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Abstract

Due to the inherent difficulty of processing noisy text, the
potential of the Web as a decentralized repository of human
knowledge remains largely untapped during Web search. The
access to billions of binary relations among named entities
would enable new search paradigms and alternative methods
for presenting the search results. A first concrete step towards
building large searchable repositories of factual knowledge is
to derive such knowledge automatically at large scale from
textual documents. Generalized contextual extraction pat-
terns allow for fast iterative progression towards extracting
one million facts of a given type (e.g., Person-BornIn-Year)
from 100 million Web documents of arbitrary quality. The
extraction starts from as few as 10 seed facts, requires no ad-
ditional input knowledge or annotated text, and emphasizes
scale and coverage by avoiding the use of syntactic parsers,
named entity recognizers, gazetteers, and similar text pro-
cessing tools and resources.

Introduction
Motivation
A daily routine for hundreds of millions of Internet users,
Web search provides simplified, yet practical keyword-based
access to documents containing knowledge of arbitrary com-
plexity levels. The potential of the Web as a repository of
human knowledge is largely untapped during search, partly
due to the inherent difficulty of representing and extracting
knowledge from noisy natural-language text. Whereas full
query and document understanding are distant, if not unfea-
sible goals, Web search can and should benefit from at least
a small fraction of the implicit knowledge that is relatively
easier to identify and extract from arbitrary Web documents.

A particularly useful type of knowledge for Web search
consists in binary relations associated to named entities. The
facts often occur in small text fragments “hidden” within
much longer documents, e.g. the facts that “the capital of
Australia is Canberra”, or “Mozart was born in 1756”,
or “Apple Computer is headquartered in Cupertino”. A
search engine with access to hundreds of millions of such
Web-derived facts can answer directly fact-seeking queries,
including fully-fledged questions and database-like queries

∗Contributions made during internships at Google Inc.
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(e.g., “companies headquartered in Mountain View”), rather
than providing pointers to the most relevant documents that
may contain the answers. Moreover, for queries referring to
named entities, which constitute a large portion of the most
popular Web queries, the facts provide alternative views of
the search results, e.g., by presenting the birth year and best-
selling album for singers, or headquarters, name of CEO and
stock symbol for companies, etc.

Large-Scale Fact Extraction from the Web
Proposed in (Riloff & Jones 1999), the idea of unsupervised
bootstrapping for information extraction was expanded and
applied to the construction of semantic lexicons (Thelen &
Riloff 2002), named entity recognition (Collins & Singer
1999), extraction of binary relations (Brin 1998; Agichtein
& Gravano 2000), and acquisition of structured data for
tasks such as Question Answering (Lita & Carbonell 2004;
Cucerzan & Agichtein 2005; Fleischman, Hovy, & Echihabi
2003). In the same spirit, the approach introduced in this pa-
per starts from a small set of seed items (in this case, facts),
and iteratively grows it by finding contextual patterns that
extract the seeds from the text collection, then identifying a
larger set of candidate seeds that are extracted by the pat-
terns, and adding a few of the best candidate seeds to the
previous seed set. Our emphasis is on large-scale extrac-
tion, as a consequence of aggressive goals with respect to
the amount of text to be mined, in the order of hundreds of
millions of textual Web documents, and especially number
of facts to be extracted, with a target of one million facts of
a given (specific rather than general) type extracted with a
precision of 80% or higher. Since exhaustive lists of hand-
written extraction rules are domain specific and impractical
to prepare, and large lists of seed facts are difficult to com-
pile, the extraction must progress towards the final set of
extracted facts starting from a seed set in the order of 10
facts. This corresponds to a growth rate of 100,000:1 be-
tween the size of the extracted set and the size of the initial
set of seed facts. To our knowledge, the growth rate and
the size of the extracted set of facts targeted here are several
orders of magnitude higher than in any of the previous stud-
ies on fact extraction based on either hand-written extrac-
tion rules (Cafarella et al. 2005), or bootstrapping for rela-
tion and information extraction (Agichtein & Gravano 2000;
Lita & Carbonell 2004).
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To overcome the limitations of previous work and achieve
the coverage required by large-scale fact extraction, we in-
troduce a method for the generalization of contextual ex-
traction patterns. Traditionally, basic extraction patterns are
slowly accumulated over hundreds or thousands of iterations
- an approach that is inefficient, if not unfeasible, on Web-
scale document collections. With pattern generalization, the
iterative acquisition of facts progresses quickly by produc-
ing (much) higher-coverage extraction patterns in early iter-
ations. By necessity, the resulting acquisition method aims
for generality and lightweight processing. In comparison,
besides the implicit reliance on clean text collections such
as news corpora (Thelen & Riloff 2002; Agichtein & Gra-
vano 2000; Hasegawa, Sekine, & Grishman 2004) rather
than noisy Web documents, previous work often depends
on text processing that is either relatively expensive, in the
case of shallow syntactic parsing (Riloff & Jones 1999;
Thelen & Riloff 2002), or restrictive to a small number of
categories to which the facts could apply, in the case of
named entity recognition (Agichtein & Gravano 2000).

