
Copyright

by

Allison Bishop Lewko

2012

The Dissertation Committee for Allison Bishop Lewko
certifies that this is the approved version of the following dissertation:

Functional Encryption: New Proof Techniques and

Advancing Capabilities

Committee:

Brent Waters, Supervisor

David Zuckerman

Vitaly Shmatikov

Adam Klivans

Amit Sahai

Dan Boneh

Functional Encryption: New Proof Techniques and

Advancing Capabilities

by

Allison Bishop Lewko, A.B.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2012

Acknowledgments

I wish to thank my advisor, Brent Waters, for the time and energy he

invested in our collaboration, as well as for his advice and encouragement. I

wish to thank my collaborators for the works comprising this thesis: Brent

Waters, Amit Sahai, Tatsuaki Okamoto, and Katsuyuki Takashima. I also

wish to thank my husband, Mark Lewko, for his support.

iv

Functional Encryption: New Proof Techniques and

Advancing Capabilities

Publication No.

Allison Bishop Lewko, Ph.D.

The University of Texas at Austin, 2012

Supervisor: Brent Waters

We develop the dual system encryption methodology to provide fully

secure functional encryption systems. We introduce new proof techniques

and explore their applications, resulting in systems that advance the state of

the art in terms of functionality, security, and efficiency. Our approach con-

structs versatile tools for adapting the dual system encryption methodology to

new functionalities and efficiency goals. As particular demonstrations of our

techniques, we obtain fully secure ciphertext-policy attribute-based encryp-

tion systems in the single authority and decentralized settings. Our work has

provided the first fully secure attribute-based encryption schemes as well as

the first decentralized schemes achieving desired levels of flexibility.

v

Table of Contents

Acknowledgments iv

Abstract v

List of Figures viii

Chapter 1. Introduction 1

1.1 A Brief History of Functional Encryption 2

1.2 Summary of Our Results . 6

1.3 Related Work . 8

1.4 Organization . 10

Chapter 2. Conceptual Overview of Dual System Encryption 11

Chapter 3. Tools for Implementing the Dual System Encryption
Methodology in Prime Order Bilinear Groups 21

3.1 Prime Order Bilinear Groups 22

3.2 Dual Pairing Vector Spaces . 23

3.2.1 Parameter Hiding in Dual Orthonormal Bases 25

3.2.2 The Subspace Assumption 27

Chapter 4. Background on CP-ABE Systems 35

4.1 Access Structures . 35

4.2 CP-ABE Definition . 37

4.3 Security Model for CP-ABE 38

4.4 Formal Definitions for Multi-Authority CP-ABE Systems . . . 39

4.4.1 Security Definition . 41

vi

Chapter 5. A Basic CP-ABE System 44

5.1 Construction . 46

5.2 Addressing Re-use of Attributes 49

5.3 Security Proof Under the One-Use Restriction 50

Chapter 6. An Unrestricted CP-ABE System 64

6.1 Additional Complexity Assumptions 64

6.2 Construction . 67

6.3 Security Proof . 70

Chapter 7. A Multi-Authority CP-ABE System 92

7.1 Construction . 95

7.2 Security Proof . 98

Chapter 8. Further Work and Future Directions 122

8.1 Further Work . 122

8.2 Future Directions . 126

Appendix 128

Appendix 1. Proof of Our q-Based Assumption in the Generic
Group Model 129

Bibliography 134

Vita 143

vii

List of Figures

3.1 Subspace Assumption with m = 1, n = 3, k = 1 30

3.2 Subspace Assumption with m = 1, n = 6, k = 2 30

viii

Chapter 1

Introduction

A traditional public key encryption system is designed to provide se-

cure communication between two parties over a public channel. Though the

security guarantees that can be achieved in this setting are very strong (e.g.

indistinguishability under chosen plaintext attack or chosen ciphertext attack),

the functionality provided is rather limited. For example, the encryptor must

know the (single) intended recipient and retrieve his public key before en-

crypting. If there are many recipients, the encryptor must produce a separate

ciphertext for each, which may be very inefficient.

Functional encryption presents a new vision for public key cryptosys-

tems that provide a strong combination of flexibility, efficiency, and security.

In a functional encryption scheme, ciphertexts are associated with descriptive

values x, secret keys are associated with descriptive values y, and a function

f(x, y) determines what a user with a key for value y should learn from a

ciphertext with value x. One well-studied example of functional encryption

is attribute-based encryption (ABE), first introduced by Sahai and Waters in

[63], in which ciphertexts and keys are associated with access policies over at-

tributes and subsets of attributes. A key will decrypt a ciphertext if and only

1

if the associated set of attributes satisfies the associated access policy. There

are two types of ABE systems: Ciphertext-Policy ABE (CP-ABE), where ci-

phertexts are associated with access policies and keys are associated with sets

of attributes, and Key-Policy ABE (KP-ABE), where keys are associated with

access policies and ciphertexts are associated with sets of attributes.

In this work, we will present new techniques for constructing provably

secure functional encryption systems. We will focus on CP-ABE schemes as

our application. Our goal is to advance the state of the art in achieving strong

security guarantees for flexible, efficient systems allowing suitably expressive

access policies and providing new capabilities. Before summarizing our results,

we provide relevant context on the history of functional encryption and prior

work in this area.

1.1 A Brief History of Functional Encryption

The roots of functional encryption can be traced back to Identity-Based

Encryption (IBE), first proposed by Shamir [64]. An identity-based encryption

scheme is designed to allow any string to function as a “public key,” instead of

requiring public keys to be constructed in tandem with secret keys. For exam-

ple, this allows a user to send an encrypted message to a recipient described by

an email address, without requiring the recipient to have established a public

key. Secret keys corresponding to strings (referred to as “identities”) must be

obtained from a central authority who holds a master secret key. If we wish

to impose a hierarchical structure on keys, we can generalize identity-based

2

encryption to hierarchical identity-based encryption (HIBE), in which a user

can delegate secret keys to her subordinates.

There are innate challenges to proving security for a functionality like

IBE which involves producing many secret keys for individual users from a

single master secret key. It is not sufficient to prevent one user from maliciously

using his own secret key to decrypt a ciphertext intended for another user - a

strong notion of security must consider collusion attacks, where a group of users

may collude in an attempt to decrypt a ciphertext encrypted to an identity

outside of the group. To model such attacks, we consider an adversary who

can collect many secret keys, choosing the corresponding identities adaptively.

At some point, the adversary must decide on an identity to attack (for which it

has not collected a secret key), and it may then continue collecting keys for any

other identities. This requires security reductions to balance two competing

goals: the simulator must be powerful enough to provide the attacker with

the many keys that it adaptively requests, but it must also lack some critical

knowledge that it can gain from the attacker’s success.

The first security proofs for IBE schemes relied on the random oracle

model, a heuristic treating a fixed function as if it were truly random. The first

security proofs given in the standard model (not relying on such a heuristic)

achieved a weaker notion of security known as selective security. The selective

security model constrains the attacker to choose the target of the attack before

seeing the public parameters of the system. This is an unrealistic restriction,

and so achieving selective security should be viewed as partial progress towards

3

achieving full security, rather than as an end in itself.

The notion of selective security is quite natural in the context of the

proof technique employed by all early works in IBE and HIBE, known as

partitioning. In a partitioning proof, the simulator sets up the system so that

the space of all possible identities is partitioned into two pieces: identities for

which the simulator can make secret keys and those for which it cannot. This

provides a clear way to balance the competing goals of the simulator, who

must ensure that all the adversary’s key requests fall in the set of keys the

simulator can make and that the attacked identity falls in the complement.

This is much easier to do in the selective model, since the simulator knows

ahead of time what the attacked identity is. This allows it to form a perfectly

fitting partition, with the attacked identity being the only identity for which

the simulator cannot make a secret key.

The need for selectivity to obtain an IBE security proof in the standard

model was overcome by Boneh and Boyen [11] and also by Waters [67]. The

security proof in [67] arranges for the simulator to “guess” a partition and

abort when the attacker violates its constraints. However, the richer structure

of more advanced systems like HIBE and ABE appears to doom this approach

to incur exponential loss, since one must guess a partition that respects the

partial ordering induced by the powers allocated to the individual keys.

Meanwhile, progress for attributed-based encryption systems remained

stalled at selective security in the standard model. Following the introduction

of attribute-based systems by Sahai and Waters in [63], the subsequent works

4

of [24, 38, 39, 62, 69] provided security proofs for various kinds of ABE systems

only in the selective model1.

Motivated by the relative stagnation in proof methodology for func-

tional encryption systems, Waters introduced the dual system encryption method-

ology [68]. His initial work provided fully secure and efficient IBE and HIBE

systems under standard assumptions. In [50], we provided a more elegant real-

ization of dual system encryption allowing for further efficiency improvements

in the context of HIBE. In [48], we obtained the first fully secure ABE systems

in the standard model by extending our dual system encryption methodol-

ogy. In a close follow-up work, Okamoto and Takashima [60] obtained similar

results relying on the simple and relatively standard Decisional Linear As-

sumption (DLIN). In further works [49, 51–53], we continued expanding and

enhancing the dual system encryption methodology to provide stronger secu-

rity guarantees and a growing variety of advanced functionalities, including a

multi-authority ABE system allowing the same access structures as state of

the art single authority systems.

A Contextual Note: In the works referenced above, we developed the dual

system encryption methodology in the context of composite order bilinear

groups, relying on instances and close variants of the General Subgroup De-

cision Assumption [8]. Okamoto and Takashima developed the framework

1[9] relied on the generic group heuristic instead. This should be considered as a weaker
guarantee than selective security.

5

of dual pairing vector spaces in prime order bilinear groups [58, 59] and ob-

served that it could be used to implement the same proof techniques under

the more standard Decisional Linear Assumption [60, 61]. Working in prime

order groups is also advantageous for efficiency reasons, since the group orders

can be taken to be much smaller and hence pairing computations can be much

faster. In [46], we further developed the connection between the dual pairing

vector space framework and our prior approach in the composite order setting.

The collective result of these works is a functional understanding of how to

transfer dual system encryption proofs between the composite order and prime

order settings.

In this work, we have chosen to work wholly in the prime order setting.

Thus, the constructions and proofs we give here do not precisely match those

given in the works cited above. Instead, they can be viewed as the result of

translating those composite order schemes and proofs into the prime order

setting using the tools developed in [46, 58–60]. However, we will present our

tools and results in the prime order setting here from the ground up, and there

is no need for the reader to reference the prior composite order analogs.

1.2 Summary of Our Results

In this work, we develop several fully secure CP-ABE systems. We will

start with the most basic application of the dual system encryption method-

ology and present a full security proof for a CP-ABE scheme that holds under

the restriction that attributes are only used in the description of the access

6

policy. (For more details on the precise meaning of this restriction, see Chap-

ter 5.) Our proof relies only on the Decisional Linear Assumption. We also

describe an encoding technique that can be used to allow re-use of attributes,

though this may produce a significant loss in efficiency. This should be viewed

as a combination of the results we presented in [46, 48].

We next present a new scheme and accompanying proof of full security

that does not place any restriction on the use of attributes. The first two

schemes we present here shed light on the value of selective security as stepping

stone to full security for ABE schemes, as the constructions of the schemes

bear a very close resemblance to the selectively secure ABE constructions in

[39, 69], and the proof strategy for the second scheme directly incorporates

selective security proof techniques as building blocks that can be leveraged

within the dual system encryption methodology. In this way, we demonstrate

how dual system encryption can be viewed as a mechanism to “boost” selective

security to full security (though the details of the arguments must be adapted

to individual constructions). This result also appears in [53]. This approach

obtains much better efficiency, but comes at the cost of relying on a “q-type”

assumption (i.e. an assumption parameterized by a value depending on the

adversary’s behavior). This is a feature inherited from the state of the art

selectively secure CP-ABE scheme in [69].

In our first two CP-ABE constructions, private keys are issued by one

central authority that must be in a position to verify all the attributes or cre-

dentials it issues for each user in the system. However, in some applications a

7

party will want to share data according to a policy written over attributes or

credentials issued across different trust domains and organizations. Motivated

by this, we next provide a multi-authority CP-ABE system. In our system,

any party can become an authority and there is no requirement for any global

coordination other than the creation of an initial set of common reference pa-

rameters. A party can simply act as an authority by creating a public key and

issuing private keys to different users that reflect their attributes. Different

authorities need not even be aware of each other. We use the concept of global

identifiers to link private keys together that were issued to the same user by

different authorities. A user can encrypt data according to access policies that

mix attributes issued from any chosen set of authorities. Most notably, our

decentralized system retains strong security guarantees while avoiding placing

absolute trust in any single designated entity. The decentralized nature of our

system gives rise to new technical challenges both in designing the construc-

tion and in proving security. We discuss these in detail when we present our

solution in Chapter 7. This should be viewed as a combination of the results

we presented in [46, 51].

1.3 Related Work

Identity-based encryption was first constructed by Boneh and Franklin

[14] and Cocks [25]. Both security proofs relied on the random oracle heuris-

tic. Constructions with proofs in the standard model were then presented by

Canetti, Halevi, and Katz [20] and Boneh and Boyen [10], but these proofs

8

provided only selective security.

The notion of Hierarchical Identity-Based Encryption (HIBE) was in-

troduced by Horwitz and Lynn [42]. In a HIBE system, user’s identities are

arranged in a hierarchy, and a superior can use his own secret key to issue a

secret key to any of his subordinates. Essentially, this extends the function-

ality of an IBE system to include key delegation. The first construction of

HIBE was provided by Gentry and Silverberg [36], who proved security in the

random oracle model. Selectively secure constructions in the standard model

were then given in the work of Canetti, Halevi, and Katz [20], Boneh and

Boyen [10], and Boneh, Boyen, and Goh [12].

Gentry [32] presented a security proof for an IBE system outside of the

partitioning paradigm, but at the cost of employing a non-standard complexity

assumption parameterized by the number of key queries made by the adversary

(a “q-type” assumption). These techniques were then extended by Gentry and

Halevi [34] to provide the first fully secure HIBE system to allow a hierarchy of

polynomial depth (the exponential degradation of prior full security reductions

limited the security proofs applicable to only constant depth hierarchies).

Chase [22] presented a “multi-authority” attribute-based encryption

scheme, allowing secret keys for different attributes to be dispensed by different

authorities. Her work introduced the concept of using a global identifier as

a mechanism for tying users’ keys together. Her system relied on a central

authority and was limited to expressing a strict“AND” policy over a pre-

determined set of authorities. Chase and Chow [23] showed how to remove

9

the central authority using a distributed PRF; however, the same limitations

of an AND policy of a determined set of authorities remained.

Other forms of functional encryption have also been proposed. Most

notably, Katz, Sahai, and Waters proposed predicate encryption [44] and pre-

sented a selectively secure construction for inner product predicates. This is

a less expressive functionality than the access policies achieved for ABE, but

the goal of such systems is to provide security not only for the underlying

message, but also to hide the access policy itself, which is not a feature that

is considered in the ABE setting.

1.4 Organization

In Chapter 2, we provide an overview of the core concepts of the dual

system encryption methodology. In Chapter 3, we present tools for implement-

ing dual system encryption in the setting of prime order bilinear groups. In

Chapter 4, we provide background on single and multi-authority CP-ABE sys-

tems, giving formal definitions for their functionality and security. In Chapter

5, we construct our simplest CP-ABE scheme and prove its full security. In

Chapter 6, we provide a more efficient scheme and prove its full security. In

Chapter 7, we provide a multi-authority scheme and prove its full security. In

Chapter 8, we discuss additional work and further directions.

10

Chapter 2

Conceptual Overview of Dual System

Encryption

Dual System Encryption is a proof methodology that we have designed

to address the inherent challenges in proving security for systems with ad-

vanced functionalities against collusion attacks. In the case of ciphertext-

policy attribute-based encryption, an adversary may gather secret keys for

many different users, each key corresponding to a set of attributes. We do

not want to allow the adversary to learn a message encrypted under an access

policy which is not satisfied by any of the individual keys he has collected. In

other words, a colluding set of malicious users should not be able to combine

their secret keys to decrypt a ciphertext that none of them are individually

authorized to decrypt. It is crucial to note that the union of all their attributes

might satisfy the policy, but as long as no single user does, the message should

remain protected. In this sense, we expect a secure CP-ABE scheme to enforce

that attributes are not transferable among users.

The formal definition of full security we employ for CP-ABE systems

is given in Chapter 4. We briefly summarize its relevant features for the

purposes of our discussion here. CP-ABE security is formulated as a game

11

between a challenger and an attacker: the challenger sets up the CP-ABE

system and gives the attacker only the public parameters. The attacker then

adaptively queries the challenger for secret keys corresponding to attribute

sets of its choice. At some point, it declares two messages and an access policy

it wishes to be challenged on: this access policy must not be satisfied by any

of the individual keys it has collected so far. The challenger randomly chooses

one of the two declared messages and encrypts it under the declared access

policy. It gives the resulting ciphertext to the attacker. The attacker may then

continue to request keys, except for those authorized to decrypt the ciphertext.

Finally, it must guess which of the two messages was encrypted. We say that

a system is secure when any polynomial time attacker guesses correctly only

with probability negligibly close to 1
2
.

As previously noted, this security definition places a heavy burden on

a reduction, as a simulator must both answer the attacker’s many key queries

and leverage the attacker’s success. Since trying to anticipate any structure

in the attacker’s queries appears to be a losing battle (unless one works in

the selective security model), dual system encryption is designed to prepare a

simulator to answer any key query. To explain how this can remain consistent

with the simulator’s ability to leverage the attacker’s success, we must first

describe the dual system encryption paradigm.

Normal and Semi-functional Ciphertexts/Keys In a dual system, there

are two forms of keys and ciphertexts: normal and semi-functional. Semi-

12

functional ciphertexts and keys are not used in the real system, they are

only used in the security proof. A normal key can decrypt normal or semi-

functional ciphertexts, and a normal ciphertext can be decrypted by normal or

semi-functional keys. However, when a semi-functional key is used to decrypt

a semi-functional ciphertext, decryption fails (with high probability). More

specifically, the semi-functional components of the key and ciphertext will in-

teract to mask the blinding factor by an additional random term. Security for

dual systems is proved using a sequence of games which are shown to be indis-

tinguishable. The first game is the real security game (with normal ciphertext

and keys). In the next game, the ciphertext is semi-functional, while all the

keys are normal. For an attacker that makes Q key requests, games 1 through

Q follow. In game k, the first k keys are semi-functional while the remaining

keys are normal. In game Q, all the keys and the challenge ciphertext given to

the attacker are semi-functional. Hence none of the given keys are useful for

decrypting the challenge ciphertext. At this point, proving security becomes

relatively easy, as we have reduced the burden on the simulator who no longer

has to give out functioning keys and ciphertexts.

Nominal Semi-functionality The most critical step of the hybrid proof

is when a key turns semi-functional: at this point, we must leverage the fact

that the key is not authorized to decrypt the (now semi-functional) challenge

ciphertext in order to argue that the attacker cannot detect the change in the

key. However, since we are not imposing a partition on the simulator, there

13

is no constraint preventing the simulator itself from creating a key that is

authorized to decrypt and testing the nature of the key for itself by attempting

to decrypt the semi-functional ciphertext. To resolve this potential paradox,

we design our system so that such a test decryption would unconditionally

succeed.

We introduce a variant of semi-functionality which we call nominal

semi-functionality. A nominal semi-functional key and ciphertext pair is semi-

functional in name only, meaning that they are individually distributed like

semi-functional keys, but are actually correlated to each other so that the

interaction of their semi-functional components results in cancelation during

decryption, and hence decryption remains successful. If the simulator attempts

to answer its own question by creating the kth key and challenge ciphertext

for an attribute set and access policy that is satisfied, the created pair will

be nominally semi-functional and hence test decrypting will not distinguish

the nature of the key. We note that the first introduction of dual system

encryption in [68] took the opposite approach, arranging for test decryptions

by the simulator to unconditionally fail by the use of “tags” that also caused

a negligible decryption error and other undesirable structural features. We

introduced the concept of nominal semi-functionality in [50] as a cleaner, more

flexible alternative to tags.

Of course, nominal semi-functionality is only useful as a stepping stone

to regular semi-functionality, since the primary goal is to arrive at a game

where the simulator is no longer burdened by the need to produce keys and

14

ciphertexts that function properly together. One way of getting from nominal

semi-functionality to regular semi-functionality is via an information-theoretic

argument, leveraging the fact that the attacker is not allowed to ask for a key

that is authorized to decrypt the ciphertext. This is the path that we took

in the first works employing nominality and has been followed by all of the

works since [48–52, 60], except for our most recent work in [53]. The new path

we designed in [53] instead relies on a computational assumption to transition

from nominal semi-functionality to regular semi-functionality.

Structure of Semi-functional Space Before describing the main ideas

behind these two approaches, we first develop the high-level principles under-

pinning the design of semi-functional objects. We think of the normal keys

and ciphertexts as residing in a “normal space”, while semi-functional keys

and ciphertexts additionally have components in a “semi-functional space”.

