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ABSTRACT
All state-of-the-art web search engines implement an auto-
completion mechanism—an assistive technology enabling users
to effectively formulate their search queries by predicting the
next characters or words that they are likely to type. Query
completions (or suggestions) are typically mined from past
user interactions with the search engine, e.g., from query
logs, clickthrough patterns, or query reformulations; they
are ranked by some measure of query popularity, e.g., query
frequency or clickthrough rate. Current query suggestion
tools largely assume that the set of suggestions provided to
the users is homogeneous, corresponding to a single real-
world interpretation of the query. In this paper, we hypoth-
esize that, in some cases, users would benefit from an al-
ternative presentation of the suggestions, one where sugges-
tions are not only ordered by likelihood but also organized
by high-level user intent. Rich search suggestion interac-
tion frameworks that reduce the user effort in identifying
the set of relevant suggestions open new and promising di-
rections towards improving user experience. Along these
lines, we propose clustering the set of suggestions presented
to a search engine user, and assigning an appropriate label
to each subset of suggestions to help users quickly identify
useful ones. For this, we present a variety of unsupervised
clustering techniques for search suggestions, based on the
information available to a large-scale web search engine. We
evaluate our novel search suggestion presentation techniques
on a real-world dataset of query logs. Based on a set of user
studies, we show that by extending the existing assistance
layer to effectively group suggestions and label them—while
accounting for the query popularity—we substantially in-
crease the user’s satisfaction.

Categories and Subject Descriptors
H.5.0 [Information Interfaces and Presentation]: Gen-
eral

General Terms
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1. INTRODUCTION
Search engines are increasingly exploring ways to reduce

user efforts in performing search-related tasks. Such efforts
have resulted in the widely-used auto-completion mechanism
that automatically suggests possible completion of search
queries while users are formulating their queries.

Example 1. Consider the case where a user initiates a
search engine query by typing the character sequence, ‘haifa’.
For this query prefix, the set of suggestions presented by a
major search engine could include the following ordered list:

haifa

haifa wehbe
haifa wahbi
haifa israel
haifa photo
haifa hot
haifa university

Various factors such as, click behavior, query frequencies,
or query reformulations, based on past user behavior deter-
mine the set of query completions offered by a search engine.
This paper extends the current query completion approach
by organizing auto-complete suggestions by topic.

The above example underscores two important observa-
tions which form the basis of our work. First, query comple-
tion suggestions may correspond to non-identical real-world
entities or facets. For instance, the suggestions at position 1,
2, and 5 relate to a popular entertainer, whereas the sugges-
tions at position 3, and 6 relate to a city. Second, query sug-
gestions associated with similar facets may not be grouped
together and thus, suggestions may often be an unordered
list from a topicality perspective. Contrast the presentation
above with the following alternative presentation:

haifa

haifa wehbe Haifa (Singer)

haifa wahbi
haifa photo
haifa hot

haifa israel Haifa (City)

haifa university

Our goal is to identify (implicit) topics or facets among
a set of suggestions for a query prefix, and organize and
present suggestions in a topic-aware manner as shown in
the above example. For this several problems need to be ad-
dressed. First, we need to identify appropriate representa-
tions for each suggestion for a prefix such that they capture



user perception. For instance, while “walmart pharmacy”
and “walmart careers” may be related to a single real-world
concept, some users may perceive these as related but dis-
similar concepts. Second, we need to enable quick identifica-
tion of desired clusters while keeping the user efforts low. For
instance, in the above example, providing a representative
image or textual label for each suggestion cluster can help
users distinguish between the clusters and locate one that
matches their needs. Third, this novel setting of presenting
clusters of suggestions, instead of suggestions, introduces a
new ranking challenge of deciding how to order suggestion
clusters for a query prefix.

In this paper, we present an end-to-end approach for au-
tomatically organizing and presenting completions for web
search queries. Specifically, our contributions are:

• A set of techniques to automatically cluster sugges-
tions for a query prefix that can help users quickly
identify desired suggestions.

• A set of methods to identify discriminative labels for
each cluster of suggestions.

• A placement algorithm to present clusters with the
goal of minimizing user effort in locating desired sug-
gestions.

• An extensive experimental evaluation over real-life datasets,
including user studies demonstrating the proposed prob-
lem of clustering suggestions for query prefixes.

The rest of the paper is structured as follows: Section 2 dis-
cusses the problem on which we focus and presents methods
to characterize and cluster similar suggestions for a query
prefix. Section 3 discusses our methods to identify appro-
priate labels to the clusters generated for a set of sugges-
tions. Section 4 discusses our method to measure user effort
which, in turn, leads to a ranking algorithm to order sug-
gestion clusters. Section 5 reports the results of our exper-
imental evaluation. Finally, Section 6 reviews related work,
and Section 7 concludes the paper.

2. CLUSTERING SUGGESTIONS BY TOPIC
A query prefix (or prefix) is a sequence of characters typed

by a users while formulating her query. Given a prefix p,
a search engine returns an ordered set S of suggestions for
completing the query that started with p.

Problem 2.1. Given a prefix p and an ordered set of sug-
gestions, S = {s1, s2, . . . , sn}, our goal is to partition S into
k ordered, disjoint partitions, P = {P1, P2, . . . , Pk}, such
that every si belongs to exactly one Pj, and the members
of every Pj are topically-coherent 1 , i.e., refer to a single
topic or aspect of q. After partitioning S, we wish to assign
a distinct label L to each partition such that L(Pj) describes
to a user that topic which is shared by members of Pj, but
not by the rest of the elements in S. Finally, we wish to
rank the partitions L(Pj) as well as the suggestions within
each partitions so as to maximize the utility (see Section 4)
of the set S to the user.

1
Alternatively, partitions may be defined along other dimensions

(e.g., transactional or navigational queries); in this paper, our pri-
mary goal is to assist users in quickly parsing available query sug-
gestions and therefore we begin with intuitive and easily recognizable
groupings, i.e., by topics.

To address this problem, we begin by examining three
different approaches to the task of clustering suggestions
for a query prefix. Our approaches make use of the search
engine itself, with an increasing level of dependency. We
start with a clustering mechanism requiring only the num-
ber of documents returned by the search engine for a given
query(Section 2.1); continue with a different approach utiliz-
ing the full text of the search results (Section 2.2); and dis-
cuss a clustering technique that employs implicit user feed-
back by examining the documents clicked by users issuing
the query (Section 2.3).

