a pattern-
based repair. As we will see, our proposed approach rapidly repairs
tuples after annotating only a handful of patterns.

For comparison, we developed three methods to pick the next
pattern to show to the annotator. The first method, P-Inf, com-
putes the influence for each pattern (see Section 3) and presents
them in decreasing order of influence. The second method, P-Scr,
orders the patterns in decreasing order of confidence order assigned
by the extractor. The third method, P-Rnd, randomly picks the
next unseen pattern; we simulate the result of P-Rnd as an average
over all possible orderings.

To evaluate the benefit of seeking human feedback on a set of
patterns, we use a “low-level” metric, namely, the total number of
repaired (or resolved) tuples in the output. Our evaluation method-
ology is as follows: Annotators were requested to label each pattern
as correct or wrong, and we note the number of repaired tuples de-
pending on the annotation. Suppose a pattern p was confirmed to
be correct by a user, all tuples in the set Tp(p) of tuples produced
by p are resolved to true, and can be thus, considered repaired. On
the other hand, if p is marked as wrong, each tuple t ∈ Tp(p) may
or may not be resolved, since a tuple t may be produced by other
potentially correct patterns. A tuple t is resolved to false if and
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Figure 4: Books relation: (a) Number of patterns generating a
tuple (b) Number of tuples generated by a pattern
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Figure 5: Gains when annotated pattern is (a) correct and (b)
wrong for the actors relation.

only if all patterns in the set Pg(t) of patterns that generated t have
been annotated as wrong by the user.

Given a batch B of annotated patterns for which human feed-
back was received, we examine the total number of repaired tuples
for cases when patterns were labeled correct as well as the total
number of repaired tuples when patterns were labeled wrong. Note
that applying I4E naturally does not require human feedback to be
processed separately; this step is performed solely for our experi-
mental evaluation in order to understand in-depth each of the two
important scenarios.

For the actors relation, Figure 5 shows the number of repaired tu-
ples for varying number of patterns annotated, when patterns were
marked correct (Figure 5(a)) and when patterns were marked wrong
(Figure 5(b)). From the figures, we observe that ordering patterns
by their influence increases the number of repaired tuples substan-
tially faster than that using a naive approach of random ordering,
or even using confidence scores to order pattern. In particular, af-
ter annotating only a few (about 5 to 10) tuples, P-Inf resolves
the status of about 75% of the tuples in the output. As an interest-
ing observation, based on the performance of P-Scr, we observe
that the highest scoring extraction pattern may not be the most in-
fluential pattern. In our experiments, the most influential pattern,
i.e., the first pattern fetched using P-Inf is ‘〈m〉 film starring 〈a〉’,
which generated 2415 tuples in the output. The highest scoring
pattern, i.e., the first pattern fetched using P-Scr is ‘movie casino
royale, starring’, which generated 3 tuples. We observe a similar
trend for other relations. Specifically, Figures 6, 7, 8, 9, and 10, re-
spectively, compares the performance of these methods for books,
directors, sen-party, sen-state, and mayor. One in-
teresting observation from Figures 5–10 is that for each relation,
the shape of the correct and wrong graphs are similar; e.g., the
P-Scr curves in Figure 8(a) and 8(b) are similar. This is because,
although the absolute values of the gains depend on whether the
pattern is correct or wrong, the overall shape of the curve is de-
termined by its steps corresponding to the most influential patterns,
which appear at the same point in the pattern ordering. Next we dis-
cuss a few other interesting observations for the different domains.