These two spaces should be constructed so that normal components do not

interact with semi-functional components and vice versa - one should think of

the normal space and the semi-functional space as being “orthogonal” to each

other.

In essence, we will typically design the semi-functional components of

keys and ciphertexts to form a parallel copy of the normal system residing

in semi-functional space. The semi-functional copy of the system has the ad-

vantage of not being tied by public parameters, since the published public

parameters will only reside in the normal space. The phantom parameters

15

in the semi-functional space (that are uncorrelated from the published pub-

lic parameters) can then be utilized in multiple ways. We first describe the

information-theoretic approach we introduced in [48, 50].

Information-theoretic Arguments for Hiding Nominality We imagine

for simplicity that the attacker makes only one key request. To produce a

ciphertext and key pair that is either semi-functional and normal respectively

or nominally semi-functional, the simulator will create a parallel copy of the

system in the semi-functional space. If semi-functional components are present

on the key, they will obey the proper distribution defined by the unpublished,

freshly random parameters in the semi-functional space and allow decryption

to succeed for an authorized key.

However, if one is given only a single ciphertext and a single unautho-

rized key, the additional randomness supplied by the unknown semi-functional

parameters can function to information-theoretically hide this correlation. Ar-

guing this in the CP-ABE setting leads one to make an additional restriction

that attributes are only used once in the LSSS matrices specifying access poli-

cies. This technical restriction is required to enforce that there is a fresh

random parameter available to hide each unauthorized share.

Since entropy here is a scarce resource, we also cannot afford for the

same semi-functional parameters to be involved in multiple keys. This is rather

easily handled by exploiting the hybrid organization of dual system encryption

arguments - since we turn one key semi-functional at a time, we can design a

16

key isolation mechanism which allows us to limit the effect of some or all of

the relevant semi-functional space parameters to a single key at a time. In the

case of CP-ABE, we introduce two types of semi-functional keys to execute

this. Our techniques here exploit the structure of keys, which have a “header”

portion introducing the random values that tie the key together and then

have individual pieces corresponding to each attribute. When a key first turns

semi-functional, it will have semi-functional components on all of these pieces,

but then it will transition to having a random semi-functional component

only on the header portion. This means that information about the semi-

functional spaces attached to the attribute pieces is no longer leaked, thereby

preserving this entropy for use in turning the next key to be semi-functional.

We can conceptualize the semi-functional space attached to the header piece as

a “permanent” semi-functional space (where all semi-functional keys will have

components), and the semi-functional spaces attached to the attribute pieces

as “temporary” semi-functional spaces (where at most one semi-functional key

will have components at any point in the hybrid argument).

To adapt this same proof strategy to a multi-authority ABE scheme,

we face an additional technical challenge. Namely, we can no longer tie keys

together with common secret randomness, since the different pieces of the key

are produced by different authorities who do not coordinate. We will address

this by assuming users have global identifiers and introducing a hash function

(modeled as a random oracle) to map these identifiers to group elements.

These group elements can be computed by each authority and will form the

17

common link between the different attributes in a user’s key. This requires

a re-design of our construction and our key isolation mechanism, since we no

longer have a header piece of each key to use as a structural linchpin and as a

storage location for permanent semi-functionality. Instead, we design the semi-

functional spaces attached to each piece of the key to have “permanent” and

“temporary” portions - when a key first becomes semi-functional, its semi-

functional components will reside only in the temporary portions of semi-

functional space, where the information-theoretic argument takes place. It

will then switch to having semi-functional components residing only in the

permanent portions of semi-functional space, thereby releasing the entropy

available in temporary semi-functional space to be used to hide nominality for

the next key as it becomes semi-functional.

Once we have full security proofs for systems where attributes can only

be used once in each access policy, we can extend this to systems allowing reuse

of attributes by setting a fixed bound M on the maximum number of times

an attribute may be used and having separate parameters for each use. This

scales the size of the public parameters by M , as well as the size of secret keys

for CP-ABE systems1. This approach may incur a significant loss in efficiency.

A New Computational Approach for Addressing Nominality Our

next observation is motivated by the intuition that the information-theoretic

step of the above dual system proof strategy is ceding too much ground to the

1For KP-ABE systems, it is the ciphertext size that will grow multiplicatively with M .

18

attacker, since a computational argument would suffice. In fact, we are able

to resurrect the earlier selective proof techniques inside the framework of dual

system encryption in order to retake ground and obtain a wholly computational

proof of full security.

As we have discussed above, dual system encryption is typically imple-

mented by designing a “semi-functional space” where semi-functional compo-

nents of keys and ciphertexts will behave like a parallel copy of the normal

components of the system, except divorced from the public parameters. In-

stead of conceptualizing the initially hidden parameters in the semi-functional

space as a source of entropy, we now think of this as a mechanism for allow-

ing delayed parameters in the semi-functional space, meaning that relevant

variables can be defined later in the simulation instead of needing to be fixed

in the setup phase. We will still additionally use a mechanism for key isola-

tion, meaning that some or all of the semi-functional parameters will only be

relevant to the distribution of a single semi-functional key at a time.

In combination, these two mechanisms mean that the semi-functional

space has its own fresh parameters that can be decided on the fly by the

simulator when they become relevant, and they are only relevant for the semi-

functional ciphertext and a single semi-functional key. We now observe that

these mechanisms can be used to implement prior techniques for selective

security proofs, without needing to impose the selective restriction on the

attacker.

To explain this more precisely, we consider the critical step in the hy-

19

brid security proof when a particular key becomes semi-functional. We concep-

tualize the unpublished semi-functional parameters as being defined belatedly

when the simulator first issues either the key in question or the semi-functional

ciphertext. If the ciphertext is issued first, then the simulator learns the chal-

lenge policy before defining the delayed semi-functional parameters - this is

closely analogous to the setting of selective security for a CP-ABE system. If

the key is issued first, then the simulator learns the relevant set of attributes

before defining the delayed semi-functional parameters, and this is closely anal-

ogous to the setting of selective security for a KP-ABE system. This provides

us with an opportunity to combine the techniques used to prove selective secu-

rity for both CP-ABE and KP-ABE systems with the dual system encryption

methodology in order to obtain a new proof of full security while maintaining

the efficiency of selectively secure systems.

20

Chapter 3

Tools for Implementing the Dual System

Encryption Methodology in Prime Order

Bilinear Groups

We now build some general tools for implementing dual system en-

cryption proofs in the context of prime order bilinear groups. Bilinear groups

are a natural setting for CP-ABE systems and dual system encryption proofs,

since they come equipped with nice randomization properties that can be

used for collusion resistance and provide convenient instantiations of orthogo-

nal “spaces.” Constructing expressive CP-ABE systems or implementing dual

system encryption techniques in any other setting (lattices, for example), is

currently an open problem.

Composite order bilinear groups come equipped with prime order sub-

groups that are mutually orthogonal and thus can directly serve as orthogonal

spaces. This is why many of the first works using dual system encryption

worked in this setting. In this work, however, we instead use the dual pairing

vector space framework developed by Okamoto and Takashima to instantiate

our orthogonal spaces in prime order bilinear groups.

21

3.1 Prime Order Bilinear Groups

We now let G denote a bilinear group of prime order p, with bilinear

map e : G × G → GT . More generally, one may have a bilinear map e :

G × H → GT , where G and H are different groups. For simplicity, we will

always consider groups where G = H.

In addition to referring to individual elements ofG, we will also consider

“vectors” of group elements. For v⃗ = (v1, . . . , vn) ∈ Zn
p and g ∈ G, we write

gv⃗ to denote a n-tuple of elements of G:

gv⃗ := (gv1 , gv2 , . . . , gvn).

We can also perform scalar multiplication and vector addition in the exponent.

For any a ∈ Zp and v⃗, w⃗ ∈ Zn
p , we have:

gav⃗ = (gav1 , . . . , gavn), gv⃗+w⃗ = (gv1+w1 , . . . , gvn+wn).

We define en to denote the product of the componentwise pairings (the product

is taken in the group GT):

en(g
v⃗, gw⃗) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v⃗·w⃗.

Here, the dot product is taken modulo p.

Decisional Linear Assumption The main complexity assumption we will

rely on in prime order bilinear groups is the Decisional Linear Assumption,

introduced in [13]. To define this formally, we let G denote a group generation

22

algorithm, which takes in a security parameter λ and outputs a bilinear group

G of order p. We write (p,G,GT , e)
R←− G to denote the generation of a group

by running G. Below, we also use the notation x
R←− S to denote a uniformly

random sample x taken from a finite set S.

Definition 1. Decisional Linear Assumption. Given a group generator G, we

define the following distribution:

G := (p,G,GT , e)
R←− G,

g, f, v
R←− G, c1, c2, w

R←− Zp,

D := (g, f, v, f c1 , vc2).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A :=
∣∣Pr [A(D, gc1+c2) = 1

]
− Pr

[
A(D, gc1+c2+w) = 1

]∣∣
is negligible in the security parameter λ.

3.2 Dual Pairing Vector Spaces

We will employ the concept of dual pairing vector spaces from [58,

59]. For a fixed (constant) dimension n, we will choose two random bases

B := (⃗b1, . . . , b⃗n) and B∗ := (⃗b∗1, . . . , b⃗
∗
n) of Zn

p , subject to the constraint that

they are “dual orthonormal”, meaning that

b⃗i · b⃗∗j = 0 (mod p),

23

whenever i ̸= j, and

b⃗i · b⃗∗i = 1 (mod p)

for all i. (Some prior works have allowed b⃗i · b⃗∗i = ψ for ψ ̸= 1, but we restrict

to 1 for convenience.) For a generator g ∈ G, we note that

en(g
b⃗i , gb⃗

∗
j) = 1

whenever i ̸= j, where 1 here denotes the identity element in GT .

We note that choosing random dual orthonormal bases (B,B∗) can

equivalently be thought of as choosing a random basis B, choosing a vec-

tor b⃗∗1 so that it is orthogonal to b⃗2, . . . , b⃗n and satisfies 1 = b⃗1 · b⃗∗1, and then

choosing b⃗∗2 so that it is orthogonal to b⃗1, b⃗3, . . . , b⃗n, and satisfies 1 = b⃗2 · b⃗∗2, and

so on. We will later use the notation (D,D∗) and d⃗1, . . . , etc. to also denote

dual orthonormal bases and their vectors. This is because we will sometimes

be handling more than one pair of dual orthonormal bases at a time, and we

use different notation to avoid confusing them.

By employing dual orthonormal bases (B,B∗) in the exponents of our

ciphertexts and keys respectively, we can naturally partition these basis vectors

into disjoint sets spanning the “normal space” and the “semi-functional space.”

For instance, for a bases pair of dimension 3, we may declare b⃗1, b⃗2 to span the

normal space on the ciphertext side and b⃗3 to span the semi-functional space

on the ciphertext side, while b⃗∗1, b⃗
∗
2 span the normal space on the key side and

b⃗∗3 spans the semi-functional space on the key side. We note that the normal

24

space on the ciphertext side will be orthogonal to the semi-functional space

on the key side, and vice versa.

3.2.1 Parameter Hiding in Dual Orthonormal Bases

It will be crucial in our security proofs that when one publishes param-

eters for the normal space and produces normal keys, one only information-

theoretically reveals the bases vectors for the normal spaces, while some in-

formation about the remaining bases vectors for the semi-functional spaces

remains hidden.

More generally, we observe a mechanism for parameter hiding using

dual orthonormal bases: one can generate a random pair of dual orthonormal

bases (B,B∗) for Zn
p , apply an invertible change of basis matrix A to a subset of

these basis vectors, and produce a new pair of dual orthonormal bases which

is also randomly distributed, independently of A. This allows us to hide a

random matrix A. We formulate this precisely below.

We consider taking dual orthonormal bases and applying a linear change

of basis to a subset of their vectors. We do this in such a way that we produce

new dual orthonormal bases. In this subsection, we prove that if we start with

randomly sampled dual orthonormal bases, then the resulting bases will also

be random - in particular, the distribution of the final bases reveals nothing

about the change of basis matrix that was employed. This can be leveraged in

security proofs as a way of separating the simulator’s view from the attacker’s.

To describe this formally, we let m ≤ n be fixed positive integers and

25

A ∈ Zm×m
p be an invertible matrix. We let Sm ⊆ [n] be a subset of size m

(|S| = m). For any dual orthonormal bases B,B∗, we can then define new dual

orthonormal bases BA,B∗
A as follows. We let Bm denote the n×m matrix over

Zp whose columns are the vectors b⃗i ∈ B such that i ∈ Sm. Then BmA is also

an n×m matrix. We form BA by retaining all of the vectors b⃗i ∈ B for i /∈ Sm

and exchanging the b⃗i for i ∈ Sm with the columns of BmA. To define B∗
A,

we similarly let B∗
m denote the n ×m matrix over Zp whose columns are the

vectors b⃗∗i ∈ B∗ such that i ∈ Sm. Then B∗
m(A

−1)t is also an n ×m matrix,

where (A−1)t denotes the transpose of A−1. We form B∗
A by retaining all of the

vectors b⃗∗i ∈ B∗ for i /∈ Sm and exchanging the b⃗i for i ∈ Sm with the columns

of B∗
m(A

−1)t.

To see that BA and B∗
A are dual orthonormal bases, note that for i ∈ Sm,

the corresponding basis vector in BA can be expressed as a linear combination

of the basis vectors b⃗j ∈ B with j ∈ Sm, and the coefficients of this linear

combination correspond to a column of A, say the ℓth column (equivalently,

say i is the ℓth element of Sm). When ℓ ̸= ℓ′, the ℓth column of A is orthogonal

to the (ℓ′)th column of (A−1)t. This means that the ith vector of BA will

be orthogonal to the (i′)th vector of B∗
A whenever i ̸= i′. Moreover, the ℓth

column of A and the ℓth column of (A−1)t have dot product equal to 1, so the

dot product of the ith vector of BA and the ith vector of B∗
A will be equal to 1

as in the original bases B and B∗.

For a fixed dimension n and prime p, we let (B,B∗)
R←− Dual(Zn

p) de-

note choosing random dual orthonormal bases B and B∗ of Zn
p . Here, Dual(Zn

p)

26

denotes the set of dual orthonormal bases.

Lemma 2. For any fixed positive integers m ≤ n, any fixed invertible A ∈

Zm×m
p and set Sm ⊆ [n] of size m, if (B,B∗)

R←− Dual(Zn
p), then (BA,B∗

A)

is also distributed as a random sample from Dual(Zn
p). In particular, the

distribution of (BA,B∗
A) is independent of A.

Proof. There is a one-to-one correspondence between (B,B∗) and (BA,B∗
A):

given (BA,B∗
A), one can recover (B,B∗) by applying A−1 to the vectors in BA

whose indices are in Sm, and applying At to the corresponding vectors in B∗
A.

This shows that every pair of dual orthonormal bases is equally likely to occur

as BA,B∗
A.

3.2.2 The Subspace Assumption

We now describe the “Subspace Assumption,” which is implied by the

decisional linear assumption. We introduced this in [46] to help clarify how

DLIN allows one to expand/contract spaces in the exponent in the dual pairing

vector space framework. It is based on the observation that if we fix a pair

(B,B∗) of dual orthonormal bases and one is given gv⃗ say, then one cannot tell

if v⃗ is in the span of b⃗∗1, b⃗
∗
2 or the larger span of b⃗∗1, b⃗

∗
2, b⃗

∗
3 when one is not given

gb⃗3 (though one can be given gw⃗ for w⃗ in the span of b⃗1, b⃗2, b⃗3, for example).

At its core, the subspace assumption translates the DLIN assumption into a

change from a 2-dimensional space in the exponent to a 3-dimensional one,

and then replicates this in parallel both within a bases pair and over many

bases pairs. In our security proofs, we will employ the subspace assumption

27

to move ciphertext and key components in and out of various portions of the

semi-functional space. We will also use it to transition to the final security

game, where the semi-functional ciphertext becomes an encryption of a random

message.

The statement of the subspace assumption we give here is parameter-

ized by several values which can be set to be any positive integers. We let the

parameter m denote the number of pairs of dual orthonormal bases involved.

Each basis pair has its own dimension ni and its own parameter ki ≤ ni/3 (this

parameter describes how many 2-dimensional subspaces within each basis are

expanding to be 3-dimensional).

The Subspace Assumption will consider m bases pairs chosen indepen-

dently at random. These bases pairs will be denoted by (B1,B∗
1), . . ., (Bm,B∗

m),

and the vectors comprising each (Bi,B∗
i) will be denoted by b⃗1,i, . . . , b⃗ni,i and

b⃗∗1,i, . . . , b⃗
∗
ni,i

. For a simpler statement of the subspace assumption considering

only one bases pair, see [46]. Compared to the statement in [46], we have also

added a few extra terms that will be useful in the security proof for our multi-

authority CP-ABE system. We have also chosen to directly reveal the basis

vectors that are not involved in the expanding subspaces, whereas the original

statement in [46] left these in the exponent. This change is not necessary for

any of our proofs here, but we feel it is worthwhile to point out that giving out

these basis vectors directly does not affect the reduction from the decisional

linear assumption.

Definition 3. (The Subspace Assumption) Given a group generator G, we define

28

the following distribution:

G := (p,G,GT , e)
R←− G, g

R←− G, η, β, τ1, τ2, τ3, µ1, µ2, µ3
R←− Zp,

(B1,B∗
1)

R←− Dual(Zn1
p), . . . , (Bm,B∗

m)
R←− Dual(Znm

p),

U1,i := gµ1b⃗1,i+µ2b⃗ki+1,i+µ3b⃗2ki+1,i , U2,i := gµ1b⃗2,i+µ2b⃗ki+2,i+µ3b⃗2ki+2,i ,

. . . , Uki,i := gµ1b⃗ki,i+µ2b⃗2ki,i+µ3b⃗3ki,i ∀i ∈ [m],

V1,i := gτ1η⃗b
∗
1,i+τ2βb⃗∗ki+1,i , V2,i := gτ1ηb⃗

∗
2,i+τ2βb⃗∗ki+2,i ,

. . . , Vki,i := gτ1η⃗b
∗
ki,i

+τ2βb⃗∗2ki,i ∀i ∈ [m],

W1,i := gτ1ηb⃗
∗
1,i+τ2βb⃗∗ki+1,i+τ3b⃗∗2ki+1,i , W2,i := gτ1η⃗b

∗
2,i+τ2βb⃗∗ki+2,i+τ3b⃗∗2ki+2,i ,

. . . , Wki,i := gτ1ηb⃗
∗
ki,i

+τ2βb⃗∗2ki,i
+τ3b⃗∗3ki,i ∀i ∈ [m],

D :=
(
G, g, gη, gβ, gτ1η, gτ2β, {gb⃗1,i , gb⃗2,i , . . . , gb⃗2ki,i , b⃗3ki+1,i, . . . , b⃗ni,i,

gηb⃗
∗
1,i , . . . , gηb⃗

∗
ki,i , gβb⃗

∗
ki+1,i , . . . , gβb⃗

∗
2ki,i , gb⃗

∗
2ki+1,i , . . . , gb⃗

∗
3ki,i ,

b⃗∗3ki+1,i, . . . , b⃗
∗
ni,i
, U1,i, U2,i, . . . , Uki,i}mi=1, µ3

)
.

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |Pr [A (D, {V1,i, . . . , Vki,i}mi=1) = 1]− Pr [A (D, {W1,i, . . . ,Wki,i}mi=1) = 1]|

is negligible in the security parameter λ.

We have included in D more terms than will be necessary for many

applications of this assumption, and in what follows we will often omit those

we do not need. In our proofs below, we will also ignore that the final vectors

29

are given directly and write all vectors as being given in the exponent for

notational simplicity, since this suffices for our purposes.

We will work exclusively with the k = 1 and k = 2 cases. To help

the reader see the main structure of this assumption through the burdensome

notation, we include heuristic illustrations of the m = 1, n = 3, k = 1 and

m = 1, n = 6, k = 2 cases below.

BB

BB*
?

U1{
Figure 3.1: Subspace Assumption with m = 1, n = 3, k = 1

BB

BB*
? ?

{ {U1 U2

Figure 3.2: Subspace Assumption with m = 1, n = 6, k = 2

In these diagrams, the top rows illustrate the U terms, while the bottom

rows illustrate the V,W terms. The solid ovals and rectangles indicate the

presence of basis vectors. The crossed rectangles indicate basis elements of B

which are present in U1, U2 but are not given out in isolation. The dotted ovals

30

adorned by question marks indicate the basis vectors whose presence depends

on whether we consider the V ’s or the W ’s.

We now prove:

Lemma 4. If the decisional linear assumption holds for a group generator G,

then the subspace assumption stated in Definition 3 also holds for G (for any

fixed values of m,n1 ≥ 3k1, . . . , nm ≥ 3km that are polynomial in the security

parameter).