2.1 Head Word Clustering
Many of the suggestions offered as the users types are com-

pletions, treating the user input as a prefix (and, sometimes,
a suffix or infix). As a result, the set S is usually already very
similar at the lexical level. In general, a suggestion si can
be viewed as si = p ∪ ci, where p is the user-supplied query
prefix, and ci is additional context added in the particular
suggestion si. For example, consider the top suggestions for
p = salsa:

salsa

salsa recipes
salsa dancing
salsa dance
salsa music
salsa singer cruz
homemade salsa
salsa lessons
salsa classes

The different suggestions to be clustered already share p;
the terms that may be useful for identifying the cluster si

belongs to are more likely in ci. We hypothesize that we can
select a single term from each si—the most discriminative
term—and that clustering these terms only will translate to
a good clustering on S itself. In the example above, the
discriminative terms are recipes, dancing, dance, and so on.
We refer to such a term as the head word of si.

Once the clustering task is reduced from the query level
to the term level, we can employ a multitude of existing ap-
proaches for estimating semantic or topical word-level sim-
ilarity. Commonly-used methods include those based on
word contexts in a large corpus or lexical resources such as
Wordnet [18, 6]. We choose PMI-IR, a simple co-occurrence
technique shown to be effective in similar settings [25, 5].
Here, the similarity between two words {wi, wj} is defined as
the pointwise mutual information between the words, where
the probability of a single word, P (wi), as well as the joint
probability P (wi, wj) are estimated using maximum likeli-
hood of occurrences in a corpus. Specifically, the similarity
measure between the words in this case is defined as

Sim(wi, wj) = log

|hits(wi)∩hits(wj)|
n

|hits(wi)|
n

· |hits(wj)|
n

(1)

where hits(x) is the set of documents containing x and n is
the corpus size. As mentioned earlier, our only requirement
form the search engine for this approach is obtaining hits(x);
we set the similarity between suggestions to be the similarity
between their head words.

Head Word Selection
Due to the short average length of web queries, ci often
consists of a single term only. However, there are cases where



the head word needs to be chosen from several candidates.
We experiment with several simple approaches to selecting
the head word:

• First word. Select the leftmost word in ci, e.g., singer
in salsa singer cruz.

• Last word. Select the rightmost word in ci, e.g., cruz
in salsa singer cruz.

• Frequency. Compute, for each word in ci, its tf·idf
value, where the “document” for computing tf consists
of all words in the suggestion set S being clustered,
and idf is computed over the set S of all suggestions
for all queries:

tf (w) =

P
s∈S countw(s)P

s∈S |s| , idf (w) = log
|S|

|{s|w ∈ s}|
Then, select the word with the highest value.

2.2 Result-set Clustering
In the context of web search, a natural approach to com-

puting the similarity between two queries (or query sugges-
tions) is to leverage the search results associated with each.
Existing work in this direction [23, 27] represents queries
using tf·idf-weighted term vectors of frequent terms found
in the top-N search results for the query; cosine similarity
between these vectors is shown to be effective as a query sim-
ilarity measure. Our next proposal to clustering query sug-
gestions largely follows this approach, extending it slightly
by separately utilizing terms appearing in the titles of top-
ranked documents, their URLs, and the content of the doc-
uments themselves.

Concretely, given a query suggestion s we obtain the set
R(s) of the top-n documents for s returned by a search en-
gine. Each document d ∈ R(s) contains a title, a URL, and
an “abstract” – a snippet of d that is shown to the user,
containing the terms in the query and a small amount of
context around them. We mark these as t(d), u(d), and
a(d), respectively. Next, we construct term vectors for each
of these components in a manner similar to [23]: each doc-
ument component is represented using a tf·idf vector of the
terms appearing in it, and the result set as a whole is repre-
sented using the centroid of these vectors. We concatenate
the vectors formed by t(d), u(d), and a(d) to obtain a single
vector representing the result set, −→vs . 2 The similarity func-
tion we then use to cluster the suggestions in this method
is the inner product between the vectors representing the
result sets of the suggestions,

Sim(si, sj) = −→vsi · −→vsj (2)

2.3 Click-based Clustering
Our third approach leverages clickthrough data maintained

by search engines, which contains information about urls
from the search results presented to the users that were
clicked. For instance, a search log may contain the following
clicked urls for a query pineapple salsa, for different users:

Using the clickthrough data, we can characterize each sug-
gestion for a prefix by the set of clicked urls associated with it
and group suggestions with similar user click behavior. The

2
Note that a word may be represented more than once in the final

term vector if it appeared in different components of the document,
i.e., in the title and the URL. In practice, this is equivalent to prefixing
each term with its component (e.g. title.word) before constructing the
term vector.

u1: www.allrecipes.com/pineapple-salsa/detail.aspx
u2: www.cooks.com/rec/pineapple_salsa.html
u3: www.blogchef.net/pineapple-salsa-recipe/

s1

s2

s3

s4

s5

u1

u2

u3

u4

u5

a

b
c

d

e
g

Figure 1: Sample bipartite clickthrough graph.

intuition behind this clustering method is that non-identical
queries that generate clicks on the same urls capture simi-
lar user intent. For instance, the query pineapple salsa for
fish may also generate clicks on the one of the above urls,
indicating that the two suggestions are similar.

Before representing query suggestions using clickthrough
data, we discuss two main observations. First, using clicked
urls as is could result in specific representations which prove
to be too restrictive since, websites tend to dedicate a web
page per concept. So, we generalize our suggestion repre-
sentation by using base urls from the clickthrough data.
For instance, the url clicked by user u1 is generalized to
www.allrecipes.com. Second, encyclopedic websites such
as, www.wikipedia.org, may introduce undesired bias and
lead to non-similar concepts to be placed in the same cluster.
For instance, we observed the most frequently clicked base
url for both gold retriever and gold rush 1849 is www.wikiped
ia.org. Similarly, other websites such as, wwww.youtube.com
may also introduce such bias. To address this issue, we can
treat each suggestion as a “document” and compute an in-
verse document frequency for each base url and use that as
the weight when generating the representation. In our ex-
periments, we employed a stop-list by eliminating top-5 urls
based on their inverse document frequency, which tends to
work better than using the inverse document frequency as
weights.