In general, the patterns picked using P-Scr prove to be specific
and are associated with a relatively small set of (correct) tuples, and
thus the gain from annotating such patterns is small. For instance,
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Figure 6: Gains when annotated pattern is (a) correct and (b)
wrong for the books relation.
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Figure 7: Gains when annotated pattern is (a) correct and (b)
wrong for the directors relation.
for sen-party, the top-2 patterns generated using P-Scr are,
‘presidential candidates u.s. senator’ and ‘presidential bid of sen.’;
in contrast, the top-2 patterns generated using P-Inf are, ‘u.s.
senator’ and ‘senator and presidential candidate.’ Interestingly, for
some relations such as, directors (see Figures 7), we may have
P-Scr perform similar to P-Inf: after annotating 20 patterns, the
performance for P-Scr is close to P-Inf, although the number of
repaired tuples are higher for P-Inf. To gain intuition into this, we
observed that the first pattern picked for annotation using P-Scr
is, ‘has a new director’ (influence = 2), and that using P-Inf is,
‘directed by’ (influence = 89745). At position 18, P-Scr picks
the latter pattern and therefore, rapidly resolves a large number of
tuples. Overall, we observed that for almost all relations P-Scr
initially picks patterns that are reliable but specific to the relation
and the gains from using P-Scr increase substantially (as shown
by a step in all graphs) only when an influential high-scoring pat-
tern is selected.

For the actors relation, Figure 11 shows results from tuple-based
repair where annotators were shown top-100 tuples using two dif-
ferent methods, namely, T-Inf and T-Scr, which order tuples
by their influence and confidence score respectively. (Tuple-based
repair graphs for other relations are similar, and omitted due to
space constraints.) When a tuple is annotated wrong, all patterns
associated with it are repaired to false. However, for a pattern
to be considered repaired to true, all the tuples associated with it
have to be annotated correct. Therefore, when tuples are annotated
correct, very few patterns are repaired. We observed that using
T-Scr, we got tuples that shared patterns and therefore, T-Scr
repairs slightly more patterns than T-Inf. However, more pat-
terns are repaired when tuples are annotated wrong, and T-Inf
repairs around 25% more patterns than T-Scr. A key observa-
tion from Figures 5–11 is that for a fixed number of annotations,
we can quickly repair relatively larger number of tuples by using
pattern-based repair than the number of patterns repaired using the
tuple-based repair.

5.3 Overhead of I4E
As discussed in Sections 2 and 3, I4E algorithms rely on building

an EBG graph for each iteration. In this section, we examine the
overhead in space and time incurred by I4E over a conventional IIE
system (without investigation capabilities).
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Figure 8: Gains when annotated pattern is (a) correct and (b)
wrong for the sen-party relation.
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Figure 9: Gains when annotated pattern is (a) correct and (b)
wrong for the sen-state relation.

5.3.1 Space Overhead
We begin by identifying two cases involving a standard, unmod-

ified IIE. In the first case, score recomputation, the IIE assumes
that at any iteration the tuples generated (including seed tuples as
well as the newly identified tuples) may need to be reevaluated.
For instance, this may be the case when the minimum threshold of
confidence scores applied to the tuples changes at each iteration.
Therefore, IIE will need to store information similar to that main-
tained in an EBG, e.g., the list of tuples generated by each pattern as
well as list of tuples produced by each pattern. Under this scenario,
the only overhead incurred to enable I4E algorithms is during the
final iteration. An unmodified IIE may chose to not materialize this
information only in the final iteration. Table 3 shows the relative
space overhead incurred by I4E algorithms for this scenario, for
varying total number of iterations. We measure the relative over-
head as sn−so

so
· 100, where so is the space requirements for the

IIE system and sn is the space requirements for an I4E enabled IIE
system. We observe that for a space overhead less than 15%, an
IIE system can support I4E algorithms, furthermore this overhead
“amortizes” across iterations and the overhead can be as low as 5%
when 15 iterations are run.

domain iterations
5 10 15

actors 14.1 6.67 4.31
books 13.22 6.66 4.10
directors 13.00 6.21 4.04
mayor 13.13 6.23 4.13
sen-party 15.31 7.21 4.71
sen-state 14.23 6.70 4.40

Table 3: Relative increase (%) in space introduced by EBG for
various relations and iterations for score recomputation.