Proof. We assume there exists a PPT algorithm A breaking the subspace

assumption with non-negligible advantage (for some fixed positive integers

m,n1, . . . , nm, k1, . . . , km satisfying n1 ≥ 3k1, . . . , nm ≥ 3km). We create a

PPT algorithm B which breaks the decisional linear assumption with non-

negligible advantage. B is given g, f, v, f c1 , vc2 , T , where T is either gc1+c2

or T = gc1+c2+w is a uniformly random element of G. We let ℓf denote the

discrete logarithm base g of f and ℓv denote the discrete logarithm base g of

v, i.e. f = gℓf and v = gℓv .

B simulates the subspace assumption for A as follows. B first (inde-

pendently) samples random dual orthonormal bases (D1,D∗
1) ∈ Dual(Zn1

p),

. . ., (Dm,D∗
m) ∈ Dual(Znm

p). B then implicitly sets η = ℓf , β = ℓv, and:

η⃗b∗1,i = d⃗∗2ki+1,i + ℓf d⃗
∗
1,i, η⃗b

∗
2,i = d⃗∗2ki+2,i + ℓf d⃗

∗
2,i, . . . , η⃗b

∗
ki,i

= d⃗∗3ki,i + ℓf d⃗
∗
ki,i
,

βb⃗∗ki+1,i = d⃗∗2ki+1,i+ℓvd⃗
∗
ki+1,i, βb⃗

∗
ki+2,i = d⃗∗2ki+2,i+ℓvd⃗

∗
ki+2,i, . . . , βb⃗

∗
2ki,i

= d⃗∗3ki,i+ℓvd⃗
∗
2ki,i

,

b⃗∗2ki+1,i = d⃗∗2ki+1,i, . . . , b⃗
∗
ni,i

= d⃗∗ni,i

31

for each i from 1 to m. In other words, B has set b⃗∗1,i = η−1d⃗∗2ki+1,i + d⃗∗1,i for

example. We note that B can produce gη = f and gβ = v.

B sets the dual basis as:

b⃗1,i = d⃗1,i, b⃗2,i = d⃗2,i, . . . , b⃗2ki,i = d⃗2ki,i,

b⃗2ki+1,i = d⃗2ki+1,i − ℓ−1
f d⃗1,i − ℓ−1

v d⃗ki+1,i, . . . , b⃗3ki,i = d⃗3ki,i − ℓ−1
f d⃗ki,i − ℓ−1

v d⃗2ki,i,

b⃗3ki+1,i = d⃗3ki+1,i, . . . , b⃗ni,i = d⃗ni,i.

We note that each pair (B1,B∗
1), . . . , (Bm,B∗

m) is indeed a pair of dual

orthonormal bases. We also note that B can produce all of gηb⃗
∗
1,i , . . . , gηb⃗

∗
ki,i ,

gβb⃗
∗
ki+1,i , . . . , gβb⃗

∗
2ki,i , gb⃗

∗
2ki+1,i , . . . , gb⃗

∗
3ki,i , b⃗∗3ki+1,i, . . . , b⃗

∗
ni,i

, gb⃗1,i , . . . , gb⃗2ki,i , and b⃗3ki+1,i,

. . ., b⃗ni,i for each i from 1 to m, but cannot produce gb⃗2ki+1,i , . . . , gb⃗3ki,i .

We now observe that η = ℓf , β = ℓv, {⃗b1,i, . . . , b⃗ni,i} and {⃗b∗1,i, . . . , b⃗∗ni,i
}

are properly distributed. Indeed, this follows from the fact that ℓf , ℓv are

randomly distributed and from Lemma 2, since we have applied a change of

basis to each (Di,D∗
i).

Now B creates U1,i, . . . , Uki,i for each i as follows. It chooses random

values µ′
1, µ

′
2, µ

′
3 ∈ Zp. It sets:

U1,i = gµ
′
1b⃗1,i+µ′

2b⃗ki+1,i+µ′
3d⃗2ki+1,i .

We note that

µ′
1b⃗1,i+µ

′
2b⃗ki+1,i+µ

′
3d⃗2ki+1,i = (µ′

1+ ℓ
−1
f µ′

3)⃗b1,i+(µ′
2+ ℓ

−1
v µ′

3)⃗bki+1,i+µ
′
3b⃗2ki+1,i.

32

In other words, B has implicitly set µ1 = µ′
1 + ℓ−1

f µ′
3, µ2 = µ′

2 + ℓ−1
v µ′

3, and

µ3 = µ′
3. We note that these values are uniformly random, and µ3 is known

to B. B can then similarly form U2,i, . . . , Uki,i as:

U2,i = gµ
′
1b⃗2,i+µ′

2b⃗ki+2,i+µ′
3d⃗2ki+2,i , . . . , Uki,i = gµ

′
1b⃗ki,i+µ′

2b⃗2ki,i+µ′
3d⃗3ki,i .

B then implicitly sets τ1 = c1 and τ2 = c2. This allows B to produce

gητ1 = f c1 and gβτ2 = vc2 . We note that for each i from 1 to m:

τ1η⃗b
∗
1,i + τ2βb⃗

∗
ki+1,i = (c1 + c2)d⃗

∗
2ki+1,i + c1ℓf d⃗

∗
1,i + c2ℓvd⃗

∗
ki+1,i,

...

τ1η⃗b
∗
ki,i

+ τ2βb⃗
∗
2ki,i

= (c1 + c2)d⃗
∗
3ki,i

+ c1ℓf d⃗
∗
ki,i

+ c2ℓvd⃗
∗
2ki,i

.

The terms which are multiples of c1ℓf and c2ℓv are not difficult for B to produce

as exponents of g, since B has f c1 = gc1ℓf and vc2 = gc2ℓv . For the multiples

of c1 + c2, B needs to use T .

B computes for each i:

T1,i = T d⃗∗2ki+1,i (f c1)d⃗
∗
1,i (vc2)d⃗

∗
ki+1,i , . . . , Tki,i = T d⃗∗3ki,i (f c1)d⃗

∗
ki,i (vc2)d⃗

∗
2ki,i .

If T = gc1+c2 , then these are distributed as V1,i, . . . , Vki,i. If T = gc1+c2+w, then

these are distributed as W1,i, . . . ,Wki,i, with τ3 implicitly set to w.

B gives

D :=
(
g, gη, gβ, gητ1 , gβτ2 , {gb⃗1,i , gb⃗2,i , . . . , gb⃗2ki,i , b⃗3ki+1,i, . . . , b⃗ni,i, g

ηb⃗∗1,i , . . . , gη⃗b
∗
ki,i ,

gβb⃗
∗
ki+1,i , . . . , gβb⃗

∗
2ki,i , gb⃗

∗
2ki+1,i , . . . , gb⃗

∗
3ki,i , b⃗∗3ki+1,i, . . . , b⃗

∗
ni,i
, U1,i, U2,i, . . . , Uki,i}mi=1, µ3

)
33

to A, along with {T1,i . . . , Tki,i}mi=1. B can then leverage A’s non-negligible ad-

vantage in distinguishing between the distributions {V1,i, . . . , Vki,i} and {W1,i,

. . ., Wki,i} to achieve a non-negligible advantage in distinguishing T = gc1+c2

from T = gc1+c2+w, violating the decisional linear assumption.

34

Chapter 4

Background on CP-ABE Systems

In this section, we give required background material on access struc-

tures, the formal definition of a CP-ABE scheme, and the security definition

we will use. We also present the formal definitions for multi-authority CP-ABE

schemes.

4.1 Access Structures

Definition 5. (Access Structure [7]) Let {P1, . . . , Pn} be a set of parties. A

collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈

A. An access structure (respectively, monotone access structure) is a collection

(respectively, monotone collection) A of non-empty subsets of {P1, . . . , Pn},

i.e., A ⊆ 2{P1,...,Pn}\{}. The sets in A are called the authorized sets, and the

sets not in A are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will con-

sider only monotone access structures. One can (somewhat inefficiently) real-

ize general access structures with our techniques by having the negation of an

attribute be a separate attribute (so the total number of attributes doubles).

35

Linear Secret-Sharing Schemes Our constructions will employ linear secret-

sharing schemes (LSSS). We use the following definition adapted from [7].

Definition 6. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme

Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for Π. The

matrix A has ℓ rows and n columns. For all j = 1, . . . , ℓ, the jth row of

A is labeled by a party ρ(j) (ρ is a function from {1, . . . , ℓ} to P). When

we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp is the

secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av is

the vector of ℓ shares of the secret s according to Π. The share (Av)j

belongs to party ρ(j).

We note the linear reconstruction property: we suppose that Π is an

LSSS for access structure A. We let S denote an authorized set, and define

I ⊆ {1, . . . , ℓ} as I = {j|ρ(j) ∈ S}. Then the vector (1, 0, . . . , 0) is in the span

of rows of A indexed by I, and there exist constants {ωj ∈ Zp}j∈I such that,

for any valid shares {λj} of a secret s according to Π, we have:
∑

j∈I ωjλj = s.

These constants {ωj} can be found in time polynomial in the size of the share-

generating matrix A [7]. For unauthorized sets, no such constants {ωj} exist.

36

4.2 CP-ABE Definition

A ciphertext-policy attribute-based encryption system consists of four

algorithms: Setup, Encrypt, KeyGen, and Decrypt.

Setup(λ,U) → (PP,MSK) The setup algorithm takes in the security pa-

rameter λ and the attribute universe description U. It outputs the public

parameters PP and a master secret key MSK.

Encrypt(PP,M,A) → CT The encryption algorithm takes in the public

parameters PP, the message M , and an access structure A over the universe

of attributes. It will output a ciphertext CT such that only users whose private

keys satisfy the access structure A should be able to extract M . We assume

that A is implicitly included in CT.

KeyGen(MSK,PP, S) → SK The key generation algorithm takes in the

master secret key MSK, the public parameters PP, and a set of attributes S.

It outputs a private key SK. We assume that S is implicitly included in SK.

Decrypt(PP,CT, SK) → M The decryption algorithm takes in the public

parameters PP, a ciphertext CT, and a private key SK. If the set of attributes

of the private key satisfies the access structure of the ciphertext, it outputs

the message M .

37

Definition 7. A CP-ABE system is said to be correct if whenever PP,MSK are

obtained by running the setup algorithm, CT is obtained by running the en-

cryption algorithm on PP,M,A, SK is obtained by running the key generation

algorithm on MSK,PP, S and S satisfies A, then Decrypt(PP,CT, SK) =M .

4.3 Security Model for CP-ABE

We now give the full security definition for CP-ABE systems. This is

described by a game between a challenger and an attacker. The game proceeds

as follows:

Setup The challenger runs the Setup algorithm and sends the public param-

eters PP to the attacker.

Phase 1 The attacker adaptively queries the challenger for private keys cor-

responding to sets of attributes S1, . . . , SQ1 . Each time, the challenger re-

sponds with a secret key SKk obtained by running KeyGen(MSK,PP, Sk).

Challenge The attacker declares two equal length messages M0 and M1

and an access structure A. This access structure cannot be satisfied by any

of the queried attribute sets S1, . . . , SQ1 . The challenger flips a random coin

b ∈ {0, 1}, and encrypts Mb under A, producing CT. It sends CT to the

attacker.

38

Phase 2 The attacker adaptively queries the challenger for private keys cor-

responding to sets of attributes SQ1+1, . . . , SQ, with the added restriction that

none of these satisfy A. Each time, the challenger responds with a secret key

SKk obtained by running KeyGen(MSK,PP, Sk).

Guess The attacker outputs a guess b′ for b.

The advantage of an attacker in this game is defined to be Pr[b = b′]− 1
2
.

Definition 8. A ciphertext-policy attribute-based encryption system is fully

secure if all polynomial time attackers have at most a negligible advantage in

this security game.

Selective security is defined by adding an initialization phase where the

attacker must declare A before seeing PP.

4.4 Formal Definitions for Multi-Authority CP-ABE Sys-
tems

We now present formal definitions for multi-authority CP-ABE sys-

tems and their security. A multi-authority Ciphertext-Policy Attribute-Based

Encryption system is comprised of the following five algorithms:

Global Setup(λ) → GP The global setup algorithm takes in the security

parameter λ and outputs global parameters GP for the system.

39

Authority Setup(GP)→ SK,PK Each authority runs the authority setup

algorithm with GP as input to produce its own secret key and public key pair,

SK,PK.

Encrypt(M,A,GP, {PK})→ CT The encryption algorithm takes in a mes-

sage M , an access structure A, the set of public keys for relevant authorities,

and the global parameters. It outputs a ciphertext CT.

KeyGen(GID,GP, i, SK) → Ki,GID The key generation algorithm takes in

an identity GID, the global parameters, an attribute i belonging to some

authority, and the secret key SK for this authority. It produces a key Ki,GID

for this attribute, identity pair.

Decrypt(CT,GP, {PK}, {Ki,GID})→M The decryption algorithm takes in

a ciphertext, the global parameters, the public keys for the relevant authorities,

and a collection of keys corresponding to attribute, identity pairs all with the

same fixed identity GID. It outputs the message M when the collection of

attributes i satisfies the access structure corresponding to the ciphertext.

Definition 9. A multi-authority CP-ABE system is said to be correct if when-

ever GP is obtained from the global setup algorithm, {PK, SK} are obtained

by running the authority setup algorithm, CT is obtained from the encryption

algorithm on the message M using the public keys {PK}, and {Ki,GID} is a

set of keys obtained from running the key generation algorithms with {SK} for

40

the same identity GID and for a set of attributes satisfying the access structure

of the ciphertext, Decrypt(CT,GP, {PK}, {Ki,GID}) =M .

4.4.1 Security Definition

We define security for multi-authority Ciphertext-Policy Attribute-Based

Encryption systems by the following game between a challenger and an at-

tacker. We assume that adversaries can corrupt authorities only statically,

but key queries are made adaptively. A static corruption model is also used

by Chase [22] and Chase and Chow [23], but we note that our model addition-

ally allows the adversary to choose the public keys of the corrupted authorities

for itself, instead of having these initially generated by the challenger.

We let S denote the set of authorities and U denote the universe of

attributes. We assume each attribute is assigned to one authority (though

each authority may control multiple attributes). In practice, we can think of

an attribute as being the concatenation of an authority’s public key and a

string attribute. This will ensure that if multiple authorities choose the same

string attribute, these will still correspond to distinct attributes in the system.

Setup The global setup algorithm is run. The attacker specifies a set S′ ⊆

S of corrupt authorities. For good (non-corrupt) authorities in S − S′, the

challenger obtains public key, private key pairs by running the authority setup

algorithm, and gives the public keys to the attacker.

41

Key Query Phase 1 The attacker makes key queries by submitting pairs

(i,GID) to the challenger, where i is an attribute belonging to a good authority

and GID is an identity. The challenger responds by running the key generation

algorithm and giving the attacker the resulting key, Ki,GID.

Challenge Phase The attacker must specify two equal length messages,

M0,M1, and an access structure A. The access structure must satisfy the fol-

lowing constraint. For each identity GID, the union of the requested attributes

and all attributes controlled by the corrupt authorities must fail to satisfy A.

(In other words, the attacker cannot ask for a set of keys for one identity that

allow decryption in combination with any keys that can obtained from corrupt

authorities.) The attacker must also give the challenger the public keys for any

corrupt authorities whose attributes appear in the access structure. The chal-

lenger flips a random coin b ∈ {0, 1} and sends the attacker an encryption of

Mb under access structure A (obtained by running the encryption algorithm).

Key Query Phase 2 The attacker may submit additional key queries (i,GID),

as long as they do not violate the constraint on the challenge access structure.

Guess The attacker must submit a guess b′ for b. The attacker wins if b = b′.

The attacker’s advantage in this game is defined to be Pr[b = b′]− 1
2
.

Definition 10. A multi-authority Ciphertext-Policy Attribute-Based Encryp-

tion system is secure (against static corruption of authorities) if all polynomial

42

time attackers have at most a negligible advantage in this security game.

There are a few ways in which one might alter this security definition.

One could extend the definition to allow adaptive corruption of authorities,

for example, instead of requiring that all corrupt authorities be declared up

front. We will not address such extensions in this work.

43

Chapter 5

A Basic CP-ABE System

We now present our core CP-ABE scheme, which inherits its main

structure from the selectively secure scheme of Waters [69]. In [48], we ob-

served that by simply embedding the selectively secure CP-ABE and KP-ABE

schemes of [39, 69] into composite order bilinear groups, we obtain schemes

that can be proven fully secure using the dual system encryption methodol-

ogy. The scheme we present here can be viewed as an analog of the schemes of

[48, 69] in the dual pairing vector space (DPVS) framework in prime order bi-

linear groups. Since the more general scheme in [60] is also an analog of these

schemes in the DPVS framework, it is naturally very closely related to the

construction we give here. For those familiar with these results, our construc-

tion and proof in this section is best conceptualized as a DPVS translation

of our composite-order construction and proof in [48], using the translation

techniques we developed in [46].

The genealogy of all these schemes should be viewed as a compelling

demonstration of the value of the selective security model as a vehicle for

inciting further progress, as the core construction techniques first presented in

selectively secure schemes have outlived selectivity and served as a foundation

44

for fully secure systems. Historically, the progress of proof techniques lagged

behind the insights of construction designs, but our new proof methodology

can be interpreted as validating the partial progress achieved by selectively

secure constructions.

The intuition behind the core of the construction is rather elegant.

We work in a bilinear group, where key elements and ciphertext elements

can be paired together to cancel the effects of interaction between random

exponents chosen independently during encryption and key generation. To

prevent collusion attacks, individual secret keys are tied together by user-

specific random values that are intertwined with elements of the master secret

key as well as being attached to each attribute. To enforce the access policy

of the ciphertext, the encryptor chooses a random secret to be split into linear

shares in the exponent of a bilinear group. The secret itself blinds the message,

while the individual shares are also given out, each blinded by terms specific

to the associated attribute.

The first step of the decryption process transfers the goal of recovering

a fixed blinding factor into a “local” goal of recovering a value that involves

both the ciphertext secret and the user-specific randomness introduced by the

key. To achieve this localized goal, the user must “unblind” individual shares

of the ciphertext secret, which it should only be able to accomplish when it

has the corresponding attribute pieces in its secret key to pair the shares with.

Since we are working with the DPVS framework and will prove secu-

rity under the decisional linear assumption, it is convenient to duplicate the

45

ciphertext secret as two parts (called s1 and s2 below) and to duplicate the key

randomness as well (called t1 and t2 below). This is because the decisional lin-

ear assumption allows us to expand from two-dimensional to three-dimensional

spaces in the exponent (as described in the previous section), so we start with

two-dimensional randomness.

5.1 Construction

We will work with a bilinear group G, and we will assume that mes-

sages to be encrypted are elements of the target group GT . We will allow

linear secret sharing schemes, represented by access matrices (A, ρ), as access

structures. We will assume that the size of the attribute universe is polyno-

mial in the security parameter (this is known as “small universe” ABE). We

conflate notation to let U denote the size of the attribute universe. In other

words, the attribute universe is assumed to be {1, 2, . . . ,U}.

Setup(λ,U) → PP,MSK The setup algorithm chooses a bilinear group G

of prime order p and a generator g. It randomly chooses one pair of dual

orthonormal bases (B,B∗) of dimension 3 and U pairs of dual orthonormal

bases (B1,B∗
1), . . . , (BU,B∗

U) of dimension 6. We let b⃗i, b⃗
∗
i denote the basis

vectors belonging to (B,B∗), and b⃗i,j, b⃗
∗
i,j denote the basis vectors belong to

(Bj,B∗
j) for each j from 1 to U. The setup algorithm also chooses two random

exponents α1, α2 ∈ Zp. The public parameters consist of:

PP := {G, p, gb⃗1 , gb⃗2 , gb⃗1,i , . . . , gb⃗4,i ∀i ∈ [U], e(g, g)α1 , e(g, g)α2}.

46

The master secret key additionally contains:

MSK := {gα1b⃗∗1 , gα2b⃗∗2 , gb⃗
∗
1 , gb⃗

∗
2 , gb⃗

∗
1,i , . . . , gb⃗

∗
4,i ∀i ∈ [U] }.

KeyGen(MSK, S,PP)→ SK The key generation algorithm chooses random

exponents t1, t2 ∈ Zp and computes:

K := g(α1+t1)⃗b∗1+(α2+t2)⃗b∗2 ,

Ki := gt1b⃗
∗
1,i+t1b⃗∗2,i+t2b⃗∗3,i+t2b⃗∗4,i ∀i ∈ S.

The secret key is (it additionally includes S):

SK := {K, {Ki}i∈S}.

Encrypt((A, ρ),PP,M) → CT We assume M ∈ GT . We let ℓ × n denote

the dimensions of the matrix A and we recall that ρ is map from each row Aj

of A to an attribute ρ(j) (the index j ranges from 1 to ℓ). The encryption

algorithm chooses random exponents s1, s2, {r1j , r2j}ℓj=1 ∈ Zp. It also chooses

random vectors v1, v2 ∈ Zn
p with first entries equal to s1 and s2 respectively.