Given a prefix p and the set S of suggestions associated
with it, we define a clickthrough graph for p.

Definition 2.1. [Clickthrough graph] A clickthrough
graph is a bipartite, directed graph consisting of two classes
of nodes: suggestions nodes (“s” nodes) and base urls nodes
(“u” nodes), and a set of directed edges E. Each suggestion
in the set S is represented as an s node. To generate the u
nodes, we take the union of the set of base urls associated
with each suggestion and generate a node per distinct base
url. An edge s → u between a suggestion node s and url
node u indicates that url u was clicked when s was issued as
a query. Each edge is assigned a weight which is the number
of times u was clicked when s was issued as a query. �

Using the clickthrough graph, for each suggestion s in the
graph, we generate a L2-normalized feature vector of size
equal to the number of url nodes in the graph, and each
dimension in the vector represents a url in the graph. The
value for the dimension associated with url j is computed
as:

�fj =

( wsjqP|U|
i wsi2

if exists an edge between suggestion s and j;

0 otherwise.

where U is the set of urls in the clickthrough graph and wsj



is the weight associated with edge s → j in the clickthrough
graph. To compute the similarity between two suggestions
for a prefix, we experimented with two similarity functions
and picked cosine-similarity defined as:3

Sim(x , y)) =

|U|X
i

xi · yipP
i xi

2 · pP
i yi

2
(3)

Clustering Algorithm
So far, we discussed three different way of characterizing
suggestions for a query prefix, varying in the way topics are
modeled; each of these results in a different similarity mea-
sure between suggestion. Once this similarity is estimated,
performing the clustering itself is straightforward; we use
Hierarchical Agglomerative Clustering to partition the sug-
gestion set into individual clusters using the similarity.

3. LABELING CLUSTERS
User studies on clustered presentation of web search re-

sults consistently show that users prefer clusters that are
assigned a meaningful title over clusters with no label [14].
We hypothesize that the same holds for a clustered presen-
tation of query suggestion. In this section, we describe sev-
eral methods for assigning a meaningful label to a set of
suggestions. To demonstrate these approaches over differ-
ent suggestion sets, we refer to two query prefixes and their
(clustered) suggestions appearing in Figure 2.

los an nursi

los angeles daily news nursing

LA.1 los angeles times nursing jobs NU.1
los angeles times newspaper certified nursing

los angeles public library nursing homes

LA.2 los angeles police department nursing home compare NU.2
los angeles unified school district nursing home costs

los angeles lakers nursing scrubs

LA.3 los angeles dodgers nursing shoes NU.3
los angeles angels nursing uniforms

Figure 2: Sample suggestion clusters; a cluster iden-
tifier is shown next to each cluster.

Most Frequent Suggestion (MFS): One way to select a
label for a cluster of query suggestions is to select the most
representative suggestion in the cluster. Since every sugges-
tion is a query by itself, a natural way to select the most
representative suggestion is to choose the most frequent one
in the search engine’s query log. Formally, the label assigned
by MFS to the set of suggestions S is

MFS(S) = si : si ∈ S, ∀sj∈S Freq(sj) ≤ Freq(si)

Where Freq(x) is the number of times x is observed in a large
query log. In the examples appearing in Figure 2, cluster
LA.1 would be assigned the label los angeles daily news

using this method; cluster NU.1 would be assigned nursing;
and so on.

Longest Common Subsequence (LCS): Often, a se-
quence of characters is shared among all suggestions within
a cluster, but not with suggestions in other clusters; for ex-
ample; the user-supplied “us a” may be completed to us air-
ways, us airways flights, . . . as well as to us army, us army

3We experimented with Euclidean distance but observed worse
performance than that for cosine-similarity. We omit details from
other distance functions due to space constraints.

jobs, . . . , and so on. We hypothesize that in some cases it is
beneficial to use the longest common subsequence of the sug-
gestions as the label. Formally, the label assigned by LCS
to S is

LCS(S) =

li :li ∈ Q(S), ∀lj∈Q(S) Length(lj) ≤ Length(li)

Where Q(S) is the set of subsequences of any s ∈ S. For
example, the label assigned by this method to clusters LA.1
through la.3 is los angeles, whereas the label assigned to
cluster NU.2 is nursing home.

Most Frequent in Result Set (MFRS): One drawback
of both MFS and LCS is that they always draw a label from
the suggestions belonging to the cluster. For some clusters
of suggestions, a meaningful label is not part of the cluster
and has to be obtained using external resources; for example,
for the cluster LA.1 in Figure 2, a useful label may be los

angeles newspapers – a label that has only partial overlap
with the suggestions in the cluster.

As with the case of performing the clustering itself, we
turn to the top-ranked documents for each suggestion (when
it is used as a query to a search engine) for this external
knowledge. By transforming the suggestion set into a doc-
ument set we can use a variety of methods developed for
labeling documents, rather than queries. We adopt a stan-
dard approach to labeling clusters of documents, namely,
harvesting word n-ngrams from them and selecting the most
frequent n-gram [9]. Formally, let R(s) be the set of top-
ranked results for the suggestion s; let R(S) = ∪si∈SR(si);
let NG(d) be the set of word n-ngrams contained in the doc-
ument d; and let NG(R(S)) be the set of all n-grams in all
top-ranked documents, NG(R(S)) = ∪d∈R(S)NG(d). Then
the label assigned by MFRS to S is

MFRS(S) = li :li ∈ NG(R(S)),

∀lj∈NG(R(S)) Count(lj , R(S)) ≤ Count(li, R(S))

This method assigns, for example, the label news to cluster
LA.1, and the label nursing jobs to NU.1.

Most Frequent in Modified Result Set (MFRS*): Fi-
nally, we return to our observation from Section 2.1: search
suggestions are unique as a collection of entities to cluster
in that they often have a high degree of lexical overlap. In
a cluster with a long common subsequence (such as LA.2),
the elements we are interested in labeling are sometimes best
represented in those portions of the suggestions that are not
shared among all elements of the cluster (e.g. public library,
police department). To this end, we propose an additional
labeling mechanism, similar to MFRS, but where the queries
we use are not the suggestions themselves, but the portions
of the suggestions that are distinct within the cluster. For-
mally, let s∗i be the suggestion si with the longest common
subsequence of S removed, s∗i = si −LCS(S), and let S∗ be
the set of suggestions in S with the longest common subse-
quence removed from all suggestions, S∗ = ∪i s∗i , then the
label assigned by MFRS* to S is

MFRS∗(S) = MFRS(S∗)

For example, this method assigns the label services to the
cluster LA.2.