The second case involving an unmodified IIE is score no-recomputation,
where IIE computes scores for each tuple in the first iteration it was
observed and thus, no tracing information regarding tuples or pat-
terns need to be maintained. Note that the IIE still needs to main-
tain a list of tuples and patterns generated by each iteration, but the
connection between them is not needed. Table 4 shows the relative
space overhead incurred by an IIE method that enables I4E algo-
rithms (see column all), when 15 iterations are performed. As
expected, the overhead in this case is higher than that in the case of
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Figure 10: Gains when annotated pattern is (a) correct and (b)
wrong for the mayor relation.
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Figure 11: Gains when annotated tuple is (a) correct and (b)
wrong for the actors relation.

score recomputation. For some relations, we may double the space
utilization by enabling I4E algorithms. Intuitively, if each pattern
generates two tuples, we need to store twice the amount of infor-
mation as unmodified IIE. As an optimization, we examined the
overhead if we were to prune the EBG based on the influence of
patterns. Recall, from Section 5.1 most tuples are generated by a
few patterns. Specifically, we only store the edges associated with
top-K influential patterns. Table 4 lists these values for K = 5, 10,
and 15. For most cases, reducing the number of patterns to follow
substantially reduces the space overhead. Naturally, this space re-
duction comes at the price of “coverage”, i.e., eliminating patterns
can reduce the coverage of tuples (see Section 5.4).

5.3.2 Time Overhead
We examined I4E’s time overhead for both the score recomputa-

tion and score no-recomputation cases. Table 5 shows the relative
time overhead for the score recomputation case varying the number
of iterations, and Table 6 shows those for score no-recomputation
case when 15 iterations are performed. The relative time over-
head for n iterations is measured as tn−to

to
, where to is the time

to complete i iterations by an unmodified IIE and tn is the time
to complete i iterations by I4E enabled IIE. Analogous to the space
overhead, the time overhead for score recomputation is always very
small, and further decreases as the number of iterations is increased.
Even for score no-recomputation, we observe very low for most re-
lations. Further, the time overhead for no-recomputation reduces
substantially if we focus on edges associated with top-K influen-
tial patterns. For sen-party, the high time overhead is due to
the small size of the relation, as compared to the relatively higher
processing cost involved.

domain # patterns
5 10 15 all

actors 30.2 52.5 63.9 113.2
books 34.3 55.6 61.2 98.4
directors 33.7 46.8 55.7 94.9
mayor 37.3 56.2 59.7 97.1
sen-party 45.2 60.1 69.1 138
sen-state 21.5 41.7 52.7 115.2

Table 4: Relative increase (%) in space introduced by EBG for
various relations and # patterns for no score recomputation.

domain iterations
5 10 15

actors 2.39 1.01 0.65
books 2.37 1.28 0.80
directors 7.30 6.51 1.3
mayor 1.71 0.91 0.62
sen-party 12.40 6.22 4.12
sen-state 2.89 1.33 0.86

Table 5: Relative increase (%) in time introduced by EBG for
various relations and iterations for score recomputation.

domain # patterns
5 10 15 all

actors 5.61 12.05 17.05 21.27
books 2.75 9.29 13.02 22.66
directors 3.85 4.54 15.9 19.56
mayor 0.37 1.05 12.71 21.31
sen-party 30.1 49.1 61.8 71.2
sen-state 1.23 2.25 16.64 23.32

Table 6: Relative increase (%) in time introduced by EBG for
various relations and # patterns for no score recomputation.

5.4 Overhead vs. Coverage Tradeoff
In the previous section, when computing the space and time over-

head for score no-recomputation case, we observed that the space
overhead can be reduced by storing only top-K influential patterns.
However, this naturally comes at the cost of completeness of the
EBG representation. For instance, eliminating edges associated
with some patterns may leave out tracing information about some
tuples. To examine the extent of this incompleteness, we measured
the fraction of output tuples that are completely represented for
varying number of influential patterns, called coverage. Table 7
shows the results. As we can see, with a space overhead of 30%
maintaining 5 patterns, we have a coverage in excess of 70% in
all relations. When we maintain 15 patterns, the space overhead
incurred is 50–65%, but coverage increases to ∼85–95%.

5.5 Evaluation Conclusion
In summary, we established the utility of our investigation ap-

proach over a variety of relations. By using influence measures,
I4E effectively guides users to identify patterns as well as tuples
that can aid the most in a repair process. Furthermore, we exten-
sively studied the overhead in space and time when using EBG,
and observed that I4E introduces an acceptable overhead. Finally,
we studied the tradeoff between representation completeness of I4E
and the overhead introduced by it.