Generalized Extraction Patterns
Basic Contextual Extraction Patterns
A seed fact is represented by the pair of phrases that are in a
“hidden” relation, e.g. (Vincenzo Bellini, 1801) for Person-
BornIn-Year facts, (Athens, Greece) for City-CapitalOf-
Country, and (Portuguese, Brazil) for Language-SpokenIn-
Country. Following (Agichtein & Gravano 2000), each oc-
currence of the two sides of the fact within the same sen-
tence produces a basic contextual extraction pattern, i.e., a
triple (Prefix, Infix, Postfix). The prefix and postfix are con-
tiguous sequences of a fixed number of terms, situated to the
immediate left of the first matched phrase (e.g., to the left of
Athens), and to the immediate right of the second matched
phrase (e.g., to the right of Greece) respectively. The infix
contains all terms between the two matched phrases (e.g.,
between Athens and Greece). For example, the occurrence
of the seed fact (Athens, Greece) in the sentence “The pro-
posed trip will take students to Athens, the capital of Greece
and home to 40% of the Greek population” produces a pat-
tern with the prefix [.. take students to], the infix [, the capi-
tal of] and the postfix [and home to ..].

For efficiency, the matching of seed facts onto sentences is
implemented with a modified trie. Initially, both phrases of
the seed facts are loaded into the trie. Each sentence is then
matched onto the trie, resulting in a new contextual pattern
only if both parts of the same seed fact could be successfully
matched. The same process is applied without modifications
later, during the acquisition of candidate facts, by matching
triples (extraction patterns) onto sentences to extract pairs
(new candidate facts). The matching over individual sen-
tences is parallelized, following a programming model for
processing large data sets (Dean & Ghemawat 2004).

Generalization via Distributionally Similar Words
The generalized patterns are produced from the basic ex-
traction patterns. For that purpose, the terms in the prefix,
infix and postfix of each basic pattern are replaced with their

StartOfSent                 CL4  CL8  CL22  CL26  born   in  CL17  ,

Memorial  CL47  in    (  b.  CL3  0  ,                             ,  d.  CL3

CL8  child  :                CL4  born  00  CL3                   in  Lewisburg  ,

CL4  written  by         who  CL4  born  CL3  00  ,         ,  in  Oak

CL3  00th  :                 ’s  Birthday  (                             )  .  EndOfSent

Prefix Infix Postfix

CL4 = {is, was, has, does, could}
CL3 = {March, October, April, Mar, Aug., February, Jul, Nov., ...}

CL10 = {Pennsylvania, Denver, Oxford, Marquette, Hartford, ...}

CL26 = {entrepreneur, illustrator, artist, writer, sculptor, chef, ...}
CL22 = {Brazilian, Chinese, Japanese, Italian, Pakistani, Latin, ...}

