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Abstract— Information extraction from text databases is a
useful paradigm to populate relational tables and unlock the
considerable value hidden in plain-text documents. However,
information extraction can be expensive, due to various complex
text processing steps necessary in uncovering the hidden data.
There are a large number of text databases available, and not
every text database is necessarily relevant to every relation.
Hence, it is important to be able to quickly explore the utility
of running an extractor for a specific relation over a given text
database before carrying out the expensive extraction task. In this
paper, we present a novel exploration methodology of finding
a few good tuples for a relation that can be extracted from a
database which allows for judging the relevance of the database
for the relation. Specifically, we propose the notion of a good(k, `)
query as one that can return any k tuples for a relation among
the top-` fraction of tuples ranked by their aggregated confidence
scores, provided by the extractor; if these tuples have high
scores, the database can be determined as relevant to the relation.
We formalize the access model for information extraction, and
investigate efficient query processing algorithms for good(k, `)
queries, which do not rely on any prior knowledge about the
extraction task or the database. We demonstrate the viability of
our algorithms using a detailed experimental study with real text
databases.

I. INTRODUCTION

Oftentimes, collections of text documents such as newspaper
articles, emails, web documents, etc. contain large amounts of
structured information. For instance, news articles may contain
information regarding disease outbreaks which may be put
together using the relation DiseaseOutbreak〈Disease, Location〉.
To access these relations, we must first process documents using
an appropriate information extraction system. Examples of real-
life extraction systems include Avatar1, DBLife2, DIPRE [3],
KnowItAll [10], Rapier [5], Snowball [2]. These relations
that are extracted from text documents differ from traditional
relations in one important manner: not all tuples in the extracted
relations may be valid instances of the target relation [14],
[16]. To reflect the confidence in an extracted tuple, extraction
systems typically assign a score along with an extracted tuple
(e.g., [2], [9], [10]).

Example 1.1: Consider the task of extracting information
about recent disease outbreaks to generate the DiseaseOutbreak
relation. We are given an extraction system, that applies the pat-
tern ”〈Disease〉 outbreak is sweeping throughout 〈Location〉”
to identify the target tuples. As a simple example of confidence
score assignment, consider the case where the extraction
system uses edit-distance-based similarity matching between
the context of a candidate tuple and the pattern. Specifically, if

1http://www.almaden.ibm.com/cs/projects/avatar
2www.dblife.cs.wisc.edu

max is the maximum number of terms in an extraction pattern
and x is the number of word transformations for a tuple context
to match the pattern, then the confidence score is computed as
1− x

max (x ≤ max). Given a text snippet, “A Cholera outbreak
is sweeping throughout Sudan as of ...,” and max = 4, the
extraction system generates the tuple 〈Cholera, Sudan〉 with
a score of 1.0 (x = 0). On the other hand, for a text snippet,

“... checking for Measles is America’s way of avoiding ...,” the
extraction system generates the tuple 〈Measles, America〉 with
a lower confidence score of 0.25 (x = 3). �

A tuple may also be associated with multiple scores: facts
are often repeated across text documents and this redundancy
can be used to further boost the confidence score of a tuple [9].

Example 1.2: (continued). Using the same extraction sys-
tem in Example 1.1 to process another document in the
collection that contains the text snippet, “A cholera outbreak
sweeping throughout Sudan resulted in ...” will result in
extracting the same tuple in Example 1.1 but now with a
score of 0.75 (x = 1). �

The total confidence score of a tuple is an aggregation of
individual scores derived from processing different documents.
We can amass available scores for tuples and rank them using
an aggregate scoring function, while viewing extraction systems
as “black-boxes” that take as input a document and produce
tuples along with some confidence scores as illustrated in
the examples above. Typically, good tuples such as 〈Cholera,
Sudan〉 will occur multiple times [9] and thus, have their overall
confidence scores boosted; on the other hand, low quality tuples
such as 〈Measles, America〉 will be sparse and not have their
scores boosted.

This notion of a score per tuple provides an opportunity for
ranking the extracted tuples and, in turn, allowing for a new
query paradigm of exploring a few high-ranking good tuples.
As a concrete example scenario for this query paradigm, in
this paper, we consider the problem of exploring the potential
of a text corpus for extracting tuples of a specific relation.
Information extraction on a large corpus is a time-consuming
process because it often requires complex text processing (e.g.,
part-of-speech or named-entity tagging). Before embarking
on such a time-consuming process on a corpus that may or
may not yield high confidence tuples, a user may want to
extract a few good tuples from the corpus, allowing the user
to make an informed decision about deploying an information
extraction system. For instance, given the task of extracting
the DiseaseOutbreak relation, a test collection that contains
Sports-related documents from a newspaper archive is unlikely
to generate tuples with high confidence scores. Knowing the
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nature of tuples that are among the high ranking tuples can
help decide whether processing the entire corpus is desirable.

How can we identify a few good tuples for a relation buried
in a text database? The first solution that suggests itself is to
draw a random sample of tuples in the database, by processing
a random set of database documents using an appropriate
extraction system. Unfortunately, this approach leads to a
negatively biased view of the database: typically text databases
(even those that are relevant to a relation) contain a relatively
large number of low scoring, incorrect tuples, which, in turn,
leads to large number of low scoring tuples (false positives) in
a random sample of tuples. Another solution is to derive the
top-k ranking tuples of the relation based on the aggregated
scores of each tuple. However, using top-k query models is
undesirable since, as we will see, deriving the top-k answers in
our extraction-based scenario requires near complete processing
of a database, for each relation.

In this paper, we propose a novel approach to identify a few
good tuples for a relation based on returning any k tuples among
the top-` fraction of tuples ranked by their aggregate confidence
scores. We refer to this as the good(k, `) model, and investigate
the problem of efficiently identifying good(k, `) answers from
a text database. An intuitively appealing solution to process a
good(k, `) query is to draw a set of k

` tuples from the database
and return the top-k tuples among the candidate set. Such a two-
phase approach allows to focus the expensive extraction process
on only a small subset of the database. However, following this
approach poses several important challenges. First, we need to
build efficient algorithms to identify the final k answers among
a candidate set. Second, we need to identify an appropriate size
for the candidate set, so that it contains enough answer tuples
and at the same time avoids wasteful processing of documents.

To identify the set of k answers from a candidate set, we
propose two algorithms. Our first algorithm, E -Upper , is a
deterministic algorithm, that adapts an existing top-k algorithm,
namely Upper [4], to our setting. The second algorithm,
Slice, is a probabilistic algorithm which recursively processes
documents identified through query-based access, returning
promising subsets of the candidate tuple set that are likely
to be in the good(k, `) answer set, while performing early
pruning on subsets that are unlikely to be in the answer set.
This repeated triage is achieved by modeling the evolution of
ranks of tuples as a sequence of rank inversions, wherein pairs
of adjacent tuples in the current rank order independently switch
rank positions with some probability. Within this framework,
query processing time can be reduced by trading off time with
answer quality, in a user-specific fashion.