Combined Labeling Strategy (Comb): As seen in the
examples in 2, clusters of suggestions have different charac-
teristics, and may benefit from different labeling approaches.



RankClusters(S, f)
Input: Set S of clusters C, Map f of suggestions and their

frequencies
Output: Ordered list L of clusters in S
F = ∅
foreach cluster C ∈ S do

F(C ) = 0
foreach suggestion s ∈ C do

F(C )+ = f(s)
end
Rank suggestions in C by their frequency using f

end
Rank clusters in S based on their aggregate frequency F (C) and
generate L
return L

Figure 3: Algorithm to order clusters to minimize
the expected cost.

Our final labeling is a hybrid one, first selecting which label-
ing method to use, then assigning the label itself;. We refer
to this method as Comb.

The main difference between our labeling approaches is
whether the label is assigned from within the cluster (MFS,
LCS), or from external knowledge (MFRS, MFRS*). The
Comb approach selects among these by examining the clus-
ter cohesion, the degree to which the cluster elements are
similar; the more compact a cluster is, the more likely it
is that a good label is found in its members rather than
externally. The cohesion of S is measured using the av-
erage distance between the elements of S: Cohesion(S) −
1
|S|Σi,jSim(si, sj); the label assigned by Comb is then

Comb(S) =

j
MFS(S) if Cohesion(S) < k
MFRS(S) otherwise.

4. RANKING SUGGESTION CLUSTERS
Our objective in clustering suggestions is to reduce the

users’ effort in locating their desired query completions. Nat-
urally, the order in which suggestions are presented influ-
ences the amount of user effort. With this in mind, we
describe a cost metric to characterize the user effort spent
in locating a suggestion from among a set of clusters of sug-
gestions. We then present an algorithm that minimizes the
expected cost of locating suggestions.

We begin by describing a structural property of clusters of
suggestions fundamental to our cost metric. By clustering
(and labeling) the set of suggestions available for a prefix,
we are generating a skip list of the suggestions where users
will first skip between buckets (i.e., clusters) and then upon
identifying a relevant bucket, the user will scan within the
bucket to locate the desired suggestion. Thus, the cost of
identifying a suggestion s consists of:

• Time to read a cluster label: Given a prefix users begin
with browsing the clusters of suggestions for the pre-
fix by reading the labels. At each cluster C, the user
decides if the cluster should be skipped or scanned, de-
pending on whether the label captures the user’s area
of interest. We denote the cost in reading the label of
a cluster C as Tlb(C).

• Time to scan a cluster: Once a cluster C that contains
the desired suggestion s has been identified, users scan
suggestions in C until s is located. We denote the cost
of scanning each suggestion s in the cluster by Tsc(s).

Consider a user who has provided a prefix p and is inter-
ested in locating suggestion s from a set of clusters C1, C2 · · · ,

Cn, and let Cm be the cluster than contains suggestions
s1, s2, · · · , s|Cm| such that sk = s i.e., s is located at position
k within Cm. The cost of locating suggestion s for the user,
which we denote T (s), is then

Pm
i=1 Tlb(Ci)+

Pk
j=1 Tsc(sj).

For simplicity, we assume that the cost to read any cluster
label is the same for all clusters, namely Tlb. Similarly, we
assume the cost to scan through suggestions within a clus-
ter is Tsc, the same regardless of the suggestion. T (s) for a
suggestion s at position k in cluster m then becomes simply

T (s) = m · Tlb + k · Tsc (4)

For a user who has entered prefix p, we would like to study
the expected cost T (p) of locating the suggestion she is in-
terested in among all the suggestions provided. If we denote
by P{s|p} the probability that the user prefers suggestion s
when she entered prefix p then the expected cost is:

Tp(R) =
X
∀s

T (s) · P{s|p} (5)

In our notation we mark Tp as a function of the ranking R
of our suggestion, to emphasize that the cost is very much
dependent on the ranking R. P{s|p} can be estimated from
the query logs based on observed user preferences when en-
tering prefix p. Specifically, if f(p) is the number of times
the prefix p was entered, and f(s) is the number of times
suggestion s was submitted as a user query, then:

P{s|p} =
f(s)

f(p)
(6)

Note that
P

∀s P{s|p} in general will be less than 1, as users
may have entered queries that are not among our suggestions
list. We assume the cost to the user interested in a sugges-
tion not present in our list to be independent of the ranking
of the list of suggestions that are present, and we don’t count
it as part of Tp.

The goal of our ranking algorithm is then to order the clus-
ters and suggestions such as to minimize Tp(R). Figure 3
shows the algorithm we use to find the optimal ordering of
suggestions R. Specifically, the algorithm ranks suggestions
withing a cluster in nonincreasing order of their frequencies
f(s). To rank clusters of suggestions, each cluster C is as-
signed and aggregate frequency F (C) equal to the sum of
the frequencies of all suggestions in C. We show that Al-
gorithm 3 generated a ranking R that minimizes the cost
Tp(R) using the following Theorem.

Theorem 4.1. Given a set of clusters S, RankClusters
generates an optimal ranking R that minimizes the total ex-
pected cost of finding a suggestion in S.