CL6 = {You, Lawmakers, Everyone, Nobody, Participants, ...}
CL8 = {a, the, an, each, such, another, this, three, four, its, most, ...}

among  CL6  ...           CL4  born  on  00  CL3             in  CL10  ,

CL17 = {Tipperary, Rennes, Piacenza, Osasuna, Dublin, Crewe, ...}

CL47 = {Tribute, Homage}

Figure 1: Examples of generalized patterns acquired during
the extraction of Person-BornIn-Year facts. A digit is repre-
sented by a 0.

corresponding classes of distributionally similar words, if
any. The classes are computed on the fly over the entire
set of basic patterns, on top of a large set of pairwise sim-
ilarities among words. The set of distributionally similar
words (Lin 1998) is extracted in advance from around 50
million news articles indexed by the Google search engine
over three years. All digits in both patterns and sentences
are replaced with a marker (by convention, 0), such that any
two numerical values with the same number of digits will
overlap during matching.

In the process of replacing pattern words with word
classes, some of the basic patterns become duplicates of one
another. Therefore the set of generalized patterns is smaller
than the set of basic patterns. However, the generalized pat-
terns translate into significantly higher coverage than that
of the basic patterns from which they were created. Con-
sider the generalized patterns shown in Figure 1. The word
classes CL4, CL8, CL22, CL26 and CL17 contain 5, 24, 87,
83 and 322 words respectively. After exhaustive enumera-
tion of the elements in its word classes, the second general-
ization pattern alone from Figure 1 would be equivalent to
an imaginary set of 5×24×87×83×322=279,019,400 basic
patterns. Even after discounting the imaginary basic pat-
terns whose infixes are in fact unlikely or bogus sequences
of words (e.g., “does three Brazilian sculptor”), this is a
concrete illustration of why pattern generalization is impor-
tant in large-scale extraction.

Validation and Ranking Criteria

It is possible to further increase the potential recall by a few
orders of magnitude, after re-examining the purpose of the
prefix and postfix in each generalized pattern. Strictly speak-
ing, only the end of the prefix and the start of the postfix are
useful, as they define the outer boundaries of a candidate
fact. Comparatively, the actual word sequences in the pre-
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fix and postfix introduce strong but unnecessary restrictions
on the possible sentences that can be matched. A higher-
recall alternative is to discard the prefix and postfix of all
patterns. In their absence, the outer boundaries of the can-
didate facts in a sentence are computed in two steps. First,
they are approximated through loose matching of the part-
of-speech tags of sentence fragments to the left (e.g., [NNP
NNP NNP] for Robert S. McNamara)) and to the right of
the infix, on one hand, and the left (e.g., [NNP NNP] for
Stephen Foster) and right sides of the seed facts, on the other
hand. The resulting approximations are then validated, by
verifying that the extremities of each candidate fact are dis-
tributionally similar to the corresponding words from one or
more seed facts. For example, Robert is similar to Stephen,
and McNamara is similar to Foster. Therefore, relative to
a seed fact (Stephen Foster, 1826), a new candidate fact
(Robert S. McNamara, 1916) is valid; comparatively, candi-
date facts such as (Web Page, 1989) are discarded as invalid.

During validation, candidate facts are assigned similar-
ity scores that aggregate individual word-to-word similarity
scores of the component words relative to the seed facts. The
similarity scores are one of a linear combination of features
that induce a ranking over the candidate facts. Two other
domain-independent features contribute to the final ranking,
namely: a) a PMI-inspired (Turney 2001) score computed
statistically over the entire set of patterns; the score pro-
motes facts extracted by patterns containing words that are
most indicative of the relation within the facts; and b) a com-
pleteness score computed statistically over the entire set of
candidate facts, which demotes candidate facts if any of their
two sides are likely to be incomplete (e.g., Mary Lou vs.
Mary Lou Retton, or John F. vs. John F. Kennedy).