Identifying a “right-sized” candidate set is non-obvious
because of the skew in the distribution of tuple occurrences.
Depending on how we choose to aggregate individual scores of
a tuple we may be more (or less) likely to observe a frequently
occurring tuple at a given rank. To account for the effect of
the aggregate scoring function and the skew in the number
of tuple occurrences, we present a iterative method that first
learns the relevant parameters of the data using a small sample,
and then uses the learned parameters to adaptively choose a

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11
t1 1.0 0 0 0 0 0 0 0 0.75 0 0.6
t2 0 0 0 0 0 0.5 0.8 0 0 0 0
t3 0.2 0 0 0.6 0 0 0 0 0 0 0
t4 0 0 0 0 0.6 0 0 0.1 0 0 0
t5 0.1 0.1 0 0 0.2 0 0.6 0 0 0 0
t6 0 0 0 0 0 0 0 0 0 0.3 0
t7 0 0 0 0 0 0.6 0 0 0 0.7 0
t8 0 0 0 0 0.3 0 0 0 0 0 0
t9 0 0 0 0.2 0 0 0 0.2 0.2 0 0

t10 0.05 0 0.15 0 0 0 0 0 0 0 0
t11 0 0 0 0 0 0 0 0 0 0 0.05
t12 0 0.9 0 0 0.9 0 0 0.9 0 0.9 0
t13 0 0 0 0 0.1 0 0 0 0 0 0
t14 0 0 0.1 0 0 0 0 0 0 0 0
t15 0 0 0 0 0 0 0 0.5 0 0 0
t16 0 0 0 0 0 0 0 0 0 0 0.7
t17 0 0 0 0 0 0 0 0 0 0.4 0
t18 0.3 0 0 0.2 0 0.3 0 0 0.4 0 0
t19 0 0.5 0 0 0 0 0.5 0 0 0 0
t20 0 0 0 0 0 0.1 0 0 0 0 0
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Fig. 1. Sample matrix of confidence scores.

“right-sized” candidate set. In summary, the contributions of
this paper are:

• We formalize a new query model, i.e., good(k, `) for the
task of exploring databases for an extraction system.

• We present two query processing algorithms for the
good(k, `) queries, one deterministic and the other proba-
bilistic, which do not rely on any prior knowledge of the
extraction task or the database, making them suitable for
our data exploration task.

• We evaluate the effectiveness of our algorithms using a
detailed experimental study over a variety of real text data
sets and relations.

The rest of this paper is organized as follows: Section II
introduces and formally defines our data, access, and query
models. In Section III, we present an overview of our query
processing approach. In Section IV we present good(k, `)
processing algorithms, which consist of a deterministic and
a probabilistic algorithm. In Section V we discuss how we
pick an initial candidate set of tuples to be processed by the
proposed algorithms. We then present our experimental results
in Sections VI. Section VII discusses related work. Finally, we
conclude the paper in Section VIII.

II. DATA, ACCESS, AND QUERY MODELS

We first define the data and access models which form the
basis of our query processing scenario. We then formalize the
good(k, `) query model and the problem we address.

A. Data model

The primary type of objects in our query processing
framework are tuples extracted from a text database D using
an extraction system E. Given a tuple t, we describe t as a
vector sv(t) = [s1, s2, · · · , s|D|], where sj (0 ≤ sj ≤ 1) is
the score assigned to the tuple after processing document dj

(j = 1 . . . |D|). For documents that do not generate a tuple,
the associated score element is 0.

Example 2.1: Consider a sample matrix of scores for tuples
across documents with documents as columns and tuples as
rows (see Figure 1). Each element (i, j) in the matrix represents
the score for tuple ti after processing document dj . For instance,
tuple t1 represents the tuple 〈Cholera, Sudan〉 from Example 1.1
which was extracted from two documents, denoted as d1 and
d9 from our previous examples. Additionally, t1 also occurs



in a third document d11 with a score of 0.6. Thus, sv(t1) =
[1.0, 0, 0, 0, 0, 0, 0, 0, 0.75, 0, 0.6]. �

Given a tuple t, we derive its final score s(t) using
an aggregate function. In our discussion, we consider two
aggregate functions. Our first function is summation, a common
choice, which computes the final score of a tuple t as the sum
of the elements in the associated score vector. Specifically,

s(t) =
|D|∑
i=1

si (1)

where si are the elements in sv(t). We refer to this function
as sum. For instance, the final score for the tuple t1 in Figure 1
using sum is 2.35. For our second aggregate function, we view
the observed occurrences of a tuple along with their confidence
scores as independent events. To compute the aggregated
confidence, we derive the probability of the union of these
events occurring based on the Inclusion-exclusion principle.
Specifically,

s(t) =
n∑

i=1

si−
∑
i,j:

1≤i<j≤n

si ·sj−
∑
i,j,k:

1≤i<j<k≤n

si ·sj ·sk+. . . (2)

where n = |D|. We can derive this expression as s(t) = 1−∏|D|
i=1(1−si). We refer to this function as incl-excl. Using incl-

excl, the final score of the t1 in Figure 1 is 1.0. This function
allows for a probabilistic interpretation of the confidence scores
observed for a tuple: if si is the probability that a tuple t is
a good tuple, then s(t) is the probability of the tuple being
correct as gathered from multiple evidence.

B. Access model

We define two complementary access methods for exploring
tuples and their scores based on two general ways of retrieving
database documents for extraction, namely, a scan- or query-
based retrieval [15], [16]. Our first access method, S-access,
uses a scan-based retrieval and sequentially retrieves documents
from the database. Upon discovering a tuple t, we can query for
a specific set of documents that contain the terms in the tuple,
by constructing an appropriate conjunctive text search query
for t and issuing it to the search interface of the database. We
refer to this access method as Q-access. In principle, Q-access
can retrieve all documents that contain a given tuple, provided
there is no limit on the maximum number of results returned
by the search interface.

Example 2.2: Following Example 1.1, we could have re-
trieved document d1 using S-access and derived the tuple
〈Cholera, Sudan〉. Then, using Q-access we can issue the
query “[Cholera and Sudan]” to the search interface of the
database to derive other documents, namely, d9 and d11 that
can contain this tuple. Note that we could possibly retrieve
some other documents that also satisfy this query but do not
generate the tuple. �
The conjunctive search queries generated using the extracted
tuples rarely match all database documents, allowing Q-access,
as compared to S-access, to reduce the number of documents
to process in order to derive the complete score vector of a

tuple. Q-access is an appealing access method for another
important reason: using Q-access we can quickly determine
an upperbound, |H(t)|, on the number of documents in which
a tuple can occur. As we will see, the number of matching
documents for a tuple serves as an important guidance for our
query processing algorithms.

C. Query model

We now introduce a novel query model for the goal of
finding a few good tuples to aid in data exploration tasks. We
also argue why existing top-k query processing algorithms are
infeasible for deriving good(k, `) answers.

Definition 2.1: [good(k, `) query] A good(k, `) query
returns any k tuples that belong to the top-` (0 < ` ≤ 1)
fraction of the tuples in the database, where the ranking score
of each tuple is the aggregation of the extraction scores of
the extracted instances of the tuple, according to some given
aggregation function. �

An approach to process a good(k, `) query is to use existing
top-k query processing algorithms: given a good(k, `) query, we
can construct a top-k query and derive answers that are among
valid good(k, `) answers. Unfortunately, the access methods
outlined above retrieve tuple scores in an unsorted fashion,
making top-k algorithms an undesirable option, as discussed
next.

Proposition 2.1: Using a sequential, unsorted access to the
tuples in a database, in the worst case, a top-k query execution
would need to observe all tuples in the database. If the score
distribution is known, in the average case a top-1 query would
need to observe at least half the tuples in the database. �

Consider the processing of a top-l query (i.e., we need to
retrieve the best tuple in the database for the query). Consider
also that there is no absolute upper bound on the extraction
scores3. In the absence of any score distribution information, we
need to observe all possible tuples and scores in order to pick
the best tuple. Because of the lack of the sorted access, even if
the score distribution is known, the expected number of tuples
to observe is |T |

2 , where |T | is the total number of distinct
tuples that can be extracted from the database. Generalizing
to top-k tuples, assuming the score distribution is known, the
expected number of tuples to observe is k

k+1 · |T |. If tuples are
uniformly distributed across the database documents, fetching
the desired top-k tuples would imply near-complete processing
of a database.