Proof. By contradiction.
Case 1: Ranking within a cluster. Assume that there
exists an optimal ranking R such that a cluster Cm contains
suggestions sx and sy at positions x and y. Assume for con-
tradiction that f(sx) > f(sy), but x > y. We will show that
by swapping sx and sy in Cm, we achieve a new ranking
R′ with total cost is less than that of R, thereby contra-
dicting the optimality of R. Based on Equation 5 we can
express Tp(R) as

P
∀s!=x,y T (s) ·P{s|p}+ T (sx) ·P{sx|p}+

T (sy)·P{sy|p}. Similarly, Tp(R′) as
P

∀s!=x,y T ′(s)·P{s|p}+
T ′(sx) · Psx|p + T ′(sy) · P{sy|p}. First, we note that by
swapping sx and sy, we have not altered the cost of any sug-
gestion other than sx and sy. Therefore, T (s) = T ′(s) for
any s! = x, y. We can therefore compute Tp(R) − Tp(R′) =



T (sx) ·P{sx|p}+T (sy) ·P{sy|p}− [T ′(sx) ·P{sx|p}+T ′(sy) ·
P{sy|p}] = [T (sx) − T ′(sx)] · P{sx|p} + [T (sy) − T ′(sy)] ·
P{sy|p}. Using 4 and 6, Tp(R) − Tp(R′) becomes [m · Tlb +
x·Tsc−(m·Tlb+y·Tsc)]·f(sx)/f(p)+[m·Tlb+y·Tsc−(m·Tlb+
y ·Tsc)] ·f(sy)/f(p) = 1/f(p) · [Tsc · (x−y) ·f(sx)+Tsc · (y−
x) · f(sy)] = 1/f(p) ·Tsc · (x−y) · [f(sx)− f(sy)] > 0 accord-
ing to our assumptions. This shows that Tp(R) > Tp(R′),
proving our contradiction.

Case 2. Ranking of clusters. Assume that there
exists an optimal ranking R such that a cluster Cx with
aggregate frequency F (Cx) appears at position x, and a
cluster Cy with aggregate frequency F (Cy) appears a po-
sition y. Assume for the sake of contradiction that F (Cx) >
F (Cy) but x > y. We will show that by swapping Cx and
Cy we achieve a new ranking R′ whose total cost is less
than R, thereby contradicting the optimality of R. Based
on Equation 5 we can express Tp(R) as

P
∀s/∈Cx,Cy

T (s) ·
P{s|p}+

P
s∈Cx

T (s) · P{s|p}+
P

s∈Cy
T (s) · P{s|p}. Sim-

ilarly, Tp(R′) =
P

∀s/∈Cx,Cy
T ′(s) · P{s|p} +

P
s∈Cx

T ′(s) ·
P{s|p} +

P
s∈Cy

T ′(s) · P{s|p}. As before, we note that

the cost of any suggestion not in Cx or Cy is not affected
by swapping Cx and Cy and therefore T (s) = T ′(s) for
any s /∈ Cx, Cy. We can then compute Tp(R) − Tp(R′) =P

s∈Cx
T (s) ·P{s|p}+

P
s∈Cy

T (s) ·P{s|p}− [
P

s∈Cx
T ′(s) ·

P{s|p}+P
s∈Cy

T ′(s)·P{s|p}] =
P

s∈Cx
[T (s) − T ′(s)] · P{s|p}

+
P

s∈Cy
[T (s) − T ′(s)] · P{s|p}. Using 4 and 6, this be-

comes
P

sk∈Cx
[x · Tlb + k · Tsc − (y · Tlb + k · Tsc)] · f(sk)

f(p)

+
P

sl∈Cy
[y · Tlb + l · Tsc − (x · Tlb + l · Tsc)] · f(sl)

f(p)

=
P

sk∈Cx
(x − y) · Tlb · f(sk)

f(p)
+

P
sl∈Cy

[(y − x) · Tlb · f(sl)
f(p)

= (x−y) ·Tlb ·1/f(p) · [Ps∈Cx
f(s)−P

s∈Cy
f(s)] = (x−y) ·

Tlb · 1/f(p) · [F (Cx) − F (Cy)] > 0 based on our assumption
that x − y > 0 and F (Cx) − F (Cy) > 0. This shows that
Tp(R) > Tp(R′), proving our contradiction.

5. EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation.

We first discuss our data sets(Section 5.1) and our obser-
vations from two pilot studies examining whether users can
benefit by the problem solved in this paper (Section 5.2).
Then, we evaluate our suggestion clustering techniques (Sec-
tion 5.3), cluster labeling techniques (Section 5.4), and tech-
niques to order suggestion clusters (Section 5.5). We con-
clude in Section 5.6.

5.1 Data Sets
Query logs: We collected a random sample of 100 million,
fully anonymized queries sent to the Yahoo! web search
engine in the first seven months of 2009, along with their
frequency. We sort these queries by their frequency and
split them into three quantiles, and denote the queries in the
top quantile as the head queries (HQ), those in the second
quantile as the torso queries (TQ), and those in the third
quantile as the tail queries (LQ). For our experiments, we
focus on the top-2 quantiles, i.e., HQ and TQ, and draw a
uniform sample of 250 query prefixes from each.

Query prefixes and suggestions: To simulate a scenario
where the user has only typed part of the query and is ob-
serving as-you-type query completions, we use the first 30%
characters of the queries only. We experimented with other

100

101

102

103

104

100 101 102 103 104

Fr
eq

ue
nc

y

Number of clicked base urls

100

101

102

103

104

100 101 102 103 104

Fr
eq

ue
nc

y

Number of clicked base urls

Figure 4: Distribution of number of click urls for
prefixes in HQ (left) and TQ (right).

methods for generating query prefixes (e.g., using words in-
stead of characters, or varying the fraction of characters)
observing similar results. For each prefix p, we collect the
top-15 query suggestions returned by Yahoo! Search.

Clickthrough data: To generate the clickthrough graph
(see Section 2), we used fully anonymized query clickthrough
logs for first three months of 2009. Figure 4 shows the dis-
tribution of the number of clicked results for the two query
sets, HQ and TQ.

User studies: All user studies and manual annotation tasks
described in this Section were performed by a group of eight
professional search engine quality evaluators experienced with
assessing the quality of query suggestions and search results.

5.2 A Pilot Study
Usefulness of query suggestion clusters: To explore
whether users would benefit from clustering of search sug-
gestions in the first place, we conducted a small-scale user
study. Our annotators were asked to look at two versions of
suggestions displayed for 50 different queries: non-clustered
(as currently shown on a search engine) and manually clus-
tered (simulating performance of a perfect clustering algo-
rithm). The annotators were asked whether they prefer the
clustered on unclustered version; results are shown in Ta-
ble 1, and although the sample size is relatively small they
indicate that clustering has potential value.

Category Percentage cases(%)

Clustered significantly better 34
Clustered somewhat better 30
No preference 12
Unclustered somewhat better 22
Unclustered significantly better 2

Table 1: User preferences for suggestion clustering
in our pilot study comparing unclustered sugges-
tions with clustered suggestions presentation.