The ciphertext is formed as (it additionally includes (A, ρ)):

M ′ :=Me(g, g)α1s1e(g, g)α2s2 , C := gs1b⃗1+s2b⃗2 ,

Cj := g(Aj ·v1+r1j)⃗b1,ρ(j)−r1j b⃗2,ρ(j)+(Aj ·v2+r2j)⃗b3,ρ(j)−r2j b⃗4,ρ(j) ∀j = 1, . . . , ℓ.

47

Decrypt(CT,PP, SK)→ M The decryption algorithm computes constants

ωj ∈ Zp such that
∑

ρ(j)∈S ωjAj = (1, 0, . . . , 0). It computes:

X :=
∏

ρ(j)∈S

e6(Cj, Kρ(j))
ωj

It then computes:

Y := e3(K,C).

The message is recovered as:

M =M ′X/Y.

Correctness We observe that for each j,

e6(Cj, Kρ(j)) = e(g, g)(t1Aj ·v1+t2Aj ·v2).

Thus,

X :=
∏

ρ(j)∈S

e6(Cj, Kρ(j))
ωj = e(g, g)(t1

∑
ρ(j)∈S ωjAj ·v1+t2

∑
ρ(j)∈S ωjAj ·v2) = e(g, g)(t1s1+t2s2).

We note that

Y = e(g, g)(s1(α1+t1)+s2(α2+t2)),

and therefore:

M ′X/Y =Me(g, g)(s1α1+s2α2)e(g, g)(t1s1+t2s2)/e(g, g)(s1(α1+t1)+s2(α2+t2)) =M.

48

5.2 Addressing Re-use of Attributes

We will give a security proof for the CP-ABE system above under what

we call the one-use restriction. This means that the LSSS matrices used for the

ciphertexts may only refer to a particular attribute once. In other words, the

row-labeling function ρ must be injective. One way to address this limitation

is to provide a general transformation from a scheme that is fully secure under

this one-use restriction to a scheme that is fully secure when attributes are

reused. This can be done with a simple encoding technique, as we previously

observed in [48].

Suppose we have a CP-ABE system with a universe of U attributes

with LSSS access structures that is secure when the function ρ is injective for

each access structure associated to a ciphertext. Suppose we would like to

have a system with U attributes where attributes can be used ≤ k times in the

row labeling of a share-generating matrix. We can realize this by essentially

taking k copies of each attribute in the system: instead of a single attribute

B, we will have new “attributes” B : 1, . . . , B : k. Each time we want to label

a row of an access matrix A with B, we label it with B : i for a new value of

i. We let ρ denote the original row labeling of A and ρ′ denote this new row

labeling. Each time we want to associate a subset S of attributes to a key, we

instead use S ′ := {B : 1, . . . , B : k|B ∈ S}. We can then employ the one-use

system on the new universe of kU attributes and retain its full security. We

note that the set S ′ satisfies the access structure (A, ρ′) if and only if the set

S satisfies the access structure (A, ρ).

49

For our construction, the sizes of the public parameters and the secret

keys grow linearly in the number of involved attributes, so these will expand

by a factor of k under this transformation. Note that the size of the access

matrix does not change, so ciphertexts in our construction will remain the

same size.

Remark 11. In the next section, we will present an alternate proof strategy

that allows us to prove full security directly without the one-use restriction,

thus avoiding the need to set such a parameter k and the resulting efficiency

costs incurred by this encoding. The trade-off will be the need for a q-type

assumption (whose size depends on the behavior of the attacker). The security

proof we give here under the one-use restriction relies only on the decisional

linear assumption.

5.3 Security Proof Under the One-Use Restriction

We will now prove the following theorem:

Theorem 12. Under the decisional linear assumption, the CP-ABE scheme

presented in Section 5.1 is fully secure in the sense of Definition 8 when access

matrices (A, ρ) are required to have injective row labeling functions ρ.

We begin by defining our various types of semi-functional keys and

ciphertexts. The semi-functional space in the exponent will correspond to the

span of b⃗3, b⃗
∗
3 and the span of each b⃗5,i, b⃗6,i, b⃗

∗
5,i, b⃗

∗
6,i.

50

Semi-functional Keys To produce a semi-functional key for an attribute

set S, one first calls the normal key generation algorithm to produce a normal

key consisting of K, {Ki}i∈S. One then chooses a random value γ ∈ Zp and

multiplies K by gγb⃗
∗
3 . The other components of the key remain unchanged.

Semi-functional Ciphertexts To produce a semi-functional ciphertext for

an LSSS matrix (A, ρ), one first calls the normal encryption algorithm to pro-

duce a normal ciphertext consisting of M ′, C, {Cj}. One then chooses random

values s3, {r3j} ∈ Zp and a random vector v3 ∈ Zn
p with first entry equal to s3.

The semi-functional ciphertext is:

M ′, Cgs3b⃗3 , Cjg
(Aj ·v3+r3j)⃗b5,ρ(j)−r3j b⃗6,ρ(j) ∀j = 1, . . . , ℓ.

Temporary Semi-functional Keys To produce a temporary semi-functional

key for an attribute set S, one first calls the normal key generation algorithm

to produce a normal key consisting of K, {Ki}i∈S. One then chooses random

values t3, γ ∈ Zp. The temporary semi-functional key is formed as:

Kgγb⃗
∗
3 , Kig

t3b⃗∗5,i+t3b⃗∗6,i ∀i ∈ S.

Remark 13. Nominal semi-functionality will occur when t3 = γ: in this case,

a temporary semi-functional key will successfully decrypt a semi-functional

ciphertext. This occurrence should be viewed as a correlation between the

semi-functional ciphertext and the temporary semi-functional key, even though

we semantically define it as a property of the coefficients in the key’s semi-

functional space. The correlation is realized through the dual orthonormal

51

bases. Note that b⃗3 only appears in the semi-functional ciphertext, and without

setting b⃗3, there is ambiguity in the value of b⃗∗3 (and hence in its coefficient in

the key).

The purpose of a temporary semi-functional key is to accomplish the

transition from nominal semi-functionality to regular semi-functionality via an

information-theoretic argument. This argument will leverage the ambiguity in

the choice of the b⃗5,ρ(j), b⃗6,ρ(j) vectors for attributes ρ(j) that do not appear in

the key. This argument relies on the one-use restriction, as well as the fact

that only a single key will be a temporary semi-functional key at a time.

Our security proof will proceed as a hybrid argument over a sequence

of games. We let Gamereal denote the real security game and we let Q denote

the number of key queries made by the adversary. For each k from 0 to Q, we

define the following additional games:

Gamek This is like the real security game except that the challenge cipher-

text given to the adversary is semi-functional, the first k keys given to the

adversary are semi-functional, and the remaining keys are normal.

GameTk This is like Gamek, except that the k
th key given to the adversary

is a temporary semi-functional key. The first k − 1 keys are semi-functional,

and the remaining keys are normal.

Our hybrid argument begins with Gamereal, and then we transition

to Game0. For each k, we transition from Gamek to GameTk+1 and then to

52

Gamek+1. Finally, we transition from GameQ (where everything given to the

adversary is semi-functional) to Gamefinal, which is like GameQ except that

the challenge ciphertext is a semi-functional encryption of a random message.

In this final game, the adversary has advantage 0, since everything it receives

is independent of the bit that it must guess. Our proof is accomplished in the

following lemmas.

Lemma 14. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between Gamereal and Game0.

Proof. Given a PPT attacker A achieving a non-negligible difference in ad-

vantage between Gamereal and Game0, we will create a PPT algorithm B to

break the subspace assumption. We will employ the subspace assumption with

parameters m = U + 1, ni = 3, ki = 1 for one value of i, and ni = 6, ki = 2

for the rest of the values of i. In order to reconcile the notation of the as-

sumption with the notation of our construction as conveniently as possible, we

will denote the bases involved in the assumption by (D,D∗) ∈ Dual(Z3
p) and

(D1,D∗
1), . . . , (DU,D∗

U) ∈ Dual(Z6
p). B is given (we will ignore the U terms, gη,

gβ, gητ1 , gβτ2 , and µ3 because they will not be needed):

G, p, g, gd⃗1 , gd⃗2 , {gd⃗1,i , . . . , gd⃗4,i}i∈[U],

gηd⃗
∗
1 , gβd⃗

∗
2 , gd⃗

∗
3 , {gηd⃗∗1,i , gηd⃗∗2,i , gβd⃗∗3,i , gβd⃗∗4,i , gd⃗∗5,i , gd⃗∗6,i}i∈[U],

T1, {T1,i, T2,i}i∈[U].

The exponent of the unknown term T1 is distributed either as τ1ηd⃗
∗
1+ τ2βd⃗

∗
2 or

τ1ηd⃗
∗
1 + τ2βd⃗

∗
2 + τ3d⃗

∗
3. Similarly, the exponents of the unknown terms T1,i, T2,i

53

are distributed either as τ1ηd⃗
∗
1,i + τ2βd⃗

∗
3,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i respectively, or

as τ1ηd⃗
∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i respectively. It is B’s

task to determine if these τ3 contributions are present or not.

B implicitly sets the bases for the construction as:

b⃗1 = ηd⃗∗1, b⃗2 = βd⃗∗2, b⃗3 = d⃗∗3, b⃗
∗
1 = η−1d⃗1, b⃗

∗
2 = β−1d⃗2, b⃗

∗
3 = d⃗3,

b⃗1,i = ηd⃗∗1,i, b⃗2,i = ηd⃗∗2,i, b⃗3,i = βd⃗∗3,i, b⃗4,i = βd⃗∗4,i, b⃗5,i = d⃗∗5,i, b⃗6,i = d⃗∗6,i ∀i,

b⃗∗1,i = η−1d⃗1,i, b⃗
∗
2,i = η−1d⃗2,i, b⃗

∗
3,i = β−1d⃗3,i, b⃗

∗
4,i = β−1d⃗4,i, b⃗

∗
5,i = d⃗5,i, b⃗

∗
6,i = d⃗6,i ∀i.

We note that these are properly distributed because (D,D∗), (D1,D∗
1), etc. are

randomly chosen.

B can use the terms given in the assumption to produce gb⃗1 , gb⃗2 ,

{gb⃗1,i , . . . , gb⃗4,i} for the public parameters. B chooses random values α̃1, α̃2 ∈

Zp. It implicitly sets α1 = ηα̃1 and α2 = βα̃2. This allows it to produce

e(g, g)α1 =
(
e3(g

d⃗1 , gηd⃗
∗
1)
)α̃1

, e(g, g)α2 =
(
e3(g

d⃗2 , gβd⃗
∗
2)
)α̃2

.

B gives the public parameters to A.

To produce a normal key for an attribute set S, B proceeds as follows.

It chooses random values t̃1, t̃2 ∈ Zp. It implicitly sets t1 = ηt̃1 and t2 = βt̃2.

It forms the key as:

K = g(α1+t1)⃗b∗1+(α2+t2)⃗b∗2 =
(
gd⃗1
)α̃1+t̃1 (

gd⃗2
)α̃2+t̃2

,

Ki = gt1b⃗
∗
1,i+t1b⃗∗2,i+t2b⃗∗3,i+t2b⃗∗4,i =

(
gd⃗1,i

)t̃1 (
gd⃗2,i

)t̃1 (
gd⃗3,i

)t̃2 (
gd⃗4,i

)t̃2
∀i ∈ S.

54

To produce the challenge ciphertext for an access matrix (A, ρ) of size

ℓ×n, B implicitly sets s1 = τ1 and s2 = τ2. It chooses a random vector v ∈ Zn
p

with first entry equal to 1. It also chooses random vectors ṽ1, ṽ2 ∈ Zn
p with

first entries equal to 0. It will implicitly set v1 = s1v + ṽ1 and v2 = s2v + ṽ2.

We note that these are properly distributed as independent, random vectors

with first entries equal to s1 and s2 respectively. For each j from 1 to ℓ, B

also chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp. It implicitly sets r1j = r̃3j τ1 + r̃1j ,

r2j = r̃3j τ2 + r̃2j . We note that these values are properly distributed because

r̃1j , r̃
2
j are random. The ciphertext is formed as:

M ′ = Mb

(
e3(g

d⃗1 , T1)
)α̃1

(
e3(g

d⃗2 , T1)
)α̃2

, C = T1,

Cj =
(
T1,ρ(j)

)Aj ·v+r̃3j
(
T2,ρ(j)

)−r̃3j
(
gηd⃗

∗
1,ρ(j)

)Aj ·ṽ1+r̃1j

·
(
gηd⃗

∗
2,ρ(j)

)−r̃1j
(
gβd⃗

∗
3,ρ(j)

)Aj ·ṽ2+r̃2j
(
gβd⃗

∗
4,ρ(j)

)−r̃2j

for all j from 1 to ℓ.

If the exponents of the T terms do not include the τ3 terms, then the

exponent vector of C is s1⃗b1 + s2⃗b2 and the exponent vector of each Cj is:

= (Aj · τ1v + Aj · ṽ1 + τ1r̃
3
j + r̃1j)ηd⃗

∗
1,ρ(j) + (−τ1r̃3j − r̃1j)ηd⃗∗2,ρ(j)

+(Aj · τ2v + Aj · ṽ2 + τ2r̃
3
j + r̃2j)βd⃗

∗
3,ρ(j) + (−τ2r̃3j − r̃2j)βd⃗∗4,ρ(j)

= (Aj · v1 + r1j)⃗b1,ρ(j) − r1j b⃗2,ρ(j) + (Aj · v2 + r2j)⃗b3,ρ(j) − r2j b⃗4,ρ(j).

Thus we have a properly distributed normal ciphertext in this case.

If the exponents of the T terms do include the τ3 terms, then the

exponent vector of C is s1⃗b1 + s2⃗b2 + s3⃗b3, where s3 := τ3 and the exponent

55

vector of each Cj is:

(Aj · v1 + r1j)⃗b1,ρ(j) − r1j b⃗2,ρ(j) + (Aj · v2 + r2j)⃗b3,ρ(j) − r2j b⃗4,ρ(j)

+(Aj · v + r̃3j)τ3⃗b5,ρ(j) − r̃3j τ3⃗b6,ρ(j).

This is a properly distributed semi-functional ciphertext with v3 = τ3v and

r3j = τ3r̃
j
3. (Note that these values are distributed randomly and independently

from v1, v2, r
1
j , r

2
j .)

Thus, when the τ3 terms are absent, B properly simulates Gamereal,

and when the τ3 terms are present, B properly simulates Game0. As a result,

B can leverage A’s non-negligible difference in advantage between these games

to gain a non-negligible advantage against the subspace assumption.

Lemma 15. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between Gamek−1 and GameTk

for any k from 1 to Q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advan-

tage between Gamek−1 and GameTk for some k, we will create a PPT algorithm

B to break the subspace assumption. We will employ the subspace assumption

with parameters m = U+1, ni = 3, ki = 1 for one value of i, and ni = 6, ki = 2

for the rest of the values of i. In order to reconcile the notation of the assump-

tion with the notation of our construction as conveniently as possible, we

will denote the bases involved in the assumption by (B,B∗) ∈ Dual(Z3
p) and

56

(B1,B∗
1), . . . , (BU,B∗

U) ∈ Dual(Z6
p). B is given (we will ignore µ3, g

β, gη, gητ1 ,

and gβτ2 because they will not be needed):

G, p, g, gb⃗1 , gb⃗2 , {gb⃗1,i , . . . , gb⃗4,i}i∈[U],

gηb⃗
∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , {gη⃗b∗1,i , gηb⃗∗2,i , gβb⃗∗3,i , gβb⃗∗4,i , gb⃗∗5,i , gb⃗∗6,i}i∈[U],

U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 ,

{U1,i = gµ1b⃗1,i+µ2b⃗3,i+µ3b⃗5,i , U2,i = gµ1b⃗2,i+µ2b⃗4,i+µ3b⃗6,i}i∈[U],

T1, {T1,i, T2,i}i∈[U].

The exponent of the unknown term T1 is distributed either as τ1η⃗b
∗
1+ τ2βb⃗

∗
2 or

as τ1η⃗b
∗
1+τ2βb⃗

∗
2+τ3⃗b

∗
3. Similarly, the exponents of the unknown terms T1,i, T2,i

are distributed either as τ1η⃗b
∗
1,i+ τ2βb⃗

∗
3,i and τ1η⃗b

∗
2,i+ τ2βb⃗

∗
4,i respectively, or as

τ1η⃗b
∗
1,i + τ2βb⃗

∗
3,i + τ3⃗b

∗
5,i and τ1η⃗b

∗
2,i + τ2βb⃗

∗
4,i + τ3⃗b

∗
6,i respectively. It is B’s task

to determine if these τ3 contributions are present or not.

B implicitly sets (B,B∗), {(Bi,B∗
i)} as the bases for the construction.

It chooses random values α̃1, α̃2 ∈ Zp and implicitly sets α1 = ηα̃1 and α2 =

βα̃2. This allows it to compute e(g, g)α1 as e3(g
b⃗1 , gηb⃗

∗
1)α̃1 , and e(g, g)α2 as

e3(g
b⃗2 , gβb⃗

∗
2)α̃2 . B can thus produce the public parameters, and it gives these

to A.

To respond to A’s first k−1 key queries, B acts as follows. To produce

a semi-functional key for an attribute set S, it chooses random values t̃1, t̃2, γ ∈

Zp. It implicitly sets t1 = ηt̃1 and t2 = βt̃2. It forms the key as:

K =
(
gηb⃗

∗
1

)α̃1+t̃1 (
gβb⃗

∗
2

)α̃2+t̃2
gγb⃗

∗
3 ,

57

Ki =
(
gηb⃗

∗
1,i

)t̃1 (
gη⃗b

∗
2,i

)t̃1 (
gβb⃗

∗
3,i

)t̃2 (
gβb⃗

∗
4,i

)t̃2
∀i ∈ S.

In this way, B produces properly distributed semi-functional keys in response

to the first k − 1 key requests. We note that B can similarly produce normal

keys in response to key requests k + 1 and onward using the same procedure

except leaving off gγb⃗
∗
3 from K.

To create the kth key for some attribute set S, B proceeds as follows.

It implicitly sets t1 = ητ1 and t2 = βτ2. The key is formed as:

K =
(
gηb⃗

∗
1

)α̃1
(
gβb⃗

∗
2

)α̃2

T1,

Ki = T1,iT2,i ∀i ∈ S.

If the exponents of the T terms here do not include the τ3 terms, then this is

a properly distributed normal key. If they do include the τ3 terms, then this

is a temporary semi-functional key with γ = t3 = τ3. (In other words, the

simulator is producing a nominal semi-functional key.)

To create the semi-functional ciphertext for some n × ℓ access matrix

(A, ρ), B chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp for each j from 1 to ℓ. It also

chooses a random vector v ∈ Zn
p with first entry equal to 1, and random vectors

ṽ1, ṽ2 ∈ Zn
p with first entries equal to 0. It implicitly sets s1 = µ1, s2 = µ2,

s3 = µ3, v1 = s1v+ ṽ1, v2 = s2v+ ṽ2, v3 = s3v, r
1
j = µ1r̃

3
j + r̃1j , r

2
j = µ2r̃

3
j + r̃2j ,

and r3j = µ3r̃
3
j . We note that these values are properly distributed. The

ciphertext is formed as:

M ′ =Mbe3(U1, g
ηb⃗∗1)α̃1e3(U1, g

βb⃗∗2)α̃2 , C = U1,

58

Cj =
(
gb⃗1,ρ(j)

)Aj ·ṽ1+r̃1j
(
gb⃗2,ρ(j)

)−r̃1j
(
gb⃗3,ρ(j)

)Aj ·ṽ2+r̃2j
(
gb⃗4,ρ(j)

)−r̃2j
U

Aj ·v+r̃3j
1,ρ(j) U

−r̃3j
2,ρ(j),

for all j from 1 to ℓ.

Now we must argue that in A’s view, the kth key is properly distributed

as a temporary semi-functional key (i.e. nominality is hidden). In other words,

we must argue that the correlation γ = t3 that is present in B’s view is

information-theoretically hidden from A. To see this, we consider the values

of j ∈ [ℓ] in the ciphertext for which ρ(j) is not in the attribute set S for the

kth key. For these attributes, the corresponding basis vectors b⃗∗5,ρ(j), b⃗
∗
6,ρ(j) for

the semi-functional space on the key side are never revealed to A, as they are

not involved in any of the keys that A receives. This means that the ciphertext

exponent vector (Aj ·s3v+r3j)⃗b5,ρ(j)−r3j b⃗6,ρ(j) is distributed independently of the

share value, Aj · s3v. This is because when b⃗∗5,ρ(j), b⃗∗6,ρ(j) are not revealed, there

is ambiguity as to what b⃗5,ρ(j) and b⃗6,ρ(j) are - in particular, for any possible

choices of b⃗5,ρ(j) and b⃗6,ρ(j), multiplying each by arbitrary scalars yields an

alternate choice that is equally likely in A’s view (this is a particular case of

Lemma 2). Thus, no information about Aj · s3v can be learned for the values

of j such that ρ(j) /∈ S. It is important to note here that we are relying on

the restriction that ρ is an injective map from rows to attributes - if the same

bases vectors b⃗5,ρ(j), b⃗6,ρ(j) appeared repeatedly, then they would not provide

fresh randomness to hide each share value.