As top-k answers are a restrictive class of the good(k, `)
answers, using top-k algorithms to process good(k, `) queries
can result in a significant increase in the amount of work
necessary in order to return the answers. With this in mind,
we introduce a two-phase query processing approach that first
identifies a candidate set of tuples and focuses the expensive
extraction process to derive the scores of only this subset of
the tuples. This, in turn, reduces the amount of work necessary
in order to return the answers.

3If an absolute upper bound on the extraction scores exists, we could observe
the highest scoring tuple after processing only a single document in the best
case; but on an average, we would need to observe at least |T |

2
tuples.



Example 2.3: Consider again the score matrix from Figure 1
and the sum function. Given a good(1, 0.1) query that requests
for one tuple from the top 10 percent of the ranked tuples, a
valid answer includes either tuple in {t1, t12}. When using top-
k processing algorithms, we would focus on deriving answers
for a top-1 query, which is t12. For this, we ought to observe all
scores for the 20 tuples. In contrast, when using a two-phase
approach, we can pick (in expectation) a random sample of
10 tuples and focus only on exploring the complete scores for
these 10 tuples, thus reducing the necessary processing. �
The above example also underscores two important observa-
tions. First, the total number of tuples to extract in a good(k,
`) query execution can be bounded. For most databases, this
translates to a bound on the number of documents to process
as well. Second, the query model does not require any prior
knowledge of the total number of tuples in the database, which
may not be readily available. In Example 2.3, to process
a good(1, 0.1) query, we need to focus on just 10 tuples
irrespective of the total number of tuples in the database.

We now formally define the problem on which we focus:
Problem 2.1: Consider a text database D with a Boolean

search interface and an extraction system E. Given a document
di (di ∈ D) E extracts tuples from di and returns confidence
scores for each tuple extracted from di. Given a good(k, `)
query over D, our goal is to efficiently process the query and
derive answers that satisfy the user query with high probability.

Given a good(k, `) query, finding exactly which tuples are in
the top-` fraction of all tuples would require processing every
document in D. Faster solutions for working with quantiles [12]
do approximations. We follow a similar approach and not
insist on deriving k answers from the top-` fraction in a
deterministic manner. In the remainder of the paper, we will
present algorithms for processing good(k, `) queries based on
the access models described in this section.

III. PROCESSING GOOD(K,L) QUERIES: AN OVERVIEW

To improve upon an exhaustive approach that processes
each database document, we note two important properties
of a desirable query execution approach. First, we need to
identify a candidate set of tuples such that it contains at least
k answers. Second, we need to identify the total number of
non-zero elements in a tuple’s score vector as this will allow
query processing algorithms to recognize tuples that do not
need further processing as all possible scores for them have
been explored.

For the first task of identifying a set C of candidate tuples,
we introduce a getCandidate(k, `, δ) procedure that extracts
a set of tuples C from database D such that C contains at
least k answers from the top-` fraction with probability at least
(1− δ). Later, in Section V, we discuss the getCandidate(k, `,
δ) procedure in detail.

Proposition 3.1: Consider a database D and a good(k, `)
query q. Then the top-k tuples among those that are generated
by procedure getCandidate(k, `, δ) are valid good(k, `) answers
from q over D with probability at least 1− δ. �

For the second task of determining the number of non-zero
elements in the score vector for a candidate tuple, we resort
to Q-access. Specifically, for each tuple t we construct an
appropriate query q and fetch the number |H(t)| of documents
that match q using Q-access. We use |H(t)| to derive an
upper bound on the number of non-zero elements, as database
documents that did not match q will not generate t. We
summarize our two-phase approach for processing a good(k,
`) query over D below:

(1) Retrieve a candidate set C of tuples from D using
getCandidate(k, `, δ) such that C contains good(k, `)
answers with probability (1− δ).

(2) Initialize a map M = ∅.
(3) For each tuple t ∈ C:

a) Generate a search query q from t and using Q-
access retrieve matching documents H(t) for q.

b) Use |H(t)| as the upper bound on the number of
non-zero elements in the score vector for t and
update M .

(4) Identify the top-k tuples in C according to M , using
some processing algorithm (see below).

To this end, yet another simple solution is possible: for each
tuple t in C, we retrieve the matching documents H(t) using
Q-access and process them using E. Because H(t) is a superset
of all the documents that can generate t, we can explore all
possible scores for t and hence compute its aggregate score s(t).
After deriving the aggregate scores for each candidate tuple,
we can sort them and return the k highest ranking tuples as
the answer. However, we may not necessarily need to process
every document that matches every tuple in the candidate set.
With this in mind, we discuss two possible algorithms for the
task of identifying k answers from a candidate set.

To compare the query processing algorithms, we define the
execution cost of an algorithm as:

Definition 3.1: [Execution Cost] Consider a database D.
The execution cost of an algorithm for a good(k, `) query over
D is the fraction of database documents that are processed by
the algorithm, |documents processed|

|D| . �
The execution cost of a query processing algorithm relies on
several factors such as, the time to process a document, the time
to retrieve a document, or the length of a document. To keep
the necessary statistics manageable, we make a simplifying
assumption that these factors are constant across different
documents. As our query processing framework involves a
single extraction system, the number of documents processed
serves as a good enough surrogate for the execution cost of
the query processing algorithms.

IV. IDENTIFYING ANSWERS FROM CANDIDATE TUPLES

In this section, we discuss two algorithms, namely, E -Upper
(Section IV-A) and Slice (Section IV-B) which focus on
identifying k answers for a good(k, `) query from a candidate
set of tuples for the query.

A. E-Upper Algorithm
E -Upper is a deterministic algorithm in that it returns the

top-k tuples in a candidate set of tuples. Thus, given a good(k,



Algorithm 1: E-Upper(C, k, M )
Output: top-k tuples in C
A = ∅
while |A| < k do

Retrieve tu from C with U(tu) = maxt∈CU (t)
if all the matching documents for tu in M have been processed then

/* tu belongs to top-k answers */
A = A ∪ {tu}

end
else

/* tu needs to be processed to decrease U(tu) */
Retrieve and process a matching document d for t from M

end
end
return A

Fig. 2. A deterministic algorithm for identifying the top-k answers from a
candidate set of tuples.

`) query, if a candidate set contains k answers from the top-`
fraction, E -Upper returns perfect answers.

E -Upper is based on the principles of Upper [4], a top-k
query processing algorithm for queries over Web-accessible
sources. Upper assumes that there exists at least one source
that produces objects sorted according to one of the attributes,
and that each source can be “probed” to identify the object
score of the corresponding attribute. (“Sources” are associated
with attributes in the Upper model.) Upper is based on the
observation that tuples that are certainly not in the top-k answer
need not be evaluated any further. To determine when it is safe
to discard a tuple, Upper maintains two possible scores for
each tuple: a score upper bound and a score lower bound. At
any given point in time, Upper can discard a tuple if the score
upper bound of the tuple is strictly below the score lower bound
of k other tuples. Based on this property, Upper focuses on
efficiently identifying and discarding such unnecessary tuples.
Interestingly, once a tuple has been discovered, Upper is able
to process a top-k query via “probing” to complete the score
of the tuple. This observation is particularly important for our
query processing setting. Specifically, once a candidate set
of tuples has been identified, we can adapt Upper to identify
the good(k, `) answers from the set based on the information
available via Q-access.