Experimental Setting
Text Collection: The source text collection consists of three
chunks W1, W2, W3 of approximately 100 million docu-
ments each. The documents are part of a larger snapshot of
the Web taken in 2003 by the Google search engine. All
documents are in English. The textual portion of the docu-
ments is cleaned of Html, tokenized, split into sentences and
part-of-speech tagged using the TnT tagger (Brants 2000).
Target Facts: The evaluation involves facts of type Person-
BornIn-Year. The reasons behind the choice of this partic-
ular type are threefold. First, many more Person-BornIn-
Year facts are probably available on the Web (as opposed
to, e.g., City-CapitalOf-Country facts), to allow for a good
stress test for large-scale extraction. Second, either side of
the facts (Person and Year) may be involved in many other
types of facts, such that the extraction would easily diverge
unless it performs correctly. Third, the phrases from one side
(Person) have an utility in their own right, for applications
related to lexicon construction or person name detection in
Web documents.
Seed Set: The Person-BornIn-Year type is specified through
an initial, randomly-selected set of 10 seed facts given as
pairs: (Irving Berlin, 1888), (Hoagy Carmichael, 1899),
(Bob Dylan, 1941), (Stephen Foster, 1826), (John Lennon,
1940), (Paul McCartney, 1942), (Johann Sebastian Bach,
1685), (Bela Bartok, 1881), (Ludwig van Beethoven, 1770)

1

4

16

64

256

1024

4096

16384

65536
146862

 1  2  4  8  1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6
 7

41
4

N
r.

 o
f 

ex
tr

ac
te

d 
na

m
es

Rank of pattern based on nr. of extracted names

Figure 2: Number of unique names in the facts extracted by
various extraction patterns from chunk W1

and (Vincenzo Bellini, 1801). Similarly to source docu-
ments, the facts are also part-of-speech tagged. No seed
patterns are provided as input.

Evaluation Results
Quantitative Results
An acquisition iteration consists in matching the seed facts
onto sentences without crossing sentence boundaries, gener-
ating generalized acquisition patterns, and matching the pat-
terns onto sentences to extract candidate facts. At the end of
an iteration, approximately one third of the validated candi-
date facts are added to the current seed set. The acquisition
expands the initial seed set of 10 facts to 100,000 facts (after
iteration 1) and then to one million facts (after iteration 2)
using chunk W1. The 100,000 facts retained after iteration
1 generate a total of 89,186 generalized patterns, which cor-
respond to 32,942 generalized patterns after discarding the
prefix and postfix.

For the one million facts from W1 placed in the seed set
after iteration 2, Figure 2 illustrates the number of unique
person names within the sets of facts extracted by various
generalized infix-only patterns. The infixes of the patterns
at rank 1, 2, 3 and 4 are the sequences [CL4 born in], [CL4
born on 00 CL3], [, b. CL3 00 ,] and [CL4 born 00 CL3]
respectively (see Figure 1 for examples of words in classes
CL3 and CL4).

The long tail of Figure 2 is also a characteristic of the
number of unique person names within the sets of facts ex-
tracted from various Web hosts, as shown in Figure 3. One
of the data points in the graph from Figure 3 corresponds to
the Wikipedia encyclopedia (Remy 2002). It is the 342nd

most productive Web host, with birth years for only 339
people extracted from it. The relatively small number is
encouraging, since chunk W1 contains only a portion of
the Wikipedia articles available in English as far back as
2003. Whereas there were approximately 750,000 articles
in Wikipedia as of September 2005, just 570,000 were avail-
able only four months earlier, and clearly much fewer ar-
ticles were crawled in 2003. The exact same patterns are
likely to extract a larger number of facts, just by applying
them to a Web snapshot containing more recent, and thus
much larger, versions of Wikipedia and similar resources.
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Figure 3: Number of unique names in the facts extracted
from various hosts within chunk W1