We then observe that if one only has the values of Aj ·s3v for j such that

ρ(j) ∈ S, then these shares reveal no information about s3, since they do not

59

correspond to a satisfying set. More precisely, the fact that S does not satisfy

the access matrix implies that there exists some vector w ∈ Zn
p such that w’s

first entry is 1 and w is orthogonal modulo p to all of the rows Aj such that

ρ(j) ∈ S. Then s3v can be written as s3w + v′, where v′ has first coordinate

equal to 0 and is distributed independently of s3. Since the distribution of the

shares Aj · s3v for ρ(j) in S then only depends on v′ and not on s3, s3 remains

information-theoretically hidden.

Thus, only the distribution of C in the challenge ciphertext depends

on s3: this means that only a random multiple of b⃗3 is revealed, and hence

t3⃗b
∗
3 is distributed as a random multiple of b⃗∗3, even though t3 is not random.

The randomness here comes from the ambiguity in the choice of b⃗3, b⃗
∗
3: for any

possible choice of these vectors, multiplying one by any nonzero scalar σ and

the other by σ−1 yields an equally likely choice.

Thus, when the τ3 terms are absent, B properly simulates Gamek−1,

and when the τ3 terms are present, B properly simulates GameTk . As a result,

B can leverage A’s non-negligible difference in advantage between these games

to gain a non-negligible advantage against the subspace assumption.

Lemma 16. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between GameTk and Gamek

for any k from 1 to Q.

Proof. This is nearly identical to the proof of the previous lemma, except that

60

the simulator B will choose a random γ̃ ∈ Zp and multiply (gb⃗
∗
3)γ̃ into K

when creating the kth key. This ensures that this key is properly distributed

as a temporary semi-functional key when the τ3 terms are present and prop-

erly distributed as a semi-functional key when they are not. Note that the

information-theoretic argument made in the previous proof is no longer needed

here.

Lemma 17. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between GameQ and Gamefinal.

Proof. Given a PPT attacker A achieving a non-negligible difference in ad-

vantage between GameQ and Gamefinal, we will create a PPT algorithm B to

break the subspace assumption. We will employ the subspace assumption with

parameters m = U+ 1, ni = 3, ki = 1 for one value of i, and ni = 6, ki = 2 for

the rest of the values of i. To coincide with our notation for the construction,

we will denote the bases involved in the assumption by (B,B∗) ∈ Dual(Z3
p)

and (B1,B∗
1), . . . , (BU,B∗

U) ∈ Dual(Z6
p). B is given (we will ignore µ3, g

η, gβ,

gητ1 , gβτ2 , and {T1,i, T2,i}i∈[U] because they will not be needed):

G, p, g, gb⃗1 , gb⃗2 , {gb⃗1,i , . . . , gb⃗4,i}i∈[U],

gηb⃗
∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , {gη⃗b∗1,i , gηb⃗∗2,i , gβb⃗∗3,i , gβb⃗∗4,i , gb⃗∗5,i , gb⃗∗6,i}i∈[U],

U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 ,

{U1,i = gµ1b⃗1,i+µ2b⃗3,i+µ3b⃗5,i , U2,i = gµ1b⃗2,i+µ2b⃗4,i+µ3b⃗6,i}i∈[U], T1.

61

The exponent of the unknown term T1 is distributed either as τ1η⃗b
∗
1 + τ2βb⃗

∗
2,

or as τ1η⃗b
∗
1 + τ2βb⃗

∗
2 + τ3⃗b

∗
3. It is B’s task to determine if this τ3 contribution is

present or not.

B sets (B,B∗), {(Bi,B∗
i)} as the bases for the construction. It will

implicitly set α1 = ητ1 and α2 = βτ2. It forms e(g, g)α1 as e3(T1, g
b⃗1) and

e(g, g)α2 as e3(T1, g
b⃗2). It gives the public parameters to A.

To create a semi-functional key for an attribute set S, B proceeds as

follows. It chooses random values t̃1, t̃2, γ̃ ∈ Zp. It implicitly sets t1 = ηt̃1 and

t2 = βt̃2. It creates the key as:

K = T1

(
gη⃗b

∗
1

)t̃1 (
gβb⃗

∗
2

)t̃2 (
gb⃗

∗
3

)γ̃
,

Ki =
(
gηb⃗

∗
1,i

)t̃1 (
gη⃗b

∗
2,i

)t̃1 (
gβb⃗

∗
3,i

)t̃2 (
gβb⃗

∗
4,i

)t̃2
∀i ∈ S.

We note that the multiple of b⃗∗3 appearing in the exponent of K is either equal

to γ̃ or γ̃ + τ3, depending on the nature of T1. Either way, this is a properly

distributed semi-functional key (whose distribution is independent of τ3 even

if it is present).

To create the semi-functional ciphertext for some n × ℓ access matrix

(A, ρ), B can use the same procedure employed in the proof of Lemma 15 to

use the U terms to provide the semi-functional components. We repeat the

description of this procedure below for the reader’s convenience. The only

difference here comes in computing the blinding factor for M ′.

B chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp for each j from 1 to ℓ. It also

chooses a random vector v ∈ Zn
p with first entry equal to 1, and random vectors

62

ṽ1, ṽ2 ∈ Zn
p with first entries equal to 0. It implicitly sets s1 = µ1, s2 = µ2,

s3 = µ3, v1 = s1v+ ṽ1, v2 = s2v+ ṽ2, v3 = s3v, r
1
j = µ1r̃

3
j + r̃1j , r

2
j = µ2r̃

3
j + r̃2j ,

and r3j = µ3r̃
3
j . We note that these values are properly distributed. The

ciphertext is formed as:

M ′ =Mbe3(U1, T1), C = U1,

Cj =
(
gb⃗1,ρ(j)

)Aj ·ṽ1+r̃1j
(
gb⃗2,ρ(j)

)−r̃1j
(
gb⃗3,ρ(j)

)Aj ·ṽ2+r̃2j
(
gb⃗4,ρ(j)

)−r̃2j
U

Aj ·v+r̃3j
1,ρ(j) U

−r̃3j
2,ρ(j),

for all j from 1 to ℓ.

If the exponent of T1 is equal to τ1η⃗b
∗
1+τ2βb⃗

∗
2, then we have e3(U1, T1) =

e(g, g)(α1s1+α2s2), and hence we have a properly distributed semi-functional en-

cryption ofMb, as required in GameQ. If instead the exponent of T1 is equal to

τ1η⃗b
∗
1 + τ2βb⃗

∗
2 + τ3⃗b

∗
3, then we have e3(U1, T1) = e(g, g)(α1s1+α2s2+µ3τ3). Since τ3

is random (and independent of the semi-functional keys and the rest of the ci-

phertext), this blinding factor is distributed as a freshly random group element

of GT (note that µ3 is nonzero with all but negligible probability). Therefore

the ciphertext is distributed as a semi-functional encryption of a random mes-

sage, as required in Gamefinal. Thus, B can leverage A’s non-negligible differ-

ence in advantage between these games to achieve a non-negligible advantage

against the subspace assumption.

Combining Lemmas 4, 14, 15, 16, and 17, Theorem 12 follows.

63

Chapter 6

An Unrestricted CP-ABE System

We now present a CP-ABE scheme that is proven fully secure without

placing any restrictions on the reuse of attributes, retaining the efficiency of

prior selectively secure schemes. Our proof strategy combines the dual system

encryption methodology developed above with the selective security techniques

for KP-ABE and CP-ABE systems in [39] and [69] respectively. We still rely

on the decisional linear assumption to execute our dual system encryption

methodology, but we will also inherit additional kinds of assumptions from

the methodologies in [39, 69]. We state our additional assumptions formally

below.

6.1 Additional Complexity Assumptions

The arguments in [39, 69] relied on assumptions very close to those we

state below, with the main difference being that the assumptions in [39, 69]

have challenge terms in the target group GT while we will have challenge terms

in the source group G. This is because the selective security arguments can

afford to deal with all keys at once, and hence can use an assumption with a

challenge in the target group to change the ciphertext to an encryption of a

64

random message. This kind of change simultaneously affects the interaction

of the ciphertext with all keys. In our hybrid framework, we handle keys

individually, and hence we use an assumption with a challenge in the source

group to change the nature of individual keys one at a time, saving our progress

incrementally until we arrive at the final step and can afford to change to an

encryption of a random message. One could alternatively handle the Phase II

queries all at once using an assumption with a challenge in the target group,

but we prefer to address the two key query phases symmetrically.

We first introduce the Three Party Diffie-Hellman Assumption. This is

a close relative of the standard Decisional Bilinear Diffie-Hellman Assumption,

but it has a challenge term remaining in the source group. This adjustment

from the usual DBDH assumption allows us to use our assumption in the semi-

functional space for a particular key - without affecting the ciphertext or the

other keys.

The Three Party Diffie-Hellman Assumption Given a group generator

G, we define the following distribution:

G = (p,G,GT , e)
R←− G,

g
R←− G, x, y, z

R←− Zp,

D = (G, g, gx, gy, gz),

T0 = gxyz, T1
R←− G.

65

We define the advantage of an algorithm A in breaking this assumption to be:

Adv3DH
G,A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣.

We say that G satisfies the Three Party Diffie-Hellman Assumption ifAdv3DH
G,A (λ)

is a negligible function of λ for any PPT algorithm A.

We next introduce a q-type assumption that we call the Source Group q-

Parallel BDHE Assumption. This is a close relative of the Decisional q-Parallel

Bilinear Diffie-Hellman Exponent Assumption introduced in [69], except that

its challenge term remains in the source group. In Appendix 1, we prove that

this assumption holds in the generic group model. Below, we use the notation

[q], for example, to denote the set {1, 2, . . . , q}.

The Source Group q-Parallel BDHE Assumption Given a group gen-

erator G and a positive integer q, we define the following distribution:

G = (p,G,GT , e)
R←− G,

g
R←− G, c, d, f, b1, . . . , bq

R←− Zp,

The adversary will be given:

D = (G, g, gf , gdf , gc, gc2 , . . . , gcq , gcq+2

, . . . , gc
2q

,

gc
i/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

gdfbj ∀j ∈ [q], gdfc
ibj′/bj ∀i ∈ [q], j, j′ ∈ [q] s.t. j ̸= j′).

We additionally define

T0 = gdc
q+1

, T1
R←− G.

66

We define the advantage of an algorithm A in breaking this assumption to be:

AdvqG,A(λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that G satisfies the Source Group q-Parallel BDHE Assumption if

AdvqG,A is a negligible function of λ for any PPT algorithm A.

6.2 Construction

This closely resembles the scheme from the previous section, but with

one extra tuple of group elements for each key and ciphertext. This extra

term is helpful in performing a cancelation during our security proof (when

we are dealing with Phase II queries). We again assume that messages to

be encrypted are elements of the target group GT and we allow linear secret

sharing schemes, represented by access matrices (A, ρ), as access structures.

As before, we let the attribute universe be {1, 2, . . . ,U}, where U is polynomial

in the security parameter.

Setup(λ,U) → PP,MSK The setup algorithm chooses a bilinear group G

of prime order p and a generator g. It randomly chooses two pairs of dual

orthonormal bases (B,B∗), (B0,B∗
0) of dimension 3 and U pairs of dual or-

thonormal bases (B1,B∗
1), . . . , (BU,B∗

U) of dimension 6. We let b⃗i, b⃗
∗
i denote the

basis vectors belonging to (B,B∗), and b⃗i,j, b⃗
∗
i,j denote the basis vectors belong-

ing to (Bj,B∗
j) for each j from 0 to U. The setup algorithm also chooses two

67

random exponents α1, α2 ∈ Zp. The public parameters consist of:

PP := {G, p, gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , gb⃗1,i , . . . , gb⃗4,i ∀i ∈ [U], e(g, g)α1 , e(g, g)α2}.

The master secret key additionally contains:

MSK := {gα1b⃗∗1 , gα2b⃗∗2 , gb⃗
∗
1 , gb⃗

∗
2 , gb⃗

∗
1,0 , gb⃗

∗
2,0 , gb⃗

∗
1,i , . . . , gb⃗

∗
4,i ∀i ∈ [U] }.

KeyGen(MSK, S,PP)→ SK The key generation algorithm chooses random

exponents t1, t2, u1, u2 ∈ Zp and computes:

K := g(α1+t1+u1)⃗b∗1+(α2+t2+u2)⃗b∗2 ,

K0 := gu1b⃗∗1,0+u2b⃗∗2,0 ,

Ki := gt1b⃗
∗
1,i+t1b⃗∗2,i+t2b⃗∗3,i+t2b⃗∗4,i ∀i ∈ S.

The secret key is (it additionally includes S)

SK := {K, K0, {Ki}i∈S}.

Encrypt((A, ρ),PP,M) → CT We assume M ∈ GT , A is an ℓ × n ma-

trix, and ρ is map from each row Aj of A to an attribute ρ(j) (the index

j ranges from 1 to ℓ). The encryption algorithm chooses random exponents

s1, s2, {r1j , r2j}ℓj=1 ∈ Zp. It also chooses random vectors v1, v2 ∈ Zn
p with first

entries equal to s1 and s2 respectively. The ciphertext is formed as (it addi-

tionally includes (A, ρ)):

M ′ :=Me(g, g)α1s1e(g, g)α2s2 , C := gs1b⃗1+s2b⃗2 ,

68

C0 := gs1b⃗1,0+s2b⃗2,0 ,

Cj := g(Aj ·v1+r1j)⃗b1,ρ(j)−r1j b⃗2,ρ(j)+(Aj ·v2+r2j)⃗b3,ρ(j)−r2j b⃗4,ρ(j) ∀j = 1, . . . , ℓ.

Decrypt(CT,PP, SK)→ M The decryption algorithm computes constants

ωj ∈ Zp such that
∑

ρ(j)∈S ωjAj = (1, 0, . . . , 0). It computes:

X :=
∏

ρ(j)∈S

e6(Cj, Kρ(j))
ωj

It then computes:

Y := e3(K,C)/e3(K0, C0).

The message is recovered as:

M =M ′X/Y.

Correctness We observe that for each j,

e6(Cj, Kρ(j)) = e(g, g)(t1Aj ·v1+t2Aj ·v2).

Thus,

X :=
∏

ρ(j)∈S

e6(Cj, Kρ(j))
ωj = e(g, g)(t1

∑
ρ(j)∈S ωjAj ·v1+t2

∑
ρ(j)∈S ωjAj ·v2) = e(g, g)(t1s1+t2s2).

We note that

Y = e(g, g)(s1(α1+t1+u1)+s2(α2+t2+u2))/e(g, g)(s1u1+s2u2) = e(g, g)(s1(α1+t1)+s2(α2+t2)),

and therefore:

M ′X/Y =Me(g, g)(s1α1+s2α2)e(g, g)(t1s1+t2s2)/e(g, g)(s1(α1+t1)+s2(α2+t2)) =M.

69

6.3 Security Proof

We now prove:

Theorem 18. Under the decisional linear assumption, the three party Diffie-

Hellman assumption, and the source group q-parallel BDHE assumption de-

fined in Section 6.1, the CP-ABE system presented in Section 6.2 is fully secure

in the sense of Definition 8.

We begin by defining our various types of semi-functional keys and

ciphertexts. The semi-functional space in the exponent will correspond to the

span of b⃗3, b⃗
∗
3, the span of b⃗3,0, b⃗

∗
3,0, and the span of each b⃗5,i, b⃗6,i, b⃗

∗
5,i, b⃗

∗
6,i.

Semi-functional Keys To produce a semi-functional key for an attribute

set S, one first calls the normal key generation algorithm to produce a normal

key consisting of K,K0, {Ki}i∈S. One then chooses a random value γ ∈ Zp

and multiplies K by gγb⃗
∗
3 . The other components of the key remain unchanged.

Semi-functional Ciphertexts To produce a semi-functional ciphertext for

an LSSS matrix (A, ρ), one first calls the normal encryption algorithm to

produce a normal ciphertext consisting of M ′, C, C0, {Cj}. One then chooses

random values s3, {r3j} ∈ Zp and a random vector v3 ∈ Zn
p with first entry

equal to s3. The semi-functional ciphertext is:

M ′, Cgs3b⃗3 , C0g
s3b⃗3,0 , Cjg

(Aj ·v3+r3j)⃗b5,ρ(j)−r3j b⃗6,ρ(j) ∀j = 1, . . . , ℓ.

70

Nominal Semi-functional Keys To produce a nominal semi-functional

key for an attribute set S, one first calls the normal key generation algorithm to

produce a normal key consisting of K,K0, {Ki}i∈S. One then chooses random

values t3, u3 ∈ Zp. The nominal semi-functional key is:

Kg(t3+u3)⃗b∗3 , K0g
u3b⃗∗3,0 , Kig

t3b⃗∗5,i+t3b⃗∗6,i ∀i ∈ S.

We note that a nominal semi-functional key still correctly decrypts a semi-

functional ciphertext.

Temporary Semi-functional Keys A temporary semi-functional key is

similar to a nominal key, except that the semi-functional component attached

to K will now be randomized (this will prevent correct decryption of a semi-

functional ciphertext). More formally, to produce a temporary semi-functional

key for an attribute set S, one first calls the normal key generation algorithm to

produce a normal key consisting of K,K0, {Ki}i∈S. One then chooses random

values t3, u3, γ ∈ Zp. The temporary semi-functional key is formed as:

Kgγb⃗
∗
3 , K0g

u3b⃗∗3,0 , Kig
t3b⃗∗5,i+t3b⃗∗6,i ∀i ∈ S.

We let Gamereal denote the real security game. We let Q1 denote the

number of Phase I key queries the attacker makes, Q2 denote the number of

Phase II queries, and Q = Q1 + Q2 denote the total number of queries. For

each k from 1 to Q, we define the following additional games:

71

Gamek In this game, the ciphertext given to the attacker is semi-functional,

as are the first k keys. The remaining keys are normal.

GameNk This is like Gamek, except that the k
th key given to the attacker is

a nominal semi-functional key. The first k− 1 keys are still semi-functional in

the original sense, while the remaining keys are normal.

GameTk This is like Gamek, except that the k
th key given to the attacker is

a temporary semi-functional key. The first k− 1 keys are still semi-functional

in the original sense, while the remaining keys are normal.

Lastly, we define Gamefinal to be like GameQ (i.e. everything the at-

tacker receives is semi-functional), except that the ciphertext is now a semi-

functional encryption of a random message. In this final game, any attacker

has advantage 0, since its view is distributed independently of the bit that it

must guess.

The outer structure of our hybrid argument will progress as follows.

First, we transition from Gamereal to Game0, then to Game1, next to Game2,

and so on. We ultimately arrive at GameQ, where the ciphertext and all

of the keys given to the attacker are semi-functional. We then transition to

Gamefinal.

The transitions from Gamereal to Game0 and from GameQ to Gamefinal

are relatively easy, and can be accomplished directly via a computational as-

sumption. The transitions from Gamek−1 to Gamek require more intricate

72

arguments. In order to get from Gamek−1 to Gamek in our hybrid argument,

we will transition first from Gamek−1 to GameNk , then to GameTk , and finally

to Gamek. The transition from GameNk to GameTk will require different com-

putational assumptions for Phase I and Phase II key queries. We let Q1 denote

the number of Phase I queries, and we will address this transition separately

for k ≤ Q1 and k > Q1. Our handling of Phase I queries will closely resemble

the selective security proof strategy for KP-ABE in [39], while our handling of

Phase II queries will closely resemble the selective security proof strategy for

CP-ABE in [69].

The hybrid security proof is accomplished in the following lemmas.

Lemma 19. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between Gamereal and Game0.

Proof. Given a PPT attacker A achieving a non-negligible difference in ad-

vantage between Gamereal and Game0, we will create a PPT algorithm B to

break the subspace assumption. We will employ the subspace assumption with

parameters m = U+2, ni = 3, ki = 1 for two values of i, and ni = 6, ki = 2 for

the rest of the values of i. In order to reconcile the notation of the assumption

with the notation of our construction as conveniently as possible, we will de-

note the bases involved in the assumption by (D,D∗), (D0,D∗
0) ∈ Dual(Z3

p) and

(D1,D∗
1), . . . , (DU,D∗

U) ∈ Dual(Z6
p). B is given (we will ignore the U terms, gη,

gβ, gητ1 , gβτ2 , and µ3 because they will not be needed):

G, p, g, gd⃗1 , gd⃗2 , gd⃗1,0 , gd⃗2,0 , {gd⃗1,i , . . . , gd⃗4,i}i∈[U],

73

gηd⃗
∗
1 , gβd⃗

∗
2 , gd⃗

∗
3 , gηd⃗

∗
1,0 , gβd⃗

∗
2,0 , gd⃗

∗
3,0 , {gηd⃗∗1,i , gηd⃗∗2,i , gβd⃗∗3,i , gβd⃗∗4,i , gd⃗∗5,i , gd⃗∗6,i}i∈[U],

T1, T1,0, {T1,i, T2,i}i∈[U].