Consider a tuple t in a candidate set C with a set H(t) of
matching documents retrieved using Q-access. Assume that we
have processed i documents in H(t). Thus, the score vector
sv(t) contains actual scores for i elements, a value of 0 for
|D| − |H(t)| elements, and unknown values for |H(t)| − i
elements. At any given time during query processing, we can
define the two scores associated with t as follows: (a) U(t),
highest possible score for t, computed by assuming that all
the |H(t)| − i unseen scores are assigned the maximum value
of 1, and (b) L(t), lowest possible score for t, computed by
assuming that all the |H(t)| − i unseen scores are assigned the
minimum value of 0.

Figure 2 shows the E -Upper algorithm. At any given
iteration, E -Upper picks for exploration a tuple tu with the
highest score upper bound: if all the documents processed with
tu has been processed, tu is an answer tuple; otherwise, we
must lower its score before we can return the top-k results,
to make sure that t is not in the answer. E -Upper progresses
until it reaches a stage where there is no non-answer tuple t for

Current 
top-2 answers

t1

t2
t3

t4

t5 t6

:  tuple score 

: tuple that is certainly 
not in answer

t7

threshold

Fig. 3. Snapshot of an E -Upper execution, identifying the top-2 tuples from
a candidate set of 7 tuples.

which its score upper bound, U (t), is higher than the actual
score of the kth answer tuple. Figure 3 shows a snapshot of
the E -Upper algorithm in progress. (For illustration purposes,
we used a figure similar to that in [4].) The figure shows the
scores for 7 tuples ordered by their actual scores for the task
of identifying top-2 answers. A tuple whose upper bound is
lower than the lower bound of at least 2 tuples can certainly
not belong to the final answer. We discard such tuples at
each iteration. In order to safely determine the top-2 answers,
E -Upper will pick t4 as the tuple to explore next.

By discarding tuples that do not belong to the final answer,
E -Upper improves upon the probe-all strategy which processes
all documents associated with every candidate tuple. However,
E -Upper can be time-consuming under some scenarios where
we need to process a relatively large number of documents
to lower the upperbound of a tuple that does not belong
to the answer. This observation has been made in the top-
k processing case as well, leading to developing probabilistic
algorithms [20]. Unfortunately, existing probabilistic algorithms
typically require some apriori knowledge about the score
distribution of the tuples. In our case, where we are exploring
the potential of a new database, such information is not
available. What we need is a method to make decisions as we
observe scores at query processing time. With this in mind,
we design a probabilistic algorithm, that determines early on
two types of tuples, i.e., tuples that cannot belong to the final
answer as well as tuples that very likely belongs to the final
answer, based on the relative standing of the candidate tuples.

B. Slice Algorithm

In this section, we introduce a probabilistic algorithm,
Slice(C, a, ε), that returns a answers from the set of candidate
tuples C such that (in expectation) at least a− ε are contained
in the top-a tuples in C. Using Slice we can provide a set R
of approximate answers for a good(k, `) query such that R
contains at least k answers and no more than E extraneous
tuples, where E is a user-specified tolerance threshold. To
ensure that we obtain k answers with high probability (see
Section II), we call Slice over a candidate set C of tuples that
contains at least k + E tuples from the top-` fraction, and
use a = k + E and ε = E. Among the answers returned by
Slice , we expect to observe at least k answers picked from the
top-(k + E) tuples in C, which, in turn, belong to the top-`
fraction of the database.

Slice is a recursive algorithm and the main idea behind it
is as follows: at each level of recursion the algorithm slices



Algorithm 2: Slice(C, a, ε)
Input: Candidate set of tuples C that contains at least a tuples, desired number

of answers a, acceptable error ε
Output: Tuple set R, such that (i) |R| ≤ a and (ii) R has at least a − ε tuples

that are among the correct top-a tuples
/* base cases */
if a ≤ ε then

return ∅
if |C| = a then

return C

/* end base cases */
if ε = 0 then

Process all remaining documents for each tuple in C
return top-a tuples in C

foreach tuple t ∈ C do
Process α fraction of matching documents for t in M

Rank tuples in C based on observed scores so far
ε̃ = getNextError(ε)
Pick τg and τb using ε̃
Get set X of tuples in C with rank at or above τg

Get set Y of tuples in C with rank at or above τb

return X ∪ Slice(C − (X ∪ Y ), a − |X|, ε − ε̃)

Fig. 4. A recursive algorithm for deriving top-k approximate answers from
a candidate set of tuples.

the candidate set of tuples by putting aside a set X of tuples
expected to belong to the top-a tuples in C, and a set Y of
tuples expected to not belong to the top-a tuples in C. Slice
generates these sets after processing only a fraction of the
documents associated with each candidate tuple, and the tuples
in X and Y need not be further processed by the subsequent
recursion levels, thus reducing the overall execution cost. The
final answer is a union of the tuples in X set aside by each
recursion step.

Figure 4 shows the Slice algorithm. To understand the
algorithm, consider a tuple t. At any recursion level r, we
process a new fraction α of documents from H(t). Using the
(collective) scores observed at all levels up to r, we compute
the aggregate score for t. Based on these observed aggregate
scores for the candidate tuples, we generate a ranked list. To
derive the set X we decide a rank boundary, τg , such that all
the candidate tuples with rank at or less than τg belong to X
(rank position 1 represents the highest-scoring tuple). Similarly,
we derive the set Y by deciding a rank position τb such that
all the candidate tuples with rank positions at or greater than
τb belong to Y .

Example 4.1: To illustrate how Slice works, we discuss a
hypothetical scenario involving the sample score matrix in
Figure 1. Assume that we want to retrieve 2 tuples from the top-
4 tuples in a candidate set (i.e, k = 2 and E = 2, so a = 4). If
sum is the aggregate function, the actual answer for this query
consists of any 2 tuples from the set {t1, t2, t7, t12}. Consider a
candidate set that contains 8 tuples, namely, t1, t2, t7, t10, t12,
t14, t16, and t20 from Figure 1. Slice begins by processing a
fraction of the documents associated with each candidate tuple.
Say Slice processes documents d11, d6, d6, d3, d2, d3, d11, and
d6 for the above tuples, which results in the observed scores
shown in Figure 5. For instance, for tuple t1, we observe a score
of 0.6 from document d11, whereas for tuple t10 we observe a
score of 0.15 from document d3. Using these observed scores,
we construct a ranked list (see Figure 5): tuple t12 is at rank 1
and tuple t16 is at rank 2; similarly, t20 is assigned a rank of
8. These observed ranks are not identical to the actual ranks
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Fig. 5. Sample recursion snapshots for Slice.

of these candidate tuples (e.g., the actual aggregate score for
t1 is higher than that for t16), but some of the tuples, such as
t12 and t20, are already in the right position.