Prefixes where clustering was preferred by our annotators
included ‘ear,’ (sample suggestions are, ‘ear ache,’ ‘google
earth,’ ‘earthquake’), ‘yos’ (sample suggestions are ‘yosemite
national park,’ ‘yoshimura,’ ‘yoshi’s’) and ‘kho’ (sample sug-
gestions are, ‘hayden kho,’ ‘khols,’ ‘khou 11 houston.’ Pre-
fixes where clustering was not preferred included ‘usps,’ where
all the suggestions involved the entity ‘usps’ (e.g., ‘usps
tracking,’ ‘usps delivery confirmation,’ ‘usps rates’), and
‘drew,’ where a set of unrelated suggestions were presented
(e.g., ‘nancy drew,’ ‘drew barrymore,’ ‘drew university’). In
a nutshell, this study confirms that clustering sets of sug-
gestions that correspond to more than one facet (or topic)
is desirable, except for the case where the number of facets
(or topics) is close or equal to the number of suggestions. As



we will see later, we use these observations when designing
our classification and presentation methods.

Cluster prevalence and size: Next, we explore the prop-
erties of possible topical clusters in the top suggestions for a
query prefix. For this, our annotators constructed a gold-set
of clusters for all 500 query prefixes. Each annotator was
presented with a prefix along with the top-15 suggestions
associated with it. Annotators were requested to label sug-
gestions that belong to similar real-life facets subject to two
main constraints: (a) there must be at least one cluster with
more than a single query suggestion, and (b) participants
must try to minimize the number of clusters. Participants
were allowed to conduct a research on the web about the
query or the suggestions. Overall, this user study resulted
in 7500 triplets of the form {prefix, suggestion, cluster-id}.
Figure 5(a) shows the distribution of cluster sizes over all
500 queries; Figure 5(b) shows the average size of the clus-
ters, when the number of top suggestions being clustered is
between 2 and 15 per query. Note that, on average, clus-
ters are relatively small — indicating a high level of topical
ambiguity within the suggestions.

Figure 5: Mean and standard deviation of the clus-
ter size within each top-n query suggestion set.

Usefulness and choice of suggestion cluster labels:
Our second pilot study studied whether users would benefit
from labeling clusters of suggestions. Our annotators were
now shown two versions of 400 suggestion clusters, each con-
taining more than one suggestion each: an unlabeled presen-
tation and one where labels were manually generated. The
annotators were asked whether they prefer the unlabeled or
labeled version; overall, for 238 (60%) of the clusters a la-
beled version was preferred – a small, yet consistent gain
across different individual annotators.

5.3 Clustering Query Suggestions
After confirming the usefulness of clustering query sugges-

tions for a prefix, we extensively evaluate our techniques for
clustering suggestions for a prefix. We discuss our evaluation
methodology and metrics before reporting the results.

5.3.1 Experimental Settings
Evaluation methodology: To evaluate the quality of the
clusters generated by our methods, we used the clustering
gold-set described earlier, containing full manual clusterings
of 500 query prefixes.

Techniques to compare: We evaluate our proposed sug-
gestion clustering methods from Section 2. We are unaware
of any existing system for providing facet-aware search sug-
gestions for search engine users. However, arguably one nat-
ural extension of the current search assistance mechanism is
to group suggestions by shared prefix. Specifically, given a
prefix p for which we have a set of suggestions S, we split
each suggestion si into a sequence fr where f contains all

the characters in si until the first occurrence of p, including
p; r is the remainder of the characters. We group together
suggestions in S that share first k characters in r, and pick
k as 30% of the length of remainder characters, r. We use
this shared-prefix method as a baseline; this results in the
following methods to cluster suggestions for a prefix.

• B-pre: Our strong baseline, using charachter overlap
after the occurrence of the prefix in each suggestion.

• Head: Clustering method based on indicative words in
the suggestions.

• Search: Clustering method based on the top-10 results
from a search engine.

• Click: Clustering method based on clickthrough data
from query logs.

Evaluation metrics: To test the performance of each
clustering method, we use standard clustering evaluation
metrics: two set-based measures, namely purity and inverse
purity, and a pair-based measures, namely, Rand statistic,
and cluster entropy [1]. We define these measures as:

Purity: Purity of a set of clusters is computed by assigning
each cluster (Ci) to the most frequently labeled category
(Lj) and computing the fraction of correct assignments.

Purity(S) =
1

|S|
X

Ci∈C

max j(|Ci ∩ Lj |)

Inverse purity: While purity measures the precision of a

cluster, it can be trivially maximized by generating clusters
of size 1. To measure how well similar suggestions were
grouped together, we compute the inverse purity defined as:

Inverse purity(S) =
1

|S|
X

Lj∈L

max i(|Lj ∩ Ci|)
F-measure: Similar to the F-measure frequently used in

information retrieval, we can combine purity and inverse
purity to derive a single metric:

F-measure(S) =
X

Lj∈L

|Lj |
|S| max j{F (Lj , Ci)}

where F (Lj , Ci) =
2·R(Lj ,Ci)·P (Lj ,Ci)

R(Lj ,Ci)+P (Lj ,Ci)
, P (L, C) = |C∩L|

|C| and

R(L, C) = |C∩L|
|L|

Rand statistic: A clustering method can be viewed as
a decision-making process where given a pair of suggestions
(si, sj), the method decides whether they should be grouped
together or not. The Rand statistic R evaluates the per-

formance of the clustering method for a total of |S|·(|S|−1)
2

decisions and is defined as:

R(S) =
TP + TN

TP + TN + FP + FN

where TP is the number of similar suggestions that were
assigned to identical clusters, TN is the number of dissimilar
suggestions that were assigned to non-identical clusters, FP
is the number of similar suggestions that were assigned to
non-identical clusters, and FN is the number of dissimilar
suggestions that were assigned to identical clusters.

Entropy: Entropy of a set S of clusters is defined as:

Entropy(S) = −
X

Ci∈C

|Ci|
|S|

X

Lj∈L

Pr{Ci, Lj} × log2Pr{Ci, Lj}

(7)
where Pr{Ci, Lj} is the probability of finding a suggestion
from cluster Ci in labeled category Lj .
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Figure 6: Distribution of number of clusters gener-
ated using Head (left) and (b) Click (right).

5.3.2 Experimental Results
Table 2 reports evaluation measures for all methods; sta-

tistical significance with respect to B-pre is measured using
the sign test [19].