The exponents of the unknown terms T1, T1,0 are distributed either as τ1ηd⃗
∗
1 +

τ2βd⃗
∗
2 and τ1ηd⃗

∗
1,0+τ2βd⃗

∗
2,0 respectively, or as τ1ηd⃗

∗
1+τ2βd⃗

∗
2+τ3d⃗

∗
3 and τ1ηd⃗

∗
1,0+

τ2βd⃗
∗
2,0 + τ3d⃗

∗
3,0 respectively. Similarly, the exponents of the unknown terms

T1,i, T2,i are distributed either as τ1ηd⃗
∗
1,i + τ2βd⃗

∗
3,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i respec-

tively, or as τ1ηd⃗
∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i respectively.

It is B’s task to determine if these τ3 contributions are present or not.

B implicitly sets the bases for the construction as:

b⃗1 = ηd⃗∗1, b⃗2 = βd⃗∗2, b⃗3 = d⃗∗3, b⃗
∗
1 = η−1d⃗1, b⃗

∗
2 = β−1d⃗2, b⃗

∗
3 = d⃗3,

b⃗1,0 = ηd⃗∗1,0, b⃗2,0 = βd⃗∗2,0, b⃗3,0 = d⃗∗3,0, b⃗
∗
1,0 = η−1d⃗1,0, b⃗

∗
2,0 = β−1d⃗2,0, b⃗

∗
3,0 = d⃗3,0,

b⃗1,i = ηd⃗∗1,i, b⃗2,i = ηd⃗∗2,i, b⃗3,i = βd⃗∗3,i, b⃗4,i = βd⃗∗4,i, b⃗5,i = d⃗∗5,i, b⃗6,i = d⃗∗6,i ∀i,

b⃗∗1,i = η−1d⃗1,i, b⃗
∗
2,i = η−1d⃗2,i, b⃗

∗
3,i = β−1d⃗3,i, b⃗

∗
4,i = β−1d⃗4,i, b⃗

∗
5,i = d⃗5,i, b⃗

∗
6,i = d⃗6,i ∀i.

We note that these are properly distributed because (D,D∗), (D0,D∗
0), etc. are

randomly chosen.

B can use the terms given in the assumption to produce gb⃗1 , gb⃗2 , gb⃗1,0 ,

gb⃗2,0 , {gb⃗1,i , . . . , gb⃗4,i} for the public parameters. B chooses random values

α̃1, α̃2 ∈ Zp. It implicitly sets α1 = ηα̃1 and α2 = βα̃2. This allows it to

produce

e(g, g)α1 =
(
e3(g

d⃗1 , gηd⃗
∗
1)
)α̃1

, e(g, g)α2 =
(
e3(g

d⃗2 , gβd⃗
∗
2)
)α̃2

.

74

B gives the public parameters to A.

To produce a normal key for an attribute set S, B proceeds as follows.

It chooses random values t̃1, t̃2, ũ1, ũ2 ∈ Zp. It implicitly sets t1 = ηt̃1, t2 = βt̃2,

u1 = ηũ1, u2 = βũ2. It forms the key as:

K = g(α1+t1+u1)⃗b∗1+(α2+t2+u2)⃗b∗2 =
(
gd⃗1
)α̃1+t̃1+ũ1

(
gd⃗2
)α̃2+t̃2+ũ2

,

K0 = gu1b⃗∗1,0+u2b⃗∗2,0 =
(
gd⃗1,0

)ũ1
(
gd⃗2,0

)ũ2

,

Ki = gt1b⃗
∗
1,i+t1b⃗∗2,i+t2b⃗∗3,i+t2b⃗∗4,i =

(
gd⃗1,i

)t̃1 (
gd⃗2,i

)t̃1 (
gd⃗3,i

)t̃2 (
gd⃗4,i

)t̃2
∀i ∈ S.

To produce the challenge ciphertext for an access matrix (A, ρ) of size

ℓ×n, B implicitly sets s1 = τ1 and s2 = τ2. It chooses a random vector v ∈ Zn
p

with first entry equal to 1. It also chooses random vectors ṽ1, ṽ2 ∈ Zn
p with

first entries equal to 0. It will implicitly set v1 = s1v + ṽ1 and v2 = s2v + ṽ2.

We note that these are properly distributed as independent, random vectors

with first entries equal to s1 and s2 respectively. For each j from 1 to ℓ, B

also chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp. It implicitly sets r1j = r̃3j τ1 + r̃1j ,

r2j = r̃3j τ2 + r̃2j . We note that these values are properly distributed because

r̃1j , r̃
2
j are random. The ciphertext is formed as:

M ′ = Mb

(
e3(g

d⃗1 , T1)
)α̃1

(
e3(g

d⃗2 , T1)
)α̃2

, C = T1, C0 = T1,0,

Cj =
(
T1,ρ(j)

)Aj ·v+r̃3j
(
T2,ρ(j)

)−r̃3j
(
gηd⃗

∗
1,ρ(j)

)Aj ·ṽ1+r̃1j

·
(
gηd⃗

∗
2,ρ(j)

)−r̃1j
(
gβd⃗

∗
3,ρ(j)

)Aj ·ṽ2+r̃2j
(
gβd⃗

∗
4,ρ(j)

)−r̃2j

for all j from 1 to ℓ.

75

If the exponents of the T terms do not include the τ3 terms, then the

exponent vector of C is s1⃗b1+ s2⃗b2, the exponent vector of C0 is s1⃗b1,0+ s2⃗b2,0,

and the exponent vector of Cj is:

= (Aj · τ1v + Aj · ṽ1 + τ1r̃
3
j + r̃1j)ηd⃗

∗
1,ρ(j) + (−τ1r̃3j − r̃1j)ηd⃗∗2,ρ(j)

+(Aj · τ2v + Aj · ṽ2 + τ2r̃
3
j + r̃2j)βd⃗

∗
3,ρ(j) + (−τ2r̃3j − r̃2j)βd⃗∗4,ρ(j)

= (Aj · v1 + r1j)⃗b1,ρ(j) − r1j b⃗2,ρ(j) + (Aj · v2 + r2j)⃗b3,ρ(j) − r2j b⃗4,ρ(j).

Thus we have a properly distributed normal ciphertext in this case.

If the exponents of the T terms do include the τ3 terms, then the

exponent vector of C is s1⃗b1 + s2⃗b2 + s3⃗b3, where s3 := τ3, the exponent vector

of C0 is s1⃗b1,0 + s2⃗b2,0 + s3⃗b3,0, and the exponent vector of each Cj is:

(Aj · v1 + r1j)⃗b1,ρ(j) − r1j b⃗2,ρ(j) + (Aj · v2 + r2j)⃗b3,ρ(j) − r2j b⃗4,ρ(j)

+(Aj · v + r̃3j)τ3⃗b5,ρ(j) − r̃3j τ3⃗b6,ρ(j).

This is a properly distributed semi-functional ciphertext with v3 = τ3v and

r3j = τ3r̃
j
3. (Note that these values are distributed randomly and independently

from v1, v2, r
1
j , r

2
j .)

Thus, when the τ3 terms are absent, B properly simulates Gamereal,

and when the τ3 terms are present, B properly simulates Game0. As a result,

B can leverage A’s non-negligible difference in advantage between these games

to gain a non-negligible advantage against the subspace assumption.

76

Lemma 20. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between Gamek−1 and GameNk

for any k from 1 to Q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advan-

tage between Gamek−1 and GameNk for some k, we will create a PPT algorithm

B to break the subspace assumption. We will employ the subspace assumption

with parametersm = U+2, ni = 3, ki = 1 for two values of i, and ni = 6, ki = 2

for the rest of the values of i. In order to reconcile the notation of the assump-

tion with the notation of our construction as conveniently as possible, we will

denote the bases involved in the assumption by (B,B∗), (B0,B∗
0) ∈ Dual(Z3

p)

and (B1,B∗
1), . . . , (BU,B∗

U) ∈ Dual(Z6
p). B is given (we will ignore gη, gβ, gητ1 ,

gβτ2 , and µ3 because they will not be needed):

G, p, g, gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , {gb⃗1,i , . . . , gb⃗4,i}i∈[U],

gη⃗b
∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , gηb⃗

∗
1,0 , gβb⃗

∗
2,0 , gb⃗

∗
3,0 , {gηb⃗∗1,i , gηb⃗∗2,i , gβb⃗∗3,i , gβb⃗∗4,i , gb⃗∗5,i , gb⃗∗6,i}i∈[U],

U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 , U1,0 = gµ1b⃗1,0+µ2b⃗2,0+µ3b⃗3,0 ,

{U1,i = gµ1b⃗1,i+µ2b⃗3,i+µ3b⃗5,i , U2,i = gµ1b⃗2,i+µ2b⃗4,i+µ3b⃗6,i}i∈[U],

T1, T1,0, {T1,i, T2,i}i∈[U].

The exponents of the unknown terms T1, T1,0 are distributed either as τ1η⃗b
∗
1 +

τ2βb⃗
∗
2 and τ1η⃗b

∗
1,0+ τ2βb⃗

∗
2,0 respectively, or as τ1η⃗b

∗
1+ τ2βb⃗

∗
2+ τ3⃗b

∗
3 and τ1η⃗b

∗
1,0+

τ2βb⃗
∗
2,0 + τ3⃗b

∗
3,0 respectively. Similarly, the exponents of the unknown terms

77

T1,i, T2,i are distributed either as τ1η⃗b
∗
1,i + τ2βb⃗

∗
3,i and τ1η⃗b

∗
2,i + τ2βb⃗

∗
4,i respec-

tively, or as τ1η⃗b
∗
1,i + τ2βb⃗

∗
3,i + τ3⃗b

∗
5,i and τ1η⃗b

∗
2,i + τ2βb⃗

∗
4,i + τ3⃗b

∗
6,i respectively. It

is B’s task to determine if these τ3 contributions are present or not.

B implicitly sets (B,B∗), (B0,B∗
0), {(Bi,B∗

i)} as the bases for the con-

struction. It chooses random values α̃1, α̃2 ∈ Zp and implicitly sets α1 = ηα̃1

and α2 = βα̃2. This allows it to compute e(g, g)α1 as e3(g
b⃗1 , gηb⃗

∗
1)α̃1 , and

e(g, g)α2 as e3(g
b⃗2 , gβb⃗

∗
2)α̃2 . B can thus produce the public parameters, and it

gives these to A.

To respond to A’s first k − 1 key queries, B acts as follows. To pro-

duce a semi-functional key for an attribute set S, it chooses random values

t̃1, t̃2, ũ1, ũ2, γ ∈ Zp. It implicitly sets t1 = ηt̃1, t2 = βt̃2, u1 = ηũ1, u2 = βũ2.

It forms the key as:

K =
(
gηb⃗

∗
1

)α̃1+t̃1+ũ1
(
gβb⃗

∗
2

)α̃2+t̃2+ũ2

gγb⃗
∗
3 ,

K0 =
(
gη⃗b

∗
1,0

)ũ1
(
gβb⃗

∗
2,0

)ũ2

,

Ki =
(
gηb⃗

∗
1,i

)t̃1 (
gη⃗b

∗
2,i

)t̃1 (
gβb⃗

∗
3,i

)t̃2 (
gβb⃗

∗
4,i

)t̃2
∀i ∈ S.

In this way, B produces properly distributed semi-functional keys in response

to the first k − 1 key requests. We note that B can similarly produce normal

keys in response to key requests k + 1 and onward using the same procedure

except leaving off gγb⃗
∗
3 from K.

To create the kth key for some attribute set S, B proceeds as follows.

It chooses random values ũ1, ũ2, ũ3 ∈ Zp. It implicitly sets t1 = ητ1, t2 = βτ2,

78

u1 = η(τ1ũ3 + ũ1), and u2 = β(τ2ũ3 + ũ2). We note that these values are

independently random because τ1, τ2, ũ1, ũ2 are independently random. The

key is formed as:

K =
(
gη⃗b

∗
1

)α̃1+ũ1
(
gβb⃗

∗
2

)α̃2+ũ2

T1(T1)
ũ3 ,

K0 =
(
gη⃗b

∗
1,0

)ũ1
(
gβb⃗

∗
2,0

)ũ2

T ũ3
1,0,

Ki = T1,iT2,i ∀i ∈ S.

If the exponents of the T terms here do not include the τ3 terms, then this is a

properly distributed normal key. If they do include the τ3 terms, then this is a

properly distributed nominal semi-functional key with t3 = τ3 and u3 = τ3ũ3.

(Note that these values are random and independent of t1, t2, u1, u2.)

To create the semi-functional ciphertext for some n × ℓ access matrix

(A, ρ), B chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp for each j from 1 to ℓ. It also

chooses a random vector v ∈ Zn
p with first entry equal to 1, and random vectors

ṽ1, ṽ2 ∈ Zn
p with first entries equal to 0. It implicitly sets s1 = µ1, s2 = µ2,

s3 = µ3, v1 = s1v+ ṽ1, v2 = s2v+ ṽ2, v3 = s3v, r
1
j = µ1r̃

3
j + r̃1j , r

2
j = µ2r̃

3
j + r̃2j ,

and r3j = µ3r̃
3
j . We note that these values are properly distributed. The

ciphertext is formed as:

M ′ =Mbe3(U1, g
ηb⃗∗1)α̃1e3(U1, g

βb⃗∗2)α̃2 , C = U1, C0 = U1,0,

Cj =
(
gb⃗1,ρ(j)

)Aj ·ṽ1+r̃1j
(
gb⃗2,ρ(j)

)−r̃1j
(
gb⃗3,ρ(j)

)Aj ·ṽ2+r̃2j
(
gb⃗4,ρ(j)

)−r̃2j
U

Aj ·v+r̃3j
1,ρ(j) U

−r̃3j
2,ρ(j),

for all j from 1 to ℓ.

79

Thus, when the τ3 terms are absent, B properly simulates Gamek−1,

and when the τ3 terms are present, B properly simulates GameNk . As a result,

B can leverage A’s non-negligible difference in advantage between these games

to gain a non-negligible advantage against the subspace assumption.

Lemma 21. Under the three party Diffie-Hellman assumption, no polynomial

time attacker can achieve a non-negligible difference in advantage between

GameNk and GameTk for any k from 1 to Q1 (recall these are all the Phase I

queries).

Proof. Given a PPT attacker A achieving a non-negligible difference in advan-

tage between GameNk and GameTk for some k between 1 and Q1, we will create

a PPT algorithm B to break the three party Diffie-Hellman assumption. B is

given g, gx, gy, gz, T , where T is either gxyz or a random element of G. B will

simulate either GameNk or GameTk with A depending on the nature of T .

B chooses random dual orthonormal bases (D,D∗), (D0,D∗
0) of dimen-

sion 3 and (D1,D∗
1), . . ., (DU,D∗

U) of dimension 6. It then implicitly sets (B,B∗)

and (B0,B∗
0) as follows:

b⃗1 = d⃗1, b⃗2 = d⃗2, b⃗3 = (xy)−1d⃗3, b⃗
∗
1 = d⃗∗1, b⃗

∗
2 = d⃗∗2, b⃗

∗
3 = xyd⃗∗3,

b⃗1,0 = d⃗1,0, b⃗2,0 = d⃗2,0, b⃗3,0 = (xy)−1d⃗3,0, b⃗
∗
1,0 = d⃗∗1,0, b⃗

∗
2,0 = d⃗∗2,0, d⃗

∗
3,0 = xyd⃗∗3,0.

We note (B,B∗) and (B0,B∗
0) are properly distributed.

B sets the normal portions of (B1,B∗
1), . . ., (BU,B∗

U) as follows:

b⃗1,i = d⃗1,i, b⃗2,i = d⃗2,i, b⃗3,i = d⃗3,i, b⃗4,i = d⃗4,i ∀i = 1, . . . ,U,

80

b⃗∗1,i = d⃗∗1,i, b⃗
∗
2,i = d⃗∗2,i, b⃗

∗
3,i = d⃗∗3,i, b⃗

∗
4,i = d⃗∗4,i ∀i = 1, . . . ,U.

The semi-functional portions of these bases will be set later (at which point

we may verify that all of (B1,B∗
1), . . ., (BU,B∗

U) are properly distributed).

B chooses α1, α2 ∈ Zp randomly. We observe that B can now produce

the public parameters, and also knows the master secret key (enabling it to

create normal keys). It gives the public parameters to A. To create the first

k − 1 semi-functional keys in response to A’s key requests, B first creates a

normal key, then raises gd⃗
∗
3 to a random exponent in Zp and multiplies this by

K. We are using here that B does not need to know gb⃗
∗
3 precisely in order to

create well-distributed semi-functional keys - it suffices for B to know gc⃗b
∗
3 for

some (nonzero) c ∈ Zp.

A requests the kth key for some attribute set S ⊂ [U]. At this point, B

implicitly defines the semi-functional parts of the bases (B1,B∗
1), . . ., (BU,B∗

U)

as follows (note that these have not been involved in the game before this):

b⃗5,i = x−1d⃗5,i, b⃗6,i = d⃗6,i b⃗
∗
5,i = xd⃗∗5,i, b⃗

∗
6,i = d⃗∗6,i ∀i /∈ S,

b⃗5,i = d⃗5,i, b⃗6,i = d⃗6,i, b⃗
∗
5,i = d⃗∗5,i, b⃗

∗
6,i = d⃗∗6,i ∀i ∈ S.

We observe that all of (B,B∗), (B0,B∗
0), (B1,B∗

1), . . ., (BU,B∗
U) are properly

distributed, and their distribution is independent of x, y, and S (the involve-

ment of x, y, and S is only present in B’s view and is information-theoretically

hidden from A, see Lemma 2).

To create the kth key, B first creates a normal key with components

K,K0, {Ki}i∈S. To create the semi-functional components, it chooses a ran-

81

dom value ũ3 and implicitly sets t3 = z, u3 = (xy)−1ũ3. It then forms the

semi-functional component for K0 as

gu3b⃗∗3,0 = gũ3d⃗∗3,0

and the semi-functional component for each Ki as

gt3b⃗
∗
5,i+t3b⃗∗6,i = (gz)d⃗

∗
5,i+d⃗∗6,i ∀i ∈ S.

It forms the semi-functional component for K as:

T d⃗∗3gũ3d⃗∗3 .

If T = gxyz, then the exponent vector here is xyzd⃗∗3 + ũ3d⃗
∗
3 = (z + u3)⃗b

∗
3, as

required for a nominal semi-functional key. Otherwise, this exponent vector

is distributed as a random multiple of b⃗∗3, as required for a temporary semi-

functional key. Bmultiplies these semi-functional components with the normal

K,K0, {Ki}i∈S to produce the key it gives to A. It can respond to the rest of

A’s key queries by calling the normal key generation algorithm.

At some later point, A requests the challenge ciphertext for some ℓ×n

access matrix (A, ρ) that is not satisfied by the attribute set S. B first creates

a normal ciphertext with components M ′, C, C0, {Cj}ℓj=1. To create the semi-

functional components, B first computes a vector ν ∈ Zn
p that has first entry

equal to 1 and is orthogonal to all of the rows Aj of A such that ρ(j) ∈ S (such

a vector must exist since S fails to satisfy A, and it is efficiently computable).

B also chooses a random vector ṽ3 ∈ Zn
p subject to the constraint that the

82

first entry is zero. It implicitly sets s3 = xy and sets v3 = xyν + xṽ3. We note

that s3 is random because all of the dual orthonormal bases are distributed

independently of x, y, and v3 is distributed as a random vector with first entry

equal to s3. B also chooses random values r3j ∈ Zp for all j such that ρ(j) ∈ S

and random values r̃3j ∈ Zp for all j such that ρ(j) /∈ S. For values of j

such that ρ(j) /∈ S, it implicitly sets r3j = xr̃3j . B can then produce the

semi-functional components of the ciphertext as:

gs3b⃗3 = gd⃗3 , gs3b⃗3,0 = gd⃗3,0 ,

g(Aj ·v3+r3j)⃗b5,ρ(j)−r3j b⃗6,ρ(j) = (gy)Aj ·νd⃗5,ρ(j) g(Aj ·ṽ3+r̃3j)d⃗5,ρ(j) (gx)−r̃3j d⃗6,ρ(j) ∀j s.t. ρ(j) /∈ S,

g(Aj ·v3+r3j)⃗b5,ρ(j)−r3j b⃗6,ρ(j) = (gx)Aj ·ṽ3d⃗5,ρ(j) gr
3
j d⃗5,ρ(j)−r3j d⃗6,ρ(j) ∀j s.t. ρ(j) ∈ S.

Here we have used the fact that Aj · ν = 0 modulo p to avoid needing to

produce a multiple of gxyd⃗5,ρ(j) for j such that ρ(j) ∈ S.