At the first recursion level, using an appropriate “oracle,”
Slice picks τg = 2 and τb = 8. As a result, it generates the
sets X = {t12, t16} and Y = {t20}. In the next recursion, the
candidate set is reduced by eliminating these three tuples,
and the goal now is to derive the top-2 tuples from the
new candidate set consisting of 5 tuples. Slice processes a
new fraction of documents for these candidate tuples; say
Slice processes document documents d1, d7, d10, d1 for the
tuples t1, t2, t7, t10, respectively, and updates the scores for
the candidate tuples as shown in the figure. Tuple t1 is the
top-ranking tuple now and t2 is ranked at 2. At the second level
of recursion, Slice picks τg = 2. This choice of τg generates
a new X set with tuples t1 and t2. At this point, we have no
more answer tuples to fetch and the final answer contains the
set, {t1, t2, t12, t16}, of which at least 2 tuples are correct. �

At each iteration, Slice uses partial score information and
thus, X may contain tuples that are not among the top-a tuples
in C and, similarly, Y may contain tuples that are among
the top-a tuples in C. We want to pick τg and τb such that
these errors are bounded by some ε̃ ≤ ε, where ε is the user-
specified error-tolerance. The remainder ε− ε̃ is passed on as
the error “budget” for the subsequent recursion levels. To derive
an appropriate value for ε̃ given ε, we rely on a procedure
getNextError(ε); we will discuss this procedure later in this
section.

Given ε̃, we pick τg such that the expected number of
false positives (i.e., tuples with actual rank greater than a
but observed rank less than τg) is expected to be no larger
than ε̃. Similarly, we pick τb such that the expected number
of false negatives (i.e., tuples with actual rank less than a
and observed rank greater than τb) is expected to be no larger
than ε̃. For simplicity, we use the same value for ε̃ for both
false positives and false negatives. However, the algorithm can
be easily extended to handle different values for these error
bounds. Later in this section, we discuss how we pick τg and
τb for a given a and ε̃.

To examine the correctness of our algorithm, we define the
following theorem.

Theorem 4.1: Given a candidate set of tuples C that
contains at least a tuples, desired number of tuples a, and
acceptable error ε, Slice(C, a, ε) returns a set of tuples R ⊆ C



such that |R| ≤ a and |R| contains at least a− ε tuples that
are among the top-a tuples in C.
To prove this theorem, we define the following lemmas.

Lemma 4.1: Let C ′ ⊆ C be a set of tuples such that C ′

contains β tuples from the top-α tuples in C (β ≤ α). Then,
the top-β tuples in C ′ are contained in the top-α tuples in C.

Proof: We will prove this by contradiction. Assume that
there exists a tuple t1 in the top-β of C ′ such that t1 is not
in the top-α of C. Since C ′ contains β tuples from the top-α
of C and we assume not all of them are in the top-β of C ′,
then there exists a tuple t2 such that t2 is in the top-α of C
but not in the top-β of C ′. Now t1 ∈ top-β tuples in C ′ and
t2 /∈ top-β tuples in C ′ =⇒ s(t1) > s(t2). But t2 ∈ top-α
tuples in C and t1 /∈ top-α tuples in C =⇒ s(t2) > s(t1).
Since s(t1) cannot be both greater and smaller than s(t2), we
arrived at a contradiction.

Lemma 4.2: Let C ′ ⊆ C be a set of tuples such that C ′

contains β tuples from the top-α tuples in C (β ≤ α) and
let R′ ⊆ C ′ be a set of tuples such that R′ contains at least
δ tuples from the top-γ tuples in C ′ (δ ≤ γ ≤ α). Then, R′

contains at least δ −max [(γ − β), 0] tuples from the top-α
tuples in C.

Proof: By Lemma 4.1, {top-β of C ′} ⊆ {top-α of C}.
We distinguish two cases:
Case 1: γ > β: Then, {top-β of C ′ } ⊂ {top-γ of C ′ }. This
means that at least β tuples from the top-γ of C ′ are contained
in the top-α of C. So, at most γ − β tuples from the top-γ of
C ′ are not contained in the top-α of C. Therefore, out of the
δ tuples from R′ that are contained in the top-γ of C ′ at most
γ − β can not be contained in the top-α of C.
Case 2: γ ≤ β: Then, {top-γ of C ′} ⊆ {top-β of C ′} ⊆
{top-α of C}. Hence, all δ tuples in R′ are contained in the
top-α of C.
We are now ready to prove Theorem 4.1.

Proof: By induction on the recursion height.
Base cases: (a) If a ≤ ε, Slice returns R = ∅, which trivially
satisfies the condition that |R| ≤ a and R contains at least
a− ε tuples from the top-a of C. (b) If |C| = a, Slice returns
R = C, which trivially are the top-a tuples in C.
Induction step: Slice picks ε̃, X , and Y (see Figure 4). Let Xb

and Yg denote the false positives in X and the false negatives
in Y , respectively. Let R′ be the set of tuples returned by
the recursion call Slice(C −X − Y, a− |X|, ε− ε̃). From the
induction hypothesis we know that |R′| ≤ a− |X|, and, since
R = R′ ∪ X , we can conclude that |R| ≤ a. To calculate
the number of tuples in R that belong to the top-a of C, we
identify the following properties used in our proof:

(1) |X| contains |X| − |Xb| tuples from the top-a tuples in
C.

(2) C ′ contains (a− |X −Xb| − |Yg|) tuples from the top-a
tuples in C.

(3) By the induction hypothesis, R′ contains at least a −
|X|−(ε− ε̃) from the top-(a−|X|) tuples in C−X−Y .

Applying Lemma 4.2 to C ′, where C ′ = C − X − Y , with
α = a, β = a − (|X| − |Xb|) − |Yg| (by property (2)), γ =
a− |X|, and δ = a− |X| − (ε− ε̃) (by property (3)), we get

that the set R′ contains at least a− |X| − (ε− ε̃)−max [(a−
|X|)− (a− (|X| − |Xb|)− |Yg|), 0] tuples that belong to the
top-a of C. We further solve this to derive the total number
of tuples in R′ that are in the top-a of C to be:

a− |X| − (ε− ε̃)−max [|Yg| − |Xb|, 0]
= a− (|X| − |Xb|)− (ε− ε̃)−max [|Yg|, |Xb|]
≥ a− (|X| − |Xb|)− (ε− ε̃)− ε̃ (by |Yg|, |Xb| ≤ ε̃)
= a− (|X| − |Xb|)− ε

Furthermore, we know that R = R′ ∪X . Using property (1),
we can conclude that R must contain at least a−(|X|−|Xb|)−
ε + |X| − |Xb| = a− ε tuples from top-a of C.

1) Deriving Rank-based Boundaries: We now discuss how
we pick the rank-based boundaries τg and τb in order to generate
the sets X and Y at each recursion.

Given a candidate set C and the goal of fetching top-a tuples
in C, we observe that using a rank boundary τg generates a false
positive when a tuple at a rank greater than than a is observed
at a rank less than τg. To compute the expected number of
false positives given τg and a, we study the probability of such
rank inversions taking place. Formally, we are interested in
deriving the probability Prinv{j, i} that a tuple at rank j is
observed at rank i where j > i after processing α · r fraction
of documents, where r is the number of recursion levels so
far.