Accuracy of the Extracted Facts

Sample Set: For the purpose of evaluating precision, we
select a sample of facts from the entire list of one million
facts extracted from chunk W1, ranked in decreasing order
of their computed scores. The sample is generated automati-
cally from the top of the list to the bottom, by retaining a fact
and skipping the following consecutive N facts, where N is
incremented at each step. The resulting list, which preserves
the relative order of the facts, contains 1414 facts occurring
at ranks {1, 2, 4, 7, 11, 16, .., 998992}. To better quantify
precision at different ranks, the sample is then divided into
10 subsets of approximately 141 facts each. Some facts are
discarded from the sample, if a Web search engine does not
return any documents when the name (as a phrase) and the
year are submitted together in a conjunctive query. In those
cases, the facts were acquired from the 2003 snapshot of the
Web, but queries are submitted to a search engine with ac-
cess to current Web documents, hence the difference when
some of the 2003 documents are no longer available or in-
dexable. The first three columns of Table 1 illustrate the
composition of the 10 subsets comprising the final sample
for evaluating precision.
Evaluation Procedure: A fact is manually marked as cor-
rect only if there is clear evidence supporting it in some Web
page. For obvious reasons, the search for such a Web page
is done by submitting queries to a Web search engine, and
freely perusing the returned documents. There are no a-
priori constraints on the number of submitted queries or the
documents being inspected. As expected, the evaluation is
time-consuming; a fast human assessor needs more than two
hours to classify 100 facts into correct and incorrect ones.

Several conditions must be verified manually before
marking a fact as correct. The phrase on the left side of
the fact must be that of a person, rather than a different
type of entity such as (Somerset Co., 1930), (Cover Letter,
2000) etc. Moreover, the name must be complete rather than
partial or imprecise like (Emma Jeane, 1921), (Mrs. Huff-

Table 1: Manual evaluation of precision over a sample of
facts extracted from the first Web chunk (W1)

Composition of Sample Set Correct? Precision
# Rank Range Facts Yes No (%)
1 [1, 9871] 137 135 2 98.54
2 [10012, 39622] 125 118 7 94.40
3 [39904, 89677] 129 121 8 93.79
4 [90101, 159331] 130 118 12 90.76
5 [159896, 249572] 135 126 9 93.33
6 [250279, 359129] 133 125 8 93.98
7 [359977, 488567] 135 128 17 87.40
8 [489556, 639016] 130 92 38 69.38
9 [640147, 808357] 121 104 17 85.95

10 [809629, 998992] 124 93 31 75.00

man, 1935). On the other hand, the name should not contain
extraneous words either; counterexamples include (Enough
Biography Desmond Llewelyn, 1914) and (David Morrish
Canadian, 1953). Finally and most importantly, the Web
page should indicate clearly that the right side of the fact
is the birth year of the person, rather than a different piece
of information (e.g., John Lennon, 1980). If no Web page
is found that satisfies all these conditions, either because no
such page exists or because the manual evaluation did not
reach it, then the fact is marked as incorrect.
Results: The precision values are shown in the fourth
through sixth columns of Table 1. The average precision
based on the sample set is 93.17% over approximately the
top half of the list of one million facts (rank range [1,
488567]), and 88.38% over the entire list.

Coverage of the Extracted Facts
Gold Standard: The availability of external resources list-
ing the birth dates for various people enables the pursuit of a
fully automated, rather than manual evaluation of coverage.
The gold standard set of facts is a random selection of 6617
pairs of people and their birth years from Wikipedia, in-
cluding (Abraham Louis Breguet, 1747), (Clyde Tombaugh,
1906) and (Quintino Sella, 1827).
Evaluation Procedure: The actual evaluation is automatic.
It takes as input the facts in the gold standard, and a ranked
list of extracted facts whose coverage is evaluated. For each
fact from the gold standard, the evaluation consists of the
following steps: a) identify the extracted facts with the same
left side (corresponding to the person name), based on full
case-insensitive string matching; b) collect the right side of
the identified facts (i.e., the extracted birth years), if any, in
the same relative order in which they occur in the ranked
list of extracted facts; and c) compute the reciprocal rank
score (Voorhees & Tice 2000) of the year from the gold-
standard fact against the list of years identified in the pre-
vious step. Thus, if the list of years extracted for a given
person name contains the correct year at rank 1, 2, 3, 4 or
5, the gold standard fact receives a score of 1, 0.5, 0.33,
0.25 or 0.2 respectively. The score is 0 if either none of
the extracted facts matches the person name, or none of the
years identified for the person name match the year from the
gold standard. The overall score is the mean reciprocal rank
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Table 2: Automatic evaluation of recall via MRR scores, over a random set of 6617 person names and their birth years
Evaluation Set Source and Size Nr. Names with Some Extracted Year(s) MRR Score
W1 W2 W3 Nr. Facts @1 @2 @3 @4 @5 Bad ∩Gold AllGold
√