B multiplies these semi-functional components by the normal compo-

nents to form the semi-functional ciphertext, which it gives to A. If T = gxyz,

then B has properly simulated GameNK , and if T is a random group ele-

ment, then B has properly simulated GameTk . Thus, B can leverage A’s non-

negligible difference in advantage between these games to gain a non-negligible

advantage against the three party Diffie-Hellman assumption.

Lemma 22. Under the source group q-parallel BDHE assumption, no polyno-

mial time attacker can achieve a non-negligible difference in advantage between

GameNk and GameTk for a k > Q1 using an access matrix (A, ρ) of size ℓ × n

where ℓ, n ≤ q.

83

Proof. Given a PPT attacker A achieving a non-negligible difference in ad-

vantage between GameNk and GameTk for some k such that Q1 < k ≤ Q

using an access matrix with dimensions ≤ q, we will create a PPT algorithm

B to break the source group q-parallel BDHE assumption. Our B is given:

g, gf , gdf , gc
i ∀i ∈ [2q] \ {q + 1}, gci/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q], gdfbj ∀j ∈ [q],

gdfc
ibj′/bj ∀i ∈ [q], j, j′ ∈ [q] such that j ̸= j′, and T , where T is either equal to

gdc
q+1

or is a random element of G. B will simulate either GameNk or GameTk

with A, depending on T .

B chooses random dual orthonormal bases (D,D∗), (D0,D∗
0) of dimen-

sion 3 and (D1,D∗
1), . . ., (DU,D∗

U) of dimension 6. It then implicitly sets (B,B∗)

and (B0,B∗
0) as follows:

b⃗1 = d⃗1, b⃗2 = d⃗2, b⃗3 = (cd)−1d⃗3, b⃗
∗
1 = d⃗∗1, b⃗

∗
2 = d⃗∗2, b⃗

∗
3 = (cd)d⃗∗3,

b⃗1,0 = d⃗1,0, b⃗2,0 = d⃗2,0, b⃗3,0 = (c)−1d⃗3,0, b⃗
∗
1,0 = d⃗∗1,0, b⃗

∗
2,0 = d⃗∗2,0, b⃗

∗
3,0 = (c)d⃗∗3,0.

We note that (B,B∗) and (B0,B∗
0) are properly distributed.

B sets the normal portions of (B1,B∗
1), . . ., (BU,B∗

U) as follows:

b⃗1,i = d⃗1,i, b⃗2,i = d⃗2,i, b⃗3,i = d⃗3,i, b⃗4,i = d⃗4,i ∀i = 1, . . . ,U,

b⃗∗1,i = d⃗∗1,i, b⃗
∗
2,i = d⃗∗2,i, b⃗

∗
3,i = d⃗∗3,i, b⃗

∗
4,i = d⃗∗4,i ∀i = 1, . . . ,U.

The semi-functional portions of these bases will be set later (at which point

we may verify that all of (B1,B∗
1), . . ., (BU,B∗

U) are properly distributed).

B chooses α1, α2 ∈ Zp randomly. We observe that B can now produce

the public parameters, and also knows the master secret key (enabling it to

84

create normal keys). It gives the public parameters to A. To create the first

k − 1 semi-functional keys in response to A’s key requests, B first creates a

normal key, then raises gd⃗
∗
3 to a random exponent in Zp and multiplies this by

K. As in the proof of the previous lemma, we note here that B does not need

to know gb⃗
∗
3 precisely in order to create well-distributed semi-functional keys.

Before requesting the kth key, A will request the challenge ciphertext

for some access matrix (A, ρ) of size ℓ × n, where both ℓ, n ≤ q. For each

attribute i, we let Ji denote the set of indices j ∈ [ℓ] such that ρ(j) = i. For

each i, B chooses a random value η̃i and defines a value ηi ∈ Zp by

ηi = η̃i +
∑
j∈Ji

cAj,1/bj + . . .+ cnAj,n/bj.

At this point, B implicitly sets the semi-functional portions of the bases

(B1,B∗
1), . . ., (BU,B∗

U) as follows (note that these have played no role in the

game before this point):

b⃗5,i = d⃗5,i, b⃗6,i = η−1
i d⃗6,i b⃗

∗
5,i = d⃗∗5,i, b⃗

∗
6,i = ηid⃗

∗
6,i ∀i.

We observe that (B1,B∗
1), . . ., (BU,B∗

U) are properly distributed.

To create the challenge ciphertext, B first creates a normal ciphertext

using the normal encryption algorithm. To create the semi-functional compo-

nents, it implicitly sets s3 = cdf . It also chooses random values y2, . . . , yn ∈ Zp

and random values r̃3j ∈ Zp for each j ∈ [ℓ]. It implicitly sets v3 = (cdf, dfc2 +

y2, . . . , dfc
n + yn). This is distributed as a random vector with first entry

equal to s3. For each j ∈ [ℓ], B implicitly sets rj3 = −dfbjηρ(j) + r̃j3ηρ(j). These

85

are distributed as uniformly random elements because each r̃3j is random and

ηρ(j) ̸= 0 with all but negligible probability. We observe:

Aj · v3 + r3j = df(cAj,1 + c2Aj,2 + . . .+ cnAj,n) + Aj,2y2 + . . .+ Aj,nyn

−dfbj

η̃ρ(j) + ∑
j′∈Jρ(j)

cAj′,1/bj′ + . . .+ cnAj′,n/bj′

+ r̃3jηρ(j)

By definition, j ∈ Jρ(j), so we have some cancelation here:

Aj · v3 + r3j = Aj,2y2 + . . .+ Aj,nyn + r̃3jηρ(j)

−dfbj

η̃ρ(j) + ∑
j′∈Jρ(j)\{j}

cAj′,1/bj′ + . . .+ cnAj′n/bj′

 .

We now see that B can compute gAj ·v3+r3j using the terms it is given in the

assumption, enabling it to produce g(Aj ·v3+r3j)d⃗5,ρ(j) = g(Aj ·v3+r3j)⃗b5,i . We also see

that

−r3j b⃗6,ρ(j) = −r
j
3η

−1
ρ(j)d⃗6,i = (dfbj − r̃j3)d⃗6,i,

so B can also produce g−r3j b⃗6,ρ(j) . In this way, B produces the semi-functional

component of Cj for each j with the proper distribution.

B also produces the semi-functional components of C and C0 as:

gs3b⃗3 =
(
gf
)d⃗3

, gs3b⃗3,0 =
(
gdf
)d⃗3,0

.

It gives the resulting properly distributed semi-functional ciphertext to A.

At some later point in the game, A requests the kth key for some

attribute set S. B can create the normal parts of the key using the normal

key generation algorithm. To create the semi-functional parts, B proceeds as

86

follows. Since S does not satisfy (A, ρ), B can (efficiently) compute a vector

w ∈ Zn
p such that its first entry is non-zero and w is orthogonal (modulo

p) to all rows Aj of A such that ρ(j) ∈ S. We may assume the first entry

of w is randomized. B implicitly sets t3 = w1c
q + . . . + wnc

q−n+1, which

is properly distributed because w1 is random (and c is nonzero with all but

negligible probability). B also chooses a random value ũ3 and implicitly sets

u3 = −w2c
q−1− . . .−wnc

q−n+1+ fc−1ũ3. This is properly distributed because

ũ3 is random (and fc−1 is nonzero with all but negligible probability).

We observe that

(t3 + u3)⃗b
∗
3 = (w1dc

q+1 + dfũ3)d⃗
∗
3.

B forms the semi-functional part of K as: Tw1d⃗∗3
(
gdf
)ũ3d⃗∗3 . If T = gdc

q+1
, this

is equal to g(t3+u3)⃗b∗3 , as required for a nominal semi-functional key. Otherwise,

this exponent is distributed as a random multiple of b⃗∗3, as required for a

temporary semi-functional key. We also have

u3⃗b
∗
3,0 = (−w2c

q − . . .− wnc
q−n+2 + fũ3)d⃗

∗
3,0,

enabling B to produce gu3b⃗∗3,0 using the terms given in the assumption.

Now, B can also produce gt3 , and hence can compute gt3b⃗
∗
5,i = gt3d⃗

∗
5,i for

each i ∈ S. We observe

t3⃗b
∗
6,i = t3ηid⃗

∗
6,i,

and

t3ηi =
(
w1c

q + . . .+ wnc
q−n+1

)(
η̃i +

∑
j∈Ji

cAj,1/bj + . . .+ cnAj,n/bj

)
.

87

For each j ∈ Ji, we have ρ(j) = i. So for i ∈ S, we have Aj · w = 0 modulo p

for every j ∈ Ji. Thus, all of the terms involving cq+1 cancel, and we are left

with terms that can be created in the exponent from the group elements given

in the assumption (note that n ≤ q, so 2q is an upper bound on the powers of

c involved here). This shows that B can create gt3b⃗6,i for all i ∈ S, and hence

can produce properly distributed semi-functional components for each Ki of

the kth key.

B can respond to the rest of A’s key requests by producing normal keys

via the normal key generation algorithm. If T = gdc
q+1

, then B has properly

simulated GameNk . If T is distributed randomly, then B has properly simu-

lated GameTk . Thus, B can leverage A’s non-negligible difference in advantage

between these games to achieve a non-negligible advantage against the source

group q-parallel BDHE assumption.

Lemma 23. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between GameTk and Gamek

for any k from 1 to Q.

Proof. This proof is almost identical to the proof of Lemma 20, except that B

adds an additional term of gγb⃗
∗
3 to K for the kth key (where it chooses γ ∈ Zp

randomly). This ensures that when the τ3 terms are not present, the kth key

will be a properly distributed semi-functional key.

Lemma 24. Under the subspace assumption, no polynomial time attacker can

achieve a non-negligible difference in advantage between GameQ and Gamefinal.

88

Proof. Given a PPT attacker A achieving a non-negligible difference in ad-

vantage between GameQ and Gamefinal, we will create a PPT algorithm B

to break the subspace assumption. We will employ the subspace assump-

tion with parameters m = U + 2, ni = 3, ki = 1 for two values of i, and

ni = 6, ki = 2 for the rest of the values of i. To coincide with our nota-

tion for the construction, we will denote the bases involved in the assumption

by (B,B∗), (B0,B∗
0) ∈ Dual(Z3

p) and (B1,B∗
1), . . . , (BU,B∗

U) ∈ Dual(Z6
p). B is

given (we will ignore µ3, g
η, gβ, gητ1 , gβτ2 , and T1,0, {T1,i, T2,i}i∈[U] because they

will not be needed):

G, p, g, gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , {gb⃗1,i , . . . , gb⃗4,i}i∈[U],

gη⃗b
∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , gηb⃗

∗
1,0 , gβb⃗

∗
2,0 , gb⃗

∗
3,0 , {gηb⃗∗1,i , gηb⃗∗2,i , gβb⃗∗3,i , gβb⃗∗4,i , gb⃗∗5,i , gb⃗∗6,i}i∈[U],

U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 , U1,0 = gµ1b⃗1,0+µ2b⃗2,0+µ3b⃗3,0 ,

{U1,i = gµ1b⃗1,i+µ2b⃗3,i+µ3b⃗5,i , U2,i = gµ1b⃗2,i+µ2b⃗4,i+µ3b⃗6,i}i∈[U], T1.

The exponent of the unknown term T1 is distributed either as τ1η⃗b
∗
1 + τ2βb⃗

∗
2,

or as τ1η⃗b
∗
1 + τ2βb⃗

∗
2 + τ3⃗b

∗
3. It is B’s task to determine if this τ3 contribution is

present or not.

B sets (B,B∗), (B0,B∗
0), {(Bi,B∗

i)} as the bases for the construction. It

will implicitly set α1 = ητ1 and α2 = βτ2. It forms e(g, g)α1 as e3(T1, g
b⃗1) and

e(g, g)α2 as e3(T1, g
b⃗2). It gives the public parameters to A.

To create a semi-functional key for an attribute set S, B proceeds

as follows. It chooses random values t̃1, t̃2, ũ1, ũ2, γ̃ ∈ Zp. It implicitly sets

89

t1 = ηt̃1, t2 = βt̃2, u1 = ηũ1, and u2 = βũ2. It creates the key as:

K = T1

(
gη⃗b

∗
1

)t̃1+ũ1
(
gβb⃗

∗
2

)t̃2+ũ2
(
gb⃗

∗
3

)γ̃
,

K0 =
(
gη⃗b

∗
1,0

)ũ1
(
gβb⃗

∗
2,0

)ũ2

,

Ki =
(
gηb⃗

∗
1,i

)t̃1 (
gη⃗b

∗
2,i

)t̃1 (
gβb⃗

∗
3,i

)t̃2 (
gβb⃗

∗
4,i

)t̃2
∀i ∈ S.

We note that the multiple of b⃗∗3 appearing in the exponent of K is either equal

to γ̃ or γ̃ + τ3, depending on the nature of T1. Either way, this is a properly

distributed semi-functional key (whose distribution is independent of τ3 even

if it is present).

To create the semi-functional ciphertext for some n × ℓ access matrix

(A, ρ), B can use the same procedure employed in the proof of Lemma 20 to

use the U terms to provide the semi-functional components. We repeat the

description of this procedure below for the reader’s convenience. The only

difference here comes in computing the blinding factor for M ′.

B chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp for each j from 1 to ℓ. It also

chooses a random vector v ∈ Zn
p with first entry equal to 1, and random vectors

ṽ1, ṽ2 ∈ Zn
p with first entries equal to 0. It implicitly sets s1 = µ1, s2 = µ2,

s3 = µ3, v1 = s1v+ ṽ1, v2 = s2v+ ṽ2, v3 = s3v, r
1
j = µ1r̃

3
j + r̃1j , r

2
j = µ2r̃

3
j + r̃2j ,

and r3j = µ3r̃
3
j . We note that these values are properly distributed. The

ciphertext is formed as:

M ′ =Mbe3(U1, T1), C = U1, C0 = U1,0,

Cj =
(
gb⃗1,ρ(j)

)Aj ·ṽ1+r̃1j
(
gb⃗2,ρ(j)

)−r̃1j
(
gb⃗3,ρ(j)

)Aj ·ṽ2+r̃2j
(
gb⃗4,ρ(j)

)−r̃2j
U

Aj ·v+r̃3j
1,ρ(j) U

−r̃3j
2,ρ(j),

90

for all j from 1 to ℓ.

If the exponent of T1 is equal to τ1η⃗b
∗
1 + τ2βb⃗

∗
2, then we have

e3(U1, T1) = e(g, g)(α1s1+α2s2),

and hence we have a properly distributed semi-functional encryption ofMb, as

required in GameQ. If instead the exponent of T1 is equal to τ1η⃗b
∗
1+τ2βb⃗

∗
2+τ3⃗b

∗
3,

then we have

e3(U1, T1) = e(g, g)(α1s1+α2s2+µ3τ3).

Since τ3 is random (and independent of the semi-functional keys and the

rest of the ciphertext), this blinding factor is distributed as a freshly ran-

dom group element of GT (note that µ3 is nonzero with all but negligible

probability). Therefore the ciphertext is distributed as a semi-functional en-

cryption of a random message, as required in Gamefinal. Thus, B can leverage

A’s non-negligible difference in advantage between these games to achieve a

non-negligible advantage against the subspace assumption.

Combining Lemmas 4 and 19 - 24, Theorem 18 follows.

91

Chapter 7

A Multi-Authority CP-ABE System

We now present a multi-authority attribute-based encryption system.

In our system, any party can become an authority and there is no require-

ment for any global coordination other than the creation of an initial set of

common reference parameters. A party can simply act as an authority by cre-

ating a public key and issuing private keys to different users that reflect their

attributes. Different authorities need not even be aware of each other. We

use the Chase [22] concept of global identifiers to “link” private keys together

that were issued to the same user by different authorities. A user can encrypt

data in terms of any LSSS matrix over attributes issued from any chosen set

of authorities.

Finally, our system does not require any central authority. We thus

avoid the performance bottleneck incurred by relying on a central authority,

which makes our system more scalable. We also avoid placing absolute trust in

a single designated entity which must remain active and uncorrupted through-

out the lifetime of the system. This is a crucial improvement for efficiency

as well as security, since even a central authority that remains uncorrupted

may occasionally fail for benign reasons, and a system that constantly relies

92

on its participation will be forced to remain stagnant until it can be restored.

In our system, authorities can function entirely independently, and the failure

or corruption of some authorities will not affect the operation of functioning,

uncorrupted authorities. This makes our system more robust than previous

approaches.

Remark 25. The original version of this scheme in [51] was constructed in com-

posite order bilinear groups, and as a result it required the common reference

parameters to be created during a trusted setup. This was needed in order for

the factorization of the group order to remain secret. Translating the system

into prime order groups using the DPVS framework avoids this feature. This

was first observed by Okamoto and Takashima, who also provide a prime order

analog of our multi-authority scheme in [61].

Challenges and Our Techniques In the multi-authority setting, we want

to satisfy the simultaneous goals of autonomous key generation and collusion

resistance. The requirement of autonomous key generation means that estab-

lished techniques for key randomization cannot be applied since there is no

one party to compile all the pieces together. Furthermore, in our system each

component may come from a different authority, where such authorities have

no coordination and are possibly not even aware of each other and there is no

preset access structure.1

1Prior works [22, 23] assumed coordination ahead of time between different authorities
and required a limited access structure.

93

In constructing our system, our central technical hurdle is to make it

collusion resistant. Our single authority ABE systems above achieved collusion

resistance when the ABE system authority “tied” together different compo-

nents (representing different attributes) of a user’s private key by randomizing

the key. Such randomization would make the different key components com-

patible with each other, but not with the parts of a key issued to another

user.

To replace this, we develop a novel technique for tying a user’s key com-

ponents together and preventing collusion attacks between users with different

global identifiers. At a high level, instead of relying on one key generation call

to tie all key components together, we will use a hash function on the user’s

global identity, GID, to manage collusion resistance across multiple key gen-

erations issued by different authorities.

In our system, we define a hash function H (modeled as a random or-

acle) that hashes each identity to a pair of (bilinear) group elements. We will

use the group elements output from the hash function H(GID) as the linchpin

to tie keys together. Our main idea is to structure the decryption mechanism

at each satisfied row Aj in the access matrix (A, ρ) such that a user will recover

a target group element of the form e(g, g)Aj ·v · e(g,H1
GID)

Aj ·w1
e(g,H2

GID)
Aj ·w2

.

Here, (H1
GID, H

2
GID) denote the pair of elements output by H(GID), v will be a

vector with first entry equal to the exponent of the blinding factor on the mes-

sage (denoted by s), and each of w1, w2 will be a vector with first entry equal

to 0. This structure allows for the decryption algorithm to both reconstruct

94

the main secret s and to unblind it in parallel. If a user with a particular

identifier GID satisfies the access matrix, he can reconstruct s in the exponent

by raising the group elements to the proper exponents. This operation will

simultaneously reconstruct the shares of 0 and thus the e(g,H1
GID), e(g,H

2
GID)

terms will cancel out. Intuitively, if two users with different global identifiers

GID,GID′ attempt to collude, the cancelation will not work since the w1, w2

shares in the exponents will have different bases.

Remark 26. The reason we haveH output a random pair of group elements and

have two vectors sharing 0 is that it allows us to embed 2-dimensional spaces

from the subspace assumption into these terms. In the original composite

order scheme, this duplication was not needed.

7.1 Construction

For simplicity, we will conflate notation for authorities and attributes

and assume that each authority controls exactly one attribute (we will retain

this simplification in our security proof as well). In practice, we would allow

a single authority to control several attributes, and the authority would run

the setup algorithm below for each attribute (so each attribute would have its

own public key and secret key). We assume that messages to be encrypted are

elements of the target group GT .

Global Setup(λ) → GP The global setup algorithm chooses a bilinear

group G of prime order p and a generator g. It also defines a hash function H

95

mapping global identifiers to pairs of elements in G, so H : {0, 1}∗ → G×G.

The global parameters are:

GP := {G, p, g,H}.

Authority Setup(GP) → SK,PK Each authority (indexed by i) chooses

random dual orthonormal bases (Bi,B∗
i)

R←− Dual(Z12
p) and two uniformly

random exponents α1
i , α

2
i ∈ Zp. It publishes the public parameters:

PK := {e(g, g)α1
i , e(g, g)α

2
i , gb⃗1,i , gb⃗2,i , gb⃗3,i , gb⃗4,i}.

Its corresponding secret key is:

SK := {gα1
i b⃗

∗
1,i , b⃗∗1,i, b⃗

∗
2,i, b⃗

∗
3,i, g

α2
i b⃗

∗
3,i , b⃗∗4,i}.