A rank inversion between positions j and i would, in turn,
require a series of consecutive rank swaps to take place, i.e.,
the tuple must ”swap” ranks with all the tuples with ranks q,
where j > q > i. Figure 6 illustrates the generation of a false
positive for a set C of ranked tuples, with 1 being the top rank
and |C| the largest possible rank. For a given a, the figure
illustrates one possible choice of τg which results in a single
false positive at position 3. This false positive was generated
when a tuple with actual rank = a+1 swapped ranks with all
other tuples with smaller ranks until it arrived at the observed
rank of 3. In practice, the relation between rank swaps and a
rank inversion of a specific length can be arbitrarily complex
depending on the nature of the text database, the tuple score
distribution, etc. To avoid relying on any apriori knowledge
or sophisticated statistics, we make a simplified assumption of
independence across different rank swaps. Specifically, we can
derive Prinv{j, i} as:

Prinv{j, i} =
i∏

q=j

Prinv{q + 1, q} (3)

The probability of a single rank swap i.e., a tuple with
actual rank j swaps ranks with a tuple with actual rank (j +1),
depends on the fraction (α · r) documents processed for the
candidate tuples. Specifically, we denote the probability of
a single rank swap as a function fs(β) of the fraction of
documents β = (α · r) processed for the candidate tuples.
Following this, the expected number of false positives when
using τg as the boundary is:

E[false positives|β, τg] =
τg∑

j=1

Prinv{a+1, j}=
τg∑

j=1

fs(β)(a+1−j)



1|C| a τg
Fig. 6. A false positive generated by a series of consecutive rank swaps.

This is a conservative upperbound on the expected number of
false positives as we compute the rank inversions between the
ranks τg and a + 1; tuples with ranks greater than a + 1 are
less likely to switch over as false positives than the tuple at
rank a + 1.

To compute fs(β) given the fraction β of documents
processed, we estimate the probability of a rank swap for
varying values of β at runtime. Specifically, we begin with a
small sample S of tuples (e.g., 5 or 10 tuples) and examine the
probability of rank swap by varying the values for β. Given
an aggregate function, and a β value we process β fraction
of the documents associated with the tuples in S. Using the
aggregate function along with the scores observed so far, we
derive a ranked list of the tuples in S. To derive fs(β), we
now compute the total number of rank inversions observed in
this ranked list and normalize it by the maximum number of
inversions possible in a sequence of size |S|. As we will see
later, this step of estimating fs(β) can be “piggy-backed” with
the process of deriving other parameters necessary for query
processing (Section V).

So far, we discussed how we derive the rank boundary τg

for generating the set X . To derive the rank boundary τb,
we proceed in a similar fashion after computing the expected
number of false negatives for a given τb and a.

2) Choosing an Error Budget: We now discuss the issue of
picking ε̃, i.e., the maximum allowed false positives (or false
negatives) at each recursion level. For this, we first discuss the
general effect of the choice of ε̃.

Given two different recursion levels r1 and r2 where r2 > r1

and a ε̃ value, the set X2 picked by Slice at recursion level
r2 is larger than the set X1 picked at level r1. This is mainly
because at r2, Slice would have observed and processed more
documents than at r1, thus moving closer to the actual ranking
of the candidate tuples and reducing the chance of picking a
false positive. This, in turn, allows Slice to pick a larger value
for τg at r2 than at r1 for the same ε̃ value, resulting in X2

such that |X2| > |X1|. This observation gives us an incentive
to increase the number of recursion levels by picking a small
value for ε̃ during the initial levels of recursion. However,
deeper recursion levels come at the cost of processing more
documents as Slice processes a new fraction of documents at
each level.

On the other hand, given a recursion level r and two different
values for the error budget ε̃2 and ε̃1, where ε̃2 > ε̃1, the set
X2 picked by Slice using ε̃2 is larger than the set X1 picked
by Slice using ε̃1. This is because using ε̃2 allows for more
slack and enables a more aggressive approach at building X by
picking a larger value for τg compared to that picked using ε̃1.
While using larger values for epsilon earlier on can reduce the
number of recursion levels (and thus the cost of the algorithm),
we run into the risk of exhausting the error budget too soon and
having to process all the remaining documents: when ε̃ = 0,

Slice is not permitted any false positives or false negatives,
and Slice must process all documents for each tuple in C.

We studied alternative definitions for the getNextError and
found the function ε̃ = ε

2 to work well; halving the available
error budget at each level ensures we use error budgets in
proportion to the expected error.

V. GENERATING CANDIDATE SETS

Our algorithms of Section IV rely on a getCandidate(k, `,
δ) procedure to generate a candidate set of tuples C that, with
probability at least 1−δ, contains at least k tuples from the top-
` fraction of the database tuples. We now present two methods
to derive such a candidate set, a Naive method (Section V-A)
and an Iterative method (Section V-B).

A. The Naive Approach

Given the goal of constructing a candidate set that contains k
tuples from the top-` fraction of the tuples in the database, we
begin with drawing a random sample of the tuples via S-access.
Specifically, our goal is to process documents retrieved by S-
access until we have extracted k tuples from the top-` fraction.
For this, we observe that the number of tuples in C that belong
to the top-` fraction of the tuples in the database is a random
variable VH that follows a hypergeometric distribution. Thus,

Pr{VH < k} =
k−1∑
j=0

Hyper(T ,T · `, |C |, j ) (4)

where Hyper(D,S, g, i) = (g
i)·(D−g

S−i)
(D

S) . For a desired confidence

(1 − δ) in the candidate set, we can draw samples C such
that the probability that C contains at least k answers exceeds
1− δ. Hence, we are looking for:

min{|C| : (1− Pr{VH < k}) ≥ (1− δ)} (5)

In practice, though, deriving the cumulative distribution
function of a hypergeometric distribution does not yield a
closed-form solution. To optimize the process of selecting
a candidate set we can model the sampling process using a
binomial distribution. Besides simplifying the candidate set
size derivation, using a binomial model provides an added
benefit of not requiring the knowledge of the exact number
of tuples in the database. This is particularly appealing in a
data exploration setting where the total number of tuples is
not known a priori. Under the binomial model, the number of
tuples in C that belong to the top-` fraction of the tuples that
can be extracted from the database is a random variable VB

with probability of success p = ` such that:

Pr{VB < k} =
k−1∑
j=0

(
|C|
j

)
· pj(1− p)|C|−j (6)

Equation 5 gives us the size of candidate set to draw. Finally,
for p ≥ 0.5 we can further use Chernoff bounds [18] to derive
an upper bound on |C|.

The approach outlined above assumes no skew in the data
and that a set of tuples derived using S-access is an unbiased



random sample of the tuples in the database. In particular, it
assumes that (a) each tuple occurs only once or the frequency
of the tuples is uniform, and (b) the choice of the aggregate
function does not affect the likelihood of observing a tuple that
belongs to the top-` fraction of the tuples that can be extracted
from the database. Next, we present another approach for
constructing the candidate set that relaxes these assumptions.

B. The Iterative Approach

In some cases, we may have a skewed database such that
some tuples occur more frequently than the others. In fact, [15]
showed that the extracted tuples in a database follow a long
tail distribution, i.e., a power-law distribution. In this setting, it
becomes important to examine the effect of the choice of the
aggregate function on the rank of a frequently occurring tuple
or that of a rarely occurring tuple. Specifically, we want to
examine for a given function the relation between the frequency
of a tuple and the fraction of the ranked tuples it belongs to.

Consider the case of summation. Informally, a tuple that
occurs very frequently is more likely to have a high score
and thus occur towards the top of the ranked list of tuples
(i.e., small values of `) than a tuple that occurs only once.
Furthermore, a frequently occurring tuple is more likely to be
observed in a random sample than a rarely occurring tuple. As
a consequence, for small values of `, the samples drawn using
S-access may contain more tuples than necessary to derive a
good(k, `) answer. This, in turn, implies that we can down
sample when selecting the candidate set for smaller values
of ` when using summation as the aggregation function. As
a contrasting example, consider the case where the scoring
function is min, i.e., the final score of a tuple is the minimum
score assigned to it across all documents. In this case, a rarely
occurring tuple is more likely to belong towards the top of the
ranked list of tuples, and this would require us to over sample
when constructing the candidate set for small values of `.