Inverse F- R-
Method Purity purity measure Entropy statistic

B-pre 0.755 0.841 0.684 0.786 0.734

Head
first 0.680† 0.879† 0.646† 0.130† 0.674†
last 0.699† 0.783† 0.685† 0.120† 0.682†
freq 0.769† 0.857† 0.733† 0.090† 0.791

Search 0.498 0.944 0.505 0.235 0.437

Click 0.851† 0.777† 0.737† 0.417† 0.808†

Table 2: Performance of different clustering meth-
ods over all prefixes. († indicates statistical signifi-
cance over baseline B-pre.)

Clearly, clustering suggestions becomes harder as more
suggestions are displayed to the user. Figure 7 shows the
decay in performance of two of our clustering approaches,
Head and Click, when the number of suggestions being clus-
tered is increased.

To further understand the nature of clusters generated by
our clustering methods, we examined the distribution of the
number of clusters as well as the size of the clusters gen-
erated by each method. Figure 6 shows the distribution of
the sizes of clusters for Click (Figure 6(b)) and Head (Fig-
ure 6(a)). In general, Click tends to generate more clusters
as compared to Head. We traced our observations on the
evaluation metrics by examining a few examples cases of
suggestion clusters. Table 3 shows a sample of clusters gen-
erated by three of our methods, namely, Head (using freq) ,
Click, and Search. Examples show how using using Click

is influenced by the navigational behaviour of users which
can, in turn, lead in smaller clusters. For instance, in case
of ‘atla,’ although suggestions, ‘atlanta braves’ and ‘altanta
falcons’ are associated with the same geographical location,
i.e., ‘atlanta,’ they are placed into two different clusters due
to the fact that users interested in these suggestions mostly
click on dissimilary URLs. On the other hand, using Head

generates a single cluster for suggestions related to ‘atlanta’
due to their high associativity. As a counter example, con-
sider the case where the prefix is ‘bp ga.’ Here the sugges-
tions ‘bp gas mania’ and ‘bp gas mania game’ that corre-
spond identical facets were placed in different clusters. This
is due to the fact that the associativity statistics used by
Head do exhibit a high similarity between the terms ‘bp gas’
and ‘game’ than that between ‘bp gas’ and ‘mania.’ In con-
trast, Click based on the fact that the suggestions, ‘bp gas’

Figure 7: Clustering performance on varying num-
ber of suggestions: Head (top) and Click (bottom).
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Figure 8: Distribution of number of clusters gener-
ated using Head (left) and (b) Click (right).

and ‘bp gas mania’ generated a click on similar urls, could
correctly cluster these suggestions.

In conclusion, we observed that our methods Click and
Head outperform our strong baseline, B-pre, for a range of
evaluation metrics. We also observed that Click and Head

may substantially differ in the sizes and nature of clusters
they produce, with Click generating pure but smaller clus-
ters and Head generating larger but homogenous clusters.
The choice of clustering method naturally depends on the
nature of the prefix and the general intent of users that sub-
mitted a prefix. Combining the virtues of the two proposed
clustering methods in a principled manner remains our fu-
ture work.

5.4 Labeling Suggestion Clusters
Evaluation methodology: Finally, we evaluate the qual-
ity of the labels generated for the clusters. For this, we
used all of the proposed labeling methods to assign labels to
the clusters of suggestions generated for 250 query prefixes
used for the previous experiments; overall, the set contained
1039 clusters. Our annotators judged each label as correct
on incorrect; a label was deemed correct for a cluster if it
describes the suggestions in it in a way that assists a user in
understanding why these suggestions appear together. La-



Head Search Click

dji dji dji
dji index dji index dji index
djia chart djia chart djia chart
djia futures djia futures djia futures
djia stocks djia stocks djia stocks
—————— —————— ——————
djibouti djibouti djibouti
djibouti africa djibouti africa djibouti africa
—————— djibouti africa map djibouti africa map
djibouti africa map

bp gas bp gas bp gas
bp garage —————– ——————
bp garage locations bp garage bp garage
bp gas station locations —————– ——————
bp gas credit cards bp garage locations bp garage locations
—————— —————– bp gas credit cards
bp gas mania games bp gas credit cards bp gas mania game
bp gas mania bp gas mania game bp game
bp game bp game bp gas station locations
—————— bp gas station locations ——————

—————– bp gas mania
bp gas mania

atlantis atlantis atlantis
atlantis bahamas atlantis bahamas atlantis bahamas
atlantis resort atlantis resort atlantis resort
—————— —————– ——————
atlanta braves atlanta braves atlanta braves
—————— atlanta falcons atlanta falcons
atlanta falcons —————– atlanta airport
—————— atlanta airport craigslist atlanta
craigslist atlanta craigslist atlanta
——————
atlanta airport

Table 3: Sample suggestion clusters generated by
various methods for the query prefixes dji (top), bp
ga (middle), atla (bottom).

bels with incorrect spellings, incomplete words, or incoher-
ent words are considered as incorrect ones.

Techniques for comparison: We compare the different
approaches described in Section 3:

• MFS: Our strong baseline, using overlapping characters
after the occurrence of the prefix in each suggestion.

• LCS: Clustering method based on indicative words in
the suggestions.

• MFRS: Most frequent word n-gram in the result set,
where the suggestions are used as queries.

• MFRS*: Most frequent word n-gram in the result set,
where the words of the suggestions that are not shared
are used as queries.

• Comb: The combined labeling approach.

Evaluation metrics: To test the accuracy of the labeling
we measure the precision of the method – the percent of
correct labels assigned by it. Since in many cases the correct
label is assigned by more than one method, we also track, for
each method, the fraction of clusters for which the correct
label was produced by this method only. We refer to this
latter metric as the lead of the method.

Table 4 shows the precision of the different labeling ap-
proaches we tested. Examining the labeling errors, we ob-
served that most stem from imperfect clustering results: the
less coheseive a cluster is, the less likely it is that techniques
like LCS or MFRS will result in a meaningful cluster.

Method Precision Lead

MFS 0.642 0.064
LCS 0.611 0.103
MFRS 0.694 0.178
MFRS* 0.493 0.034
Comb 0.719 n/a

Table 4: Performance of cluster labeling methods.