6. RELATED WORK
Information extraction has received significant attention in the

recent years (see [32, 15, 2, 27, 28] and references therein). Re-
search efforts have focused on improving the extraction accuracy [32,
15, 2, 27, 28] or managing extraction uncertainty using probabilis-
tic database [18, 6] or handling dynamic extraction scenarios [9].

To allow users of IE to handle the uncertainty of the extraction
output, earlier work [23] has shown how to build optimizers for
extraction tasks for a user-specified quality requirement [24, 25].
Along this direction, [26] presented ranking algorithms to fetch a
few good tuples from the extraction output as specified by the users.
Our paper introduces a novel problem of interactively investigating
output of an information extraction (IE) and allowing users to trace,
diagnose, and repair any unexpected output.

Close to our work is the study of provenance (or lineage) in
databases: at a high-level, provenance has a similar goal, of pro-
viding transparency in query answers over a database. There is a



domain top-5 top-15 all patterns

overhead coverage overhead coverage overhead coverage

actors 30.2 72.7% 63.9 92.2% 113.2 100%
books 34.3 78.3% 61.2 96.3% 98.4 100%
directors 33.7 79.0% 55.7 93.5% 94.9 100%
sen-party 45.2 71.4% 69.1 84.4% 138 100%
sen-state 21.5 77.7% 52.7 83.2% 115.2 100%

Table 7: Tradeoff between (1) correct-influence coverage and
(2) space overhead, for top-K patterns

large body of previous work on provenance including but not lim-
ited to [3, 5, 8, 10, 12, 17, 31, 33, 34, 1]; the previous work on
provenance spans various contexts such as data warehouses, prob-
abilistic databases, and scientific workflows. We refer the reader
to [33, 22] for surveys on provenance. The most relevant previous
work on provenance is that of [21], which addresses the problem
of deriving the provenance (explanations) for non-answers in ex-
tracted data. The paper considers conjunctive queries, and for ev-
ery potential tuple t in an answer to a conjunctive query, the authors
provide techniques for determining updates to base data that would
produce t in the output. We focus on IIE results, which cannot
be captured by conjunctive queries; moreover, our goal is to pro-
vide explanations for extracted tuples, and subsequently guiding
the process of repairing the extraction system.

7. CONCLUSIONS AND FUTURE WORK
This paper presented I4E, a system for users and developers to

interactively carry out post-extraction investigation. We formal-
ize three fundamental phases of investigation: explaining the ex-
traction result, diagnosing potentially erroneous components, and
repairing the extraction result by fixing these components. We
showed a simple data structure, EBG, that stores necessary infor-
mation during extraction to support these phases. We presented a
suite of algorithms to efficiently answer investigation questions for
each of the three phases. While most questions allowed efficient
algorithms, some questions (such as picking the K most influen-
tial patterns) were provably NP-hard. We provided efficient ap-
proximate solutions for each of the intractable questions. We then
described techniques to perform more complex investigations by
chaining the individual operations of explain, diagnose, and repair.
We demonstrated the effectiveness of I4E through a detailed experi-
mental evaluation over six real-world datasets obtained from a Web
corpus of 500 million documents. We showed that I4E algorithms
help in identifying and fixing an extraction system with minimal
human feedback, which introducing little space or time overhead.

While I4E laid the foundation for introducing transparency and
subsequent improvement of information extraction systems, several
interesting challenges remain open. First, in this paper we focused
on iterative information extraction systems, and extending our ap-
proach to other (non-iterative) extraction systems is an important
next step. Second, while the primary goal of our approach is to per-
form post-extraction investigation, an interesting by-product of our
work is the process of extraction can be optimized. For instance,
we may decide to retain a tuple in the pruning stage even if it does
not meet the threshold, since at a later stage the tuple’s score may
be increased due to the discovery of new patterns. Fully exploring
how our EBG facilitates such extraction-specific optimization is an
interesting research direction. Third, incorporating textual context
as a first-class component of I4E and further developing the theory
of chaining are specific extensions to our work. Finally, applying
graph-compression techniques on EBG is an orthogonal aspect that
can compliment the investigation performance.
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