To account for the scoring function effect, we developed
a two-step candidate generation approach. Given the goal of
constructing a candidate set containing k tuples from the top-`
fraction of the tuples in the database, we pick a small value
s (s � k) and construct an initial candidate set that contains
s tuples that belong to the top-` fraction of the tuples in the
database. We generate this initial candidate set using the Naive
method outlined in Section V-A. Using Q-access, we derive the
matching documents for each tuple in this set, and process them
to derive for each candidate tuple the actual aggregate score.
To this end, we compute an adjust factor a(`). Specifically, we
calculate the actual number of tuples in the initial candidate
set that belong to the top-` fraction of all the tuples and divide
this number by s. When using a function like sum that calls
for down sampling, a(`) ≥ 1. We apply this adjust factor when
constructing a candidate set for the remainder k − s tuples to
be fetched. Specifically, we now target for k−s

a(`) tuples instead
of (k − s) tuples to generate the remainder of the candidate
set.

The two-step approach discussed above can naturally be
extended to a fully iterative approach where we refine our
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Fig. 7. Average execution cost using E -Upper for varying ` using (a) sum
and (b) incl-excl.

estimate for a(`) iteratively. Using the adjust factor obtained
at iteration i from si, we can decide an appropriate scaling
factor when fetching the si+1 tuples in the i + 1st iteration.
Interestingly, our experiments reveal that fixing the number of
iterations to two (i.e., n = 2) results in candidate sets with
sizes close to those we can obtain if we had perfect knowledge
of the scoring function effect.

VI. EXPERIMENTAL EVALUATION

We now describe the settings for our experiments and report
the experimental results.
Information Extraction Systems: We trained Snowball [2]
for two relations: Headquarters〈Company, Location〉, and
Executives〈Company, CEO 〉
Data Set: We used a collection of newspaper articles from The
New York Times from 1995 (NYT95) and 1996 (NYT96), and
a collection of newspaper articles from The Wall Street Journal
(WSJ). The NYT96 database contains 135,438 documents and
we used it to train the extraction systems. To evaluate our
experiments, we used a subset of 49,527 documents from
NYT96, 50,269 documents from the NYT95, and 98,732
documents from the WSJ.
Queries: To generate good(k, `) queries, we varied ` from 0.05
to 0.5, in steps of 0.05, and used k ranging from 20 to 200,
in steps of 20. For each good(k, `) query, we report values
averaged across 5 runs.
Metrics: To evaluate a processing algorithm, we measure
the precision and the recall of the answers generated by the
algorithm for a given good(k, `) query. Given a good(k, `) query,
if G is the actual set of tuples in the actual top-` fraction, and
R is a set of answers, we define:

Precision =
|G ∩R|
|R|

; Recall = min(
|G ∩R|

k
, 1.0) (7)

In addition to the precision and recall, we also derive the
execution cost of deriving an answer using Definition 3.1.
Combining query processing algorithms and candidate set
generation: To evaluate our query processing algorithms, we
considered two possible settings for each algorithm, depending
on the choice of candidate set generation method, namely,
Naive or Iterative (Section V). We denote the combination of
E -Upper with Naive as EU-N, and that with Iterative as EU-I.
Similarly, we denote the combination of Slice with Naive as
SL-N, and that with Iterative as SL-I.
E-Upper: Our first experiment evaluates the E -Upper algo-
rithm from Section IV-A. For both settings of the algorithm,
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Fig. 8. Average precision using Slice for varying ` using (a) sum and (b)
incl-excl.

namely, EU-N and EU-I, E -Upper correctly returns the top-k
tuples in the candidate set. (We will examine the number of
good(k, `) answers that a candidate set of tuples contains later
in this section.) We examined the execution cost for these
settings. Figure 7(a) shows the execution cost for EU-N and
EU-I, for different values of `, when using sum; the execution
cost is an average across a set of k values, ranging from 20
to 200. Figure 7(b) shows the average execution cost derived
for EU-N and EU-I when using incl-excl (see Section II), for
different ` values. The execution cost for both EU-N and EU-I
tends to be high for lower values of `, when the candidate set
of tuples is large. Larger candidate sets, involve more database
documents to be processed before we can generate the final
answer, hence the higher execution costs. Figures 7(a) and 7(b)
also show a promising direction towards reducing the execution
cost by using the Iterative method for generating the candidate
set; as seen in the figure, the execution cost for EU-N is higher
than that for EU-I for all values for `.

Slice: Our second experiment evaluates the Slice algorithm
from Section IV-B. For both settings of the algorithm, SL-N
and SL-I, we considered two different values for α (recall, that
this is the fraction of matching documents processed by Slice
at each recursion level). Finally, we set E (i.e., which is the
user-provided acceptable error budget) to be 5% of the value
of k. To ensure that the results contain k answers, we called
Slice with candidate sets that contain k + E tuples from the
top-` fraction of all the tuples (Section IV-B).

Figure 8(a) shows the average precision for SL-N and SL-I,
for α = 0.1 and α = 0.2 and different values of `, when using
the sum aggregate function. The precision value is an average
across a set of k values, ranging from 20 to 200. In general,
the precision of the answers generated by any setting for Slice
is at or above 0.75, with lower precision values for SL-I and
close to perfect precision for SL-N. Using the Iterative method
of candidate generation reduces the overall precision, as the
candidate set is not as “rich” in answer tuples as for the Naive
method. As discussed in Section IV-B.2, the value of α directly
affects precision: the higher the value for α, the closer the
observed ranking of candidate tuples to the actual ranking, and
thus the higher the precision values. Figure 8(b) shows the
average precision value for different values of ` when using
incl-excl as the aggregate function. Precision follows a trend
similar to that for sum.

Figure 9(a) shows the average recall for SL-N and SL-I, for
α = 0.1 and α = 0.2, for different values of `, when using
sum. The recall value is an average across a set of k values,
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Fig. 10. Precision (a) and Recall (b) using Slice when ` = 0.25 for varying
k using (a) sum and (b) incl-excl.

ranging from 20 to 200. In general, the observed recall ranges
from 0.7 to 1.0, and just as for precision, we observe higher
recall values for SL-N than that for SL-I. Furthermore, α affects
recall in the same manner as for precision, with higher values
of α improving recall. Figure 9(b) shows the average recall for
different values of ` when using incl-excl, and the observations
are similar to those for sum.

In our experiments, we observed that, in general, the
precision and recall values decrease when increasing k and `.
Interestingly, as we increase k precision and recall drop faster
than when we increase `. To illustrate this observation, we
examined the precision and recall of the Slice answers when `
is fixed at 0.25 and k is varied from 20 to 100. Figures 10(a)
and 10(b) show the resulting precision and recall, respectively.
As shown in the figures, the performance of Slice for all
settings is ideal for k = 20 and deteriorates as k is increased.
We also examined the precision and recall when k is fixed at 25
and ` is varied from 0.1 to 0.5. Figures 11(a) and 11(b) show
the resulting precision and recall, respectively. As shown in the
figures, the performance of Slice is relatively constant across
different values of `, with only a small degradation for higher
` values. This means that Slice presents a competitive choice,
in terms of performance, for low values of k. We observed
similar trends for incl-excl, which we do not discuss further
for brevity.