- - 1×106 2257 98 26 4 4 524 0.795 0.349
-

√
- 1×106 2095 80 23 4 7 528 0.784 0.324

- -
√

1×106 2015 73 18 7 3 529 0.779 0.318√ √
- 2×106 3049 163 34 11 13 574 0.819 0.475√ √ √

3×106 3468 194 45 24 14 544 0.838 0.543

(MRR) score over multiple facts from the gold standard.
Results: Table 2 is a detailed view on the computed cover-
age values. The table consists of several vertical sections.
The first section illustrates the source chunk(s) (one or more
of W1, W2 or W3) from which the evaluation set was ex-
tracted, and the number of facts in that set. The second sec-
tion refers to the person names from the gold standard for
which some extracted year exists in the evaluation set. That
number is split into person names for which the correct year
occurs at rank 1 through 5, as well as the person names for
which all the extracted years are “Bad” since they are differ-
ent from the year from the gold standard. For example, the
first row of the table corresponds to the one million facts ex-
tracted and retained from chunk W1. The facts provide the
correct year at rank 1 for 2257 of the 6617 names from the
gold standard, at rank 2 for 98, and at rank 5 for 4 of them,
whereas some year(s) are extracted but they are all incorrect
for 524 of the names.

The third section of Table 2 captures the average MRR
scores computed only over the set of person names from
the gold standard with some extracted year(s) (∩Gold), and
then over the entire set of names from the gold standard
(AllGold). The MRR score over ∩Gold measures, given that
some year(s) were extracted for a person name, whether they
include the year specified in the gold standard for that per-
son name, and if so, how high that year is ranked relative
to the other extracted years. Thus, if only one of the per-
son names from the gold standard hypothetically occurred
among the extracted facts, and the second year extracted for
that name were correct, the MRR score over ∩Gold would
be 0.5. On the other hand, the MRR score over AllGold
is closer to the traditional definition of recall, although still
more demanding. Indeed, an ideal recall of 1.0 requires all
facts from the gold standard to be present anywhere in the
evaluation set. In order for the MRR score over AllGold to
reach the ideal value of 1.0, all facts from the gold standard
must be present in the evaluation set, and the year from the
gold standard must be the highest ranked year for that name
within the evaluation set.

The size of the ∩Gold set of person names varies moder-
ately, when the facts are extracted from chunk W1 vs. W2 vs.
W3. The same applies to MRR scores over ∩Gold and over
AllGold. Comparatively, the size of the ∩Gold set increases
significantly, as the evaluation sets merge facts extracted
from more than one chunk. This translates into higher values
for the MRR computed over AllGold. Note that the MRR
score over the growing ∩Gold set remains stable, and even
increases moderately with larger evaluation sets. The high-

est MRR score over the ∩Gold set is 0.838. Comparatively,
the maximum MRR score over AllGold is 0.543.

For several reasons, the results in Table 2 are conservative
assessments of the actual coverage. First, as noted earlier,
the MRR scores are stricter, and lower, than correspond-
ing recall values. Second, the presence of incorrect birth
years in the gold standard, which cannot be extracted from
the Web, is unlikely but possible given that anyone may vol-
unteer to edit Wikipedia articles. Third, the use of full string
matching, during the comparison of gold standard facts with
extracted facts, generates artificially low scores (usually 0)
for an unspecified number 1 of gold standard facts. Based
on a quick post-evaluation scan, the most common cause of
incorrect low scores seems to be a different degree of pre-
cision in specifying the person name, as shown by William
Shockley vs. William Bradford Shockley (1910); A. Philip
Randolph vs. Asa Philip Randolph (1889); Norodom Si-
hanouk vs. King Norodom Sihanouk (1922); and Aaliyah vs.
Aaliyah Haughton (1979), among many other cases. Fur-
thermore, the spelling of the name is sometimes different,
e.g., Mohammed Zahir Shah vs. Mohammad Zahir Shah
(1914).