5.5 Ranking Suggestion Clusters
Earlier in Section 4 we proved the correctness of our al-

gorithm to rank suggestion clusters at minimizing the user
effort when formulating a search query. We put our cost
metric to test by examining whether our clustering algo-
rithm places desirable suggestion clusters at the top. In
particular, we recruited human annotators and presented
them with a set of suggestion clusters. Participants were re-
quested to pick rank two suggestion clusters that they would
like to see at rank 1 and 2. It is noteworthy that this is a
stricter evaluation than presenting human annotators with
a list of ordered clusters and requesting whether they agree
or not with the presented ranking.

For a set of 50 prefixes, we observed that for 85% of
the prefixes the cluster placed at rank 1 by our ranking
algorithm was also picked as the top-1 cluster by the hu-
man annotators. Additionally, for 13% of the prefixes our
ranking algorithm placed the top-1 manually chosen clus-
ter at rank 2. Interestingly, 2 of such cases were where
the beginning of the prefix did not overlap with the sug-
gestions in the first cluster. For instance, for the prefix,
‘pot,’ two competing clusters were {‘harry potter, ‘harry
potter movie’, ‘harry potter and the half-blood prince’} and
{‘potato’,‘potato soup’}. While our ranking algorithm ranked
the first cluster higher than the second, our human annota-
tors ranked the second cluster higher. The explanation for
their choice as traced by comments was: ‘A searcher would
type harry pot if they were interested in harry potter.’ We
believe that this is a special case of query completion, i.e.,
not all auto-completion allow for non-overlapping prefix of
each suggestion in a set, and only a relatively small set of
prefixes follow this trend. Our cost-metric can be easily ex-
tend to handle such cases.

5.6 Evaluation conclusion
In summary, both Click and Head outperform the base-

line methods for clustering suggestions, with Click exhibit-
ing higher values for f-measure and Head generating clusters
with lower entropy. Interestingly, clustering based on terms
in search results (Search)—an approach shown to be effec-
tive in general query clustering—does not perform as well
when applied to search suggestions. On the other hand,
using the search results to obtain cluster labels (MFRS) pro-
duces high-precision labels while outperforming other meth-
ods; combining these labels with labels found in the sug-
gestions themselves improves accuracy futher. Finally, we
verified that our cluster ranking algorithm generates an de-
sirable ordering that meets the user needs.

6. RELATED WORK
Suggestions for query completions: Predictive text gen-
eration systems, offering possible completions to the user’s
text based on the existing input, have been used since the
1970s, although their applications have mostly been restricted
to assisting people with physical disabilities [13]. In recent
years, these systems have been found to be beneficial to
broader audiences in mobile devices [11] and in web search
engine interfaces. In particular, in the case of search en-
gines, the user is often not aware of the wording used in the
web pages she is searching for, making the suggestive frame-
work useful not only for predicting what the user is likely
to type, but also for offering query forms the user does not
necessarily consider, and that lead to relevant information.



Today, all major search engines offer search suggestion
technologies, and similar technologies adapted in related ar-
eas such as databases [17]. However, although much work
exists on deriving related queries [16, 28, 3, 20], little re-
search has focused on organizing—and in particular, clustering—
query suggestions. Boldi et al. describe an approach for la-
beling query reformulation types [4]; while this can be used
for organizing query suggestions, the labels attached to the
reformulations are functional in nature (e.g. “generaliza-
tion”) rather than topical as in our approach.

Query similarity and clustering: Research on clustering
of web queries is mostly concerned with large-scale clustering
– that is, grouping an entire query log into different topics,
often for the purpose of query recommendation or for anal-
ysis of topics of interest over a large population. As with
most clustering tasks, the core issue addressed is estimat-
ing the distance between the items to be clustered: in this
case, queries. Since these tend to be short, lexical distance
measures perform poorly, and the approaches developed for
the task of query similarity estimation typically use informa-
tion external to the query. Glance measures similarity us-
ing the overlap between the sets of retrieved documents for
queries [15]; Sahami and Heilman use the terms appearing in
documents retrieved for a query to compute the similarity
between queries [23]. Similarly, Beeferman and Berger [2]
and Wen et al. [26] use the set of clicked documents for a
given query to determine its cluster. Chien and Immorlica
measure the distance between queries according to the simi-
larity between their temporal profile [8]. Closest to our work,
is that of Sadikov et al. [22] which proposes a mechanism for
grouping post-submit query suggestions by performing ran-
dom walks on the query reformulation graph in an offline
step; however, to the best of our knowledge, there has been
no published work on clustering pre-submit suggestions.

Labeling clusters: In the context of web search, work
on labeling clusters is mostly focused on clusters of docu-
ments [12, 24, 7]. In this setting, labels are often chosen
from titles of central documents, frequent terms appearing
in the documents of a cluster, or recurring named entities.
Targeting shorter texts, Pantel and Ravichandran propose
an approach to labeling sets of concepts where representa-
tive elements of the set, appearing in one of several known
grammatical structures that indicate a label, are used to
identify and rank candidates for a cluster label [21]. A sim-
ilar approach is described by Chung et al. [10], using Word-
net to expand signatures defined for each cluster of concepts.
These strategies work well when the instances of the clus-
ters to be labeled are concepts sharing the same semantic
type, and when the cluster size is relatively large (so that
representative elements can be mined. In the case of query
suggestions, the clusters to label are small in size, and of-
ten contain mixed semantic classes; in fact, in many cases,
a suggestion will contain more than a single concept, or no
concepts at all.

7. CONCLUSIONS
Query auto-completion increases the usability of a web

search engine substantially; despite this, the manner in which
queries are completed has remained unchanged since the in-
troduction of this feature on major web search engines. In
this paper, we propose an alternative presentation of as-
you-type query suggestions, one where—for some queries—

suggestions are grouped by topic. We show that users pre-
fer this suggestion mechanism over an unclustered presen-
tation, and evaluate several approaches to performing the
clustering, with an increasing level of knowledge available
to a search engine. We also discuss several additional tasks
related to the clustering: selection of the queries to cluster,
assignment of a label to each cluster, ordering the clusters
themselves and the suggestions within each cluster. We ac-
company each of the tasks we address with rigorous evalua-
tion using real-life data collected from a major search engine.

To facilitate further research into alternative presentations
of search suggestions in general and their clustering in par-
ticular, we plan to make our data publicly available.
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