We also studied the execution cost of Slice. Figure 12(a)
shows the average execution cost for SL-N and SL-I, using
two values for α, namely, α = 0.1 and α = 0.2, and for
different values of `; the execution cost is an average across a
set of k values, ranging from 20 to 200. The average execution
cost for the worst case (i.e., SL-N and using α = 0.2) ranges
between 0.45 to 0.12; in contrast, the execution cost for EU-N
ranged from 0.75 to 0.32, and that for EU-I ranged from 0.5
to 0.3. This shows that Slice can result in at least a two-times
reduction in execution cost compared to EU-N. The execution
cost for Slice is strictly lower than that for EU-I, with a two-
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times reduction in execution cost for higher ` values. These
observations, when combined with our observations on the
precision and recall of Slice, underscore an important point:
using the most expensive setting of Slice results in a precision
and recall value close to 0.9, but results in a significant speed
up over any variation of the E -Upper algorithm. In fact, for
k < 100, the precision and recall of Slice are similar to that
for E -Upper .

An important factor that influences the accuracy of the Slice
algorithm is the number of false positives and the number
of false negatives that we observe at different rank positions.
We examined the trend that the number of false positives and
false negatives follow at different rank positions starting from
the target rank position of k. In Section IV-B.1, we made a
simplified assumption that this trend follows (an exponential
trend) as defined by Equation 3. For a first level of recursion,
Figure 13 shows these trends at varying rank positions for
k = 25, E = 1 and ` = 0.25 (with a candidate set contains
104, 26/0.25, tuples). Figure 13(a) shows the number of false
positives, as we travel away from the target position of 25, and
Figure 13(b) shows the number of false negatives at different
rank positions. The figures reveal an important observation:
they confirm our intuition underlying the Slice algorithm that
the number of false positives and false negatives diminish as
we travel farther from k. This observation encourages the idea
of slicing off the tuples that lie at the extremities when the
candidate tuples are ranked by their scores. For our data sets
and relations, the number of false positives and false negatives
follow a linear trend. Accounting for the exact trend that the
number of false positives and false negatives follow would
obviously require more sophisticated statistics, which may not
be readily available. The above observations also provides
insight into why the precision and recall for Slice is high
for low k values: for low values of k, fewer tuples in the
candidate set can swap around and thus reduce the number of
false positives and false negatives.
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for varying `.

Candidate Set Generation: Finally, we examine our candidate
set generation methods, namely, Naive (Section V-A) and
Iterative (Section V-B). First, we study the number of actual
answers in the candidate sets generated using these methods.
Specifically, for a given good(k, `) query, we generate the
candidate set using both methods and compute the overlap
between these candidate sets and the tuples that actually belong
to the top-` fraction of the tuples in the database. We calculate
the overlap ratio by normalizing this overlap by k, i.e., a value
of 1 indicates that the candidate set contains k answer tuples
and a value lower than 1 indicates fewer than k tuples in the
candidate set. Figure 14(a) shows the average overlap ratio
for both methods for varying ` values for the sum function.
The overlap ratio for the Naive method is equal to or higher
than 1 for all ` values, thus indicating that this method fetches
more than required candidate tuples. In contrast, when using
the Iterative method the overlap ratio falls slightly below 1 (≈
0.98) for some values of `.

To examine the benefit of subsampling using the Iterative
method, we compute the average cardinality of the set of
candidate tuples, for different ` values. Figure 14(b) shows the
relative reduction in the candidate set cardinalities, computed
as the cardinality of the candidate set derived using the
Naive method divided by the cardinality of the candidate set
derived using the Iterative method. For ` = 0.05, the Iterative
method on average, reduces the candidate set size by more
than half. This, in turn, reduces the overall execution cost of
the algorithms, as we have discussed above. For reference,
Figure 14(b) also shows the “actual” reduction in the candidate
set cardinality computed using the actual knowledge the effect
of the scoring function and the database skew (see Section V-
B). Specifically, we assume that we know the exact value for
the adjust factor a(`) for an aggregate function and use that
to identify that number of tuples to fetch for the candidate set.
As shown in the figure, our Iterative method with the number
of iterations fixed to 2 is close to the reduction using actual



value for a(`), except for when ` = 0.05, and shows that using
two iterations, which is more efficient than multiple iterations,
tends to work well in practice.
Evaluation summary: Overall, we demonstrated the effective-
ness of our query processing approach at deriving answers
that meet specified good(k, `) query constraints. We evaluated
the performance of our candidate set generation methods, of
which the Iterative method effectively allows us to identify the
right-sized candidate set and save execution costs.

VII. RELATED WORK

Information extraction from text has received significant at-
tention in the recent years (see [7], [8] for tutorials). A majority
of the efforts have considered the problem of improving the
accuracy or the efficiency of the extraction process [7]. Some
research efforts have also focused on building optimizers that
allow users to provide requirements in terms of the desired
recall [15], or some balance between the output quality and
the execution time [16]. In general, these methods use a ”0/1”
approach where a tuple is either correct or not and ignore
any important indicators from the underlying extraction system
regarding the quality of the extracted tuple. Furthermore, these
methods rely on some prior knowledge of the database, either
in terms of the tuple frequency distribution or some database-
specific statistics. In contrast, our work exploits the confidence
information imparted by an extraction system allowing for a
novel data exploration scenario not studied before. For this
database exploration problem, naturally we cannot assume any
prior information about the database.

There is a lot of work on deriving the confidence score
of tuples extracted from the database [2], [9], [10], [19]. We
believe that these methods are complementary to our general
task of data exploration: just as in the case of top-k processing
where a user may specify the aggregate functions, these scoring
methods can also be incorporated as aggregate functions in
our query processing framework.

Related effort to this paper is [1], which presents an
approach to examine the quality of a relation that could be
generated using an extraction system over a text database.
Specifically, [1] builds language models for a text database
and compares them against those for an extraction system
to examine the relation quality. Our proposed algorithms are
comparatively lightweight in that we eliminate the need for
any such (potentially expensive) text analysis or the need for
any apriori database- or extraction-related knowledge.

Our work is also related to the existing top-k processing
methods [4], [6], [11]. In general, existing top-k processing
algorithms following TA [11] (see also [13], [17]) assume a
sorted access for at least one of the attributes: under the sorted
access, the tuples in the database can be sequentially retrieved in
nonincreasing order of their attribute values until we can safely
establish the k-best ranking answers. As discussed in Section II-
C, the data access model available in our setting does not allow
for a sorted access. Some top-k processing algorithms such as
Upper [4] support a combination of access methods, sorted as
well as probed access. In this paper, we adapted the generic

Upper algorithm to our setting as discussed in Section IV-A, and
we established the feasibility of our adaptation at processing
good(k, `) queries, as discussed in Section VI. For processing
top-k algorithms, a variety of probabilistic algorithms have also
been explored [20], which exploit some a priori knowledge on
the score distribution.

VIII. CONCLUSION AND DISCUSSION

In this paper, we introduced good(k, `) query model, a
novel query paradigm to address an important problem of
exploring a text database for the task of extracting relations.
Our query model works hand-in-hand with an extraction system
and allows users to identify a few good tuples as determined
by the collective confidence of an extraction system in a tuple.
The key challenge in processing good(k, `) queries, is that
no apriori knowledge about the database characteristics or the
score distribution is available in a data exploration setting. To
process a good(k, `) query, we adapted an existing algorithm
for processing top-k queries, and introduced a new probabilistic
algorithm. We proved the correctness of our probabilistic
algorithm and empirically established the effectiveness of our
algorithms. Our novel good(k, `) query model is a potentially
cheaper alternative to the more conventional top-k model in
other application scenarios where top-k is currently used. We
have established the foundations of this area, and exploring
this line of research for other access models and cost models
is an interesting direction of future work.
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