Comparison to Previous Results
A set of extraction patterns relying on syntactically parsed
text (e.g., <subj> was kidnapped) are acquired automati-
cally from unannotated text in (Riloff 1996). After manual
post-filtering, the patterns extract relations in the terrorism
domain (perpetrator, victim, target of a terrorist event) from
a set of 100 annotated documents, with an average precision
of 58% and recall of 36%. A more sophisticated bootstrap-
ping method (Riloff & Jones 1999) cautiously grows very
small seed sets of five items, to less than 300 items after
50 consecutive iterations, with a final precision varying be-
tween 46% and 76% depending on the type of semantic lex-
icon. By adding the five best items extracted from 1700 text
documents to the seed set after each iteration, 1000 semantic
lexicon entries are collected after 200 iterations in (Thelen
& Riloff 2002), at precision between 4.5% and 82.9%, again
as a function of the target semantic type.

Changing the type of extracted items from semantic lexi-
cons entries to binary relations (pairs of phrases), (Agichtein
& Gravano 2000) exploits a collection of 300,000 news ar-
ticles to iteratively expand a set of five seed relations of
type Company-HeadquartersIn-Location. A key resource

1The assessment of precision depleted the resources that we
were willing to spend on manual evaluation.
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for identifying the components of candidate relations in text
is a named entity recognizer that supports the Company
and Location categories. The authors compute the precision
manually for different recall levels, over a sample of 100 of
the extracted relations. The precision varies from 93% for a
recall of 20%, to 50% for a recall of 78%. A promising ap-
proach to extracting relations among named entities is intro-
duced in (Hasegawa, Sekine, & Grishman 2004). A set of re-
lations linking a Person with a GeopoliticalEntity, or a Com-
pany with another Company, are extracted from a collection
containing news articles issued by a major newspaper over
an entire year. For evaluation, the authors assemble manu-
ally a gold standard of approximately 250 items from the un-
derlying collection. They report precision between 76% and
79%, and recall between 83% and 74%. The experiments
described in (Lita & Carbonell 2004) consist in extracting
up to 2000 new relations of various types including Person-
Invents-Invention and Person-Founds-Organization, from a
text collection of several gigabytes. However, the extracted
relations are evaluated through their impact on a specific
task, i.e., Question Answering, rather than through separate
precision and recall metrics. In contrast to extracting rela-
tions from unstructured text, (Cucerzan & Agichtein 2005)
derive shallow relations from the HTML tables in a collec-
tion 100 million Web documents. The resulting evaluation
is also tied to the task of Question Answering, on which the
authors indicate that the results are less than promising.

Several recent approaches specifically address the prob-
lem of extracting facts from Web documents. In (Cafarella
et al. 2005), manually-prepared extraction rules are applied
to a collection of 60 million Web documents to extract en-
tities of types Company and Country, as well as facts of
type Person-CeoOf-Company and City-CapitalOf-Country.
Based on manual evaluation of precision and recall, a total
of 23,128 company names are extracted at precision of 80%;
the number decreases to 1,116 at precision of 90%. In ad-
dition, 2,402 Person-CeoOf-Company facts are extracted at
precision 80%. The recall value is 80% at precision 90%.
Recall is evaluated against the set of company names ex-
tracted by the system, rather than an external gold standard
with pairs of a CEO and a company name. As such, the re-
sulting metric for evaluating recall used in (Cafarella et al.
2005) is somewhat similar to, though more relaxed than, the
MRR over the ∩Gold set described in the previous section.

Conclusion

Although orders of magnitude higher than previous results,
the extraction of one million facts of a given type at approx-
imately 90% precision is merely an intermediate checkpoint
with respect to the broader goal of building large reposi-
tories of facts, as an aid in Web search. The next steps
aim at increasing the number of extracted facts by another
order of magnitude, while retaining similar precision lev-
els, as well as performing experiments on other types of
facts (including Language-SpokenIn-Country and Person-
LeaderOf-Company). We are also exploring the role of
generalized extraction patterns in automatically labeling and
clustering the extracted facts.
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