Encrypt(M, (A, ρ),GP, {PK}) → CT The encryptor chooses a uniformly

random exponent s ∈ Zp. For an ℓ × n access matrix (A, ρ), the encryptor

chooses three random vectors v, w1, w2 ∈ Zn
p subject to the constraints that

the first entry of v is equal to s and the first entries of w1 and w2 are equal to

0. For each j from 1 to ℓ, it also chooses random values r1j , r
2
j ∈ Zp. It then

computes:

C :=Me(g, g)s, Dj := e(g, g)Aj ·ve(g, g)α
1
ρ(j)

r1j e(g, g)α
2
ρ(j)

r2j ∀j ∈ [ℓ],

Cj := gr
1
j b⃗1,ρ(j)+(r1j+Aj ·w1)⃗b2,ρ(j)+r2j b⃗3,ρ(j)+(r2j+Aj ·w2)⃗b4,ρ(j) , ∀j ∈ [ℓ].

The ciphertext CT consists of C, {Dj}, {Cj} (as well as (A, ρ)).

96

KeyGen(GID,GP, i, SK)→ Ki,GID To generate a secret key for a user with

identity GID, authority i computes H(GID) = (H1
GID, H

2
GID) ∈ G2. It forms

the key as:

Ki,GID := gα
1
i b⃗

∗
1,igα

2
i b⃗

∗
3,i
(
H1

GID

)⃗b∗1,i−b⃗∗2,i
(
H2

GID

)⃗b∗3,i−b⃗∗4,i .

Decrypt(CT,GP, {Ki,GID})→M To decrypt a ciphertext encrypted under

a ℓ× n access matrix (A, ρ), an authorized user chooses constants ωj ∈ Zp for

j from 1 to ℓ such that
∑

j ωjAj = (1, 0, . . . , 0) and ωj is only non-zero when

ρ(j) is an attribute the user has a secret key for. For each j such that ωj ̸= 0,

the user computes:

Fj := Dj/e12(Kρ(j),GID, Cj).

It then recovers the message as:

M = C/
∏

j s.t. ωj ̸=0

F
ωj

j .

Correctness We observe that

e12(Kρ(j),GID, Cj) = e(g, g)α
1
ρ(j)

r1j e(g, g)α
2
ρ(j)

r2j e(g,H1
GID)

−Aj ·w1

e(g,H2
GID)

−Aj ·w2

.

Thus, each Fj = e(g, g)Aj ·ve(g,H1
GID)

Aj ·w1
e(g,H2

GID)
Aj ·w2

, and hence

∏
j s.t. ωj ̸=0

F
ωj

j = e(g, g)
∑

j ωjAj ·v = e(g, g)s.

(This follows because
∑

j ωjAj is orthogonal to w
1 and w2 modulo p.)

97

7.2 Security Proof

We will assume that the row labeling function ρ for an access matrix

must be injective, the same restriction we imposed in Chapter 5. One can then

employ the encoding technique described in Section 5.2 to obtain a system

allowing bounded reuse of attributes.

As in the proof in Chapter 5, we will argue that nominal semi-functionality

is information-theoretically hidden from the attacker. It will again be crucial

to arrange for our information-theoretic argument to take place in a part of the

semi-functional space that is only occupied by one key at a time. However, we

no longer have a “header” term in the key to act as a structural linchpin and

provide the part of the semi-functional space where all semi-functional keys si-

multaneously reside. To accommodate our now decentralized keys, we design

our semi-functional space as having two halves: semi-functional ciphertexts

will have components in both halves, while semi-functional keys will first have

components in one half and then will be “switched” to having components in

the other half. In this way, we can think of the semi-functional space for keys

as being divided into a temporary space and a permanent space. Throughout

our hybrid argument, at most one key will have components in the tempo-

rary space. This enables us to execute our information-theoretic argument in

the temporary space, and then switch and save our progress key by key in

the permanent space. Concretely, our permanent semi-functional space in the

keys will be spanned by b⃗∗5,i, . . . , b⃗
∗
8,i for each attribute i, while our temporary

semi-functional space will be spanned by b⃗∗9,i, . . . , b⃗
∗
12,i.

98

We prove:

Theorem 27. Under the decisional linear assumption, the multi-authority CP-

ABE system constructed in Section 7.1 is fully secure in the sense of Definition

10 when H is a random oracle, under the restriction that for an access matrix

(A, ρ), the row labeling function ρ must be injective.

We must first define our semi-functional objects.

Semi-functional Ciphertexts A semi-functional ciphertext for a ℓ × n

LSSS matrix (A, ρ) is created as follows. First, a normal ciphertext C, {Dj, Cj}

is created by running the normal encryption algorithm. We let B ⊆ [ℓ] denote

the set of indices j such that ρ(j) is an attribute belonging to a corrupted

authority, and we let B ⊆ [ℓ] denote the complement. We note that for a valid

matrix (A, ρ) in the security game, the rows indexed by B cannot include the

vector (1, 0, . . . , 0) in their span.

Then, random values γ1j , γ
2
j , γ

3
j , γ

4
j ∈ Zp are chosen for each j ∈ B, along

with vectors θ1, θ2, θ3, θ4 ∈ Zn
p chosen randomly up to the constraint that they

are orthogonal to all rows Aj such that j ∈ B (note their first entries will be

random). The semi-functional ciphertext is formed by retaining the values of

C and {Dj} and multiplying each Cj for j ∈ B by

gγ
1
j b⃗5,ρ(j)+(γ1

j+Aj ·θ1)⃗b6,ρ(j)+γ2
j b⃗7,ρ(j)+(γ2

j+Aj ·θ2)⃗b8,ρ(j)

and also by

gγ
3
j b⃗9,ρ(j)+(γ3

j+Aj ·θ3)⃗b10,ρ(j)+γ4
j b⃗11,ρ(j)+(γ4

j+Aj ·θ4)⃗b12,ρ(j) .

99

This essentially creates two additional copies of the normal system in the

spaces spanned by b⃗5,ρ(j), . . . , b⃗8,ρ(j) and b⃗9,ρ(j), . . . , b⃗12,ρ(j) for each j ∈ B. Note

that for these copies, θ1, . . . , θ4 share random values, not zero. The terms Cj

for j ∈ B are left unchanged.

Permanent Semi-functional Keys A permanent semi-functional key for

an attribute set S is created as follows. First, a normal key {Ki,GID} is created

by running the normal key generation algorithms for each attribute i ∈ S.

Then random exponents ξ1GID, ξ
2
GID ∈ Zp are chosen. Each Ki,GID is multiplied

by:

gξ
1
GIDb⃗∗5,i−ξ1GIDb⃗∗6,i+ξ2GIDb⃗∗7,i−ξ2GIDb⃗∗8,i .

This creates an additional copy of the normal system in the permanent semi-

functional space, with gξ
1
GID playing the the role of H1

GID and gξ
2
GID playing the

role of H2
GID.

Temporary Semi-functional Keys A temporary semi-functional key for

an attribute set S is created as follows. First, a normal key {Ki,GID} is created

by running the normal key generation algorithms for each attribute i ∈ S.

Then random exponents ξ3GID, ξ
4
GID ∈ Zp are chosen. Each Ki,GID is multiplied

by:

gξ
3
GIDb⃗∗9,i−ξ3GIDb⃗∗10,i+ξ4GIDb⃗∗11,i−ξ4GIDb⃗∗12,i .

This creates an additional copy of the normal system in the temporary semi-

functional space, with gξ
3
GID playing the the role of H1

GID and gξ
4
GID playing the

100

role of H2
GID.

We let Gamereal denote the real security game defined in Section 4.4.1.

We let Q denote the total number of GID’s that are queried by the attacker.

For each such GID, the attacker may query for several attributes (these queries

may be arbitrarily interspersed with other queries). For each k from 1 to Q,

we refer to the “kth key” as the set of all attribute keys given to the attacker

corresponding to the kth queried GID value. In all of the games below, keys

will be grouped in this way by GID value (so when we say “the first k keys”,

we mean keys corresponding to the first k GID values). We also define the

following games:

Gamek For each k from 0 to Q, Gamek is like Gamereal, except that the

ciphertext given to the attacker is semi-functional and the first k keys given to

the attacker are permanent semi-functional. The remaining keys are normal.

GameTk For each k from 1 to Q, GameTk is like Gamek, except that the k
th

key is a temporary semi-functional key.

Gamefinal This is like GameQ (everything given to the attacker is semi-

functional), except that the ciphertext is a semi-functional encryption of a

random message.

Our hybrid argument will proceed from Gamereal to Game0, then to

GameT1 , then to Game1, then to GameT2 , and so on, until arriving at GameQ

101

and finally transitioning to Gamefinal. This is accomplished in the following

lemmas. Though we will not repeat this in the statement of each lemma, we

remind the reader that our proof takes places in the random oracle model.

Lemma 28. Under the subspace assumption, no PPT attacker can attain a

non-negligible difference in advantage between Gamereal and Game0.

Proof. We will actually perform this transition in four (nearly) identical stages.

First, we will use the subspace assumption to expand the Cj pieces (corre-

sponding to good authorities) in the ciphertext into the span of b⃗5,ρ(j), b⃗6,ρ(j)

in the exponent. We then repeat this process to expand into the span of

b⃗7,ρ(j), b⃗8,ρ(j), and then into the span of b⃗9,ρ(j), b⃗10,ρ(j), and then finally into the

span of b⃗11,ρ(j), b⃗12,ρ(j). By the end of this process, the ciphertext will be prop-

erly distributed as a semi-functional ciphertext. We will describe here the first

stage, and the others follow analogously.

We assume we have a PPT attacker A who obtains a non-negligible

difference in advantage between Gamereal and a version of Game0 where γ
1
j , θ

1

are random (for all j ∈ B), but γ2j , γ
3
j , γ

4
j , θ

2, θ3, θ4 are all zero in the challenge

semi-functional ciphertext. We will create a PPT algorithm B attaining a

non-negligible advantage against the subspace assumption with m = U (where

1, . . . ,U form the universe of attributes), ni = 12, and ki = 2 for each i.

In order to reconcile the notation of the assumption with the notation of

our construction as conveniently as possible, we will denote the bases involved

in the assumption by (D1,D∗
1), . . . , (DU,D∗

U) ∈ Dual(Z12
p). B is given (we will

102

ignore the U terms, gητ1 , gβτ2 , and µ3 because they will not be needed):

G, p, g, gη, gβ, {gd⃗1,i , . . . , gd⃗4,i , gd⃗7,i , . . . , gd⃗12,i}i∈[U],

{gηd⃗∗1,i , gηd⃗∗2,i , gβd⃗∗3,i , gβd⃗∗4,i , gd⃗∗5,i , gd⃗∗6,i , . . . , gd⃗∗12,i}i∈[U],

{T1,i, T2,i}i∈[U].

The exponents of the unknown terms T1,i, T2,i are distributed either as τ1ηd⃗
∗
1,i+

τ2βd⃗
∗
3,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i respectively, or as τ1ηd⃗

∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and

τ1ηd⃗
∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i respectively. It is B’s task to determine if these τ3

contributions are present or not.

B sets the global parameters as G, p, g, and H will be modeled as a

random oracle. We let S denote the set of all authorities, and A declares

S′ ⊆ S, the set of corrupted authorities. For each good authority, B will set

its public key as follows.

For each attribute i controlled by a good authority, B implicitly sets

the bases as:

b⃗1,i = ηd⃗∗1,i, b⃗2,i = ηd⃗∗2,i, b⃗3,i = βd⃗∗3,i, b⃗4,i = βd⃗∗4,i,

b⃗5,i = d⃗∗5,i, b⃗6,i = d⃗∗6,i, . . . , b⃗12,i = d⃗∗12,i ∀i,

b⃗∗1,i = η−1d⃗1,i, b⃗
∗
2,i = η−1d⃗2,i, b⃗

∗
3,i = β−1d⃗3,i, b⃗

∗
4,i = β−1d⃗4,i,

b⃗∗5,i = d⃗5,i, b⃗
∗
6,i = d⃗6,i, . . . , b⃗

∗
12,i = d⃗12,i ∀i.

We note that these are properly distributed because (D1,D∗
1), (D2,D∗

2), etc.

are randomly chosen. It chooses α̃1
i , α̃

2
i ∈ Zp at random, and implicitly sets

103

α1
i = ηα̃1

i , α
2
i = βα̃2

i . It can then produce the public key

e(g, gη)α̃
1
i , e(g, gβ)α̃

2
i , gb⃗1,i , gb⃗2,i , gb⃗3,i , gb⃗4,i

using the terms given in the assumption.

B must now answer random oracle and key queries made by A. When

A first queries for H(GID), B chooses two random exponents h̃1GID, h̃
2
GID ∈ Zp.

It returns H(GID) := (H1
GID, H

2
GID) = ((gη)h̃

1
GID , (gβ)h̃

2
GID) to A and stores the

values so that it can respond consistently if A queries H(GID) again.

When A queries for a key for an identity, attribute pair (GID, i) where

i is controlled by a good authority, B responds as follows. If H(GID) has

not yet been queried, it first defines H1
GID, H

2
GID as above. We observe that

α1
i b⃗

∗
1,i = α̃1

i d⃗1,i and α2
i b⃗

∗
3,i = α̃2

i d⃗3,i, while (H1
GID)

b⃗∗1,i−b⃗∗2,i = (gh̃
1
GID)d⃗1,i−d⃗2,i and

(H2
GID)

b⃗∗3,i−b⃗∗4,i = (gh̃
2
GID)d⃗3,i−d⃗4,i . Thus, B computes

Ki,GID =
(
gd⃗1,i

)α̃1
i
(
gd⃗3,i

)α̃2
i
(
gd⃗1,i

)h̃1
GID
(
gd⃗2,i

)−h̃1
GID
(
gd⃗3,i

)h̃2
GID
(
gd⃗4,i

)−h̃2
GID

.

At some point, A will declare messages M0,M1 and an ℓ × n access

matrix (A, ρ). We let B ⊆ [ℓ] denote the set of indices j such that ρ(j) is

an attribute controlled by a corrupt authority, and B denote its complement.

It must be the case that the span of the rows Aj of A with j ∈ B does not

include (1, 0, . . . , 0). For all j ∈ B, A also provides the public parameters

e(g, g)α
1
ρ(j) , e(g, g)α

2
ρ(j) , gb⃗1,ρ(j) , . . . , gb⃗4,ρ(j) .

B forms the challenge ciphertext as follows. It first chooses a random

s ∈ Zp and a random vector v ∈ Zn
p with first entry equal to s. B chooses a

104

random vector θ̃ ∈ Zn
p up to the constraint that is orthogonal to all the rows

Aj such that j ∈ B and its first entry is 0. It also chooses random vectors

w̃1, w̃2 ∈ Zn
p up to the constraint that their first entries are 0. It will implicitly

set w1 = τ1θ̃+w̃
1 and w2 = τ2θ̃+w̃

2. Note that w1, w2 are properly distributed.

B also chooses random values r1j , r
2
j ∈ Zp for each j ∈ B. For each j ∈

B, it chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp and implicitly sets r1j = τ1r̃

3
j + r̃1j ,

r2j = τ2r̃
3
j + r̃2j . We note that r1j , r

2
j are properly distributed for all values of j.

The ciphertext is computed as:

C = Mbe(g, g)
s,

Dj = e(g, g)Aj ·ve12(T1,ρ(j), g
d⃗1,ρ(j))r̃

3
j α̃

1
ρ(j)e(g, gη)r̃

1
j α̃

1
ρ(j)

·e12(T1,ρ(j), gd⃗3,ρ(j))r̃
3
j α̃

2
ρ(j)e(g, gβ)r̃

2
j α̃

2
ρ(j) ∀j ∈ B,

Cj = T
r̃3j
1,ρ(j)T

r̃3j+Aj ·θ̃
2,ρ(j)

(
gηd⃗

∗
1,ρ(j)

)r̃1j (
gηd⃗

∗
2,ρ(j)

)r̃1j+Aj ·w̃1

·
(
gβd⃗

∗
3,ρ(j)

)r̃2j (
gβd⃗

∗
4,ρ(j)

)r̃2j+Aj ·w̃2

∀j ∈ B,

Dj = e(g, g)Aj ·v (e(g, g)αρ(j))r
1
j

(
e(g, g)α

2
ρ(j)

)r2j ∀j ∈ B,
Cj =

(
gb⃗1,ρ(j)

)r1j (
gb⃗2,ρ(j)

)r1j+Aj ·w̃1 (
gb⃗3,ρ(j)

)r2j (
gb⃗3,ρ(j)

)r2j+Aj ·w̃2

∀j ∈ B.

In creating Cj for j ∈ B, we have used the fact that Aj · θ̃ = 0 for these values

of j.

If the τ3 terms are absent from the T1,ρ(j), T2,ρ(j) values for ρ(j) ∈ B,

this is a properly distributed normal ciphertext. If the τ3 are present, this is

a semi-functional ciphertext with θ1 = τ3θ̃, γ
1
j = τ3r̃

3
j for each j ∈ B, and

θ2, θ3, θ4, γ2j , γ
3
j , γ

4
j all equal to 0.

105

We finally argue that θ1 is properly distributed in A’s view, even though

θ̃ has its first entry equal to 0. This is because for each j ∈ B, ρ(j) appears

exactly once, and γ1j b⃗5,ρ(j) + (γ1j +Aj · θ1)⃗b6,ρ(j) is distributed independently of

Aj · θ1. This is because b⃗∗5,ρ(j) and b⃗∗6,ρ(j) are never revealed. Hence, by Lemma

2, each of b⃗5,ρ(j), b⃗6,ρ(j) can be multiplied by a random scalar in Zp, and the

resulting values are identically distributed. Thus, no information about Aj · θ1

is revealed for j ∈ B, so the distribution is unaffected by our restriction that

θ̃ have its first entry equal to 0.

The remaining phases to bring in nonzero values θ2, θ3, θ4, γ2j , γ
3
j , γ

4
j are

nearly identical (note that in these arguments, gb⃗5,ρ(j) , gb⃗6,ρ(j) will be known to

B).

Lemma 29. Under the subspace assumption, no PPT attacker can attain a

non-negligible difference in advantage between Gamek−1 and GameTk for any

k from 1 to Q.

Proof. We will accomplish this transition in two stages: first, we will move

from a kth key that is normal to a temporary semi-functional key that has a

random value of ξ3GID and ξ4GID = 0. Then we will randomize ξ4GID to obtain a

properly distributed temporary semi-functional key.

We describe only the first stage here, as the second stage follows analo-

gously. We suppose we have a PPT attacker A that achieves a non-negligible

difference in advantage between Gamek−1 and a game where the kth key has

106

a random value of ξ3GID and ξ4GID = 0 for some fixed k. We will build a PPT

algorithm B that breaks the subspace assumption.

We employ the subspace assumption with m = U, ni = 12, and

ki = 2 for all i. We will denote the bases involved in the assumption by

(D1,D∗
1), . . . , (DU,D∗

U) ∈ Dual(Z12
p). B is given (we will ignore µ3 because it

will not be needed):

G, p, g, gη, gβ, gητ1 , gβτ2 , {gd⃗1,i , . . . , gd⃗4,i , gd⃗7,i , . . . , gd⃗12,i}i∈[U],

{gηd⃗∗1,i , gηd⃗∗2,i , gβd⃗∗3,i , gβd⃗∗4,i , gd⃗∗5,i , gd⃗∗6,i , . . . , gd⃗∗12,i}i∈[U],

{U1,i, U2,i}i∈[U], {T1,i, T2,i}i∈[U].

The exponents of the unknown terms T1,i, T2,i are distributed either as τ1ηd⃗
∗
1,i+

τ2βd⃗
∗
3,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i respectively, or as τ1ηd⃗

∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and

τ1ηd⃗
∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i respectively. It is B’s task to determine if these τ3

contributions are present or not.

B sets the global parameters as G, p, g, and H will be modeled as a

random oracle. We let S denote the set of all authorities, and A declares

S′ ⊆ S, the set of corrupted authorities. For each good authority i, B will set

its public key as follows.

It implicitly sets the bases Bi,B∗
i as:

b⃗1,i = d⃗1,i, . . . , b⃗4,i = d⃗4,i, b⃗5,i = d⃗9,i, . . . , b⃗8,i = d⃗12,i, b⃗9,i = d⃗5,i, . . . , b⃗12,i = d⃗8,i,

b⃗∗1,i = d⃗∗1,i, . . . , b⃗
∗
4,i = d⃗∗4,i, b⃗

∗
5,i = d⃗∗9,i, . . . , b⃗

∗
8,i = b⃗∗12,i, b⃗

∗
9,i = d⃗∗5,i, . . . , b⃗

∗
12,i = d⃗∗8,i.

107

We note that (Bi,B∗
i) is properly distributed, and is a permutation of (Di,D∗

i)

(where vectors 5 through 8 and vectors 9 through 12 have switched places).

B chooses α̃1
i , α̃

2
i ∈ Zp at random. It implicitly sets α1

i = ηα̃1
i and

α2
i = βα̃2

i . It can then produce the public key

e(g, g)α
1
i = e(g, gη)α̃

1
i , e(g, g)α

2
i = e(g, gβ)α̃

2
i , gb⃗1,i , gb⃗2,i , gb⃗3,i , gb⃗4,i

using the terms given in the assumption. We note thatB also knows gη⃗b
∗
1,i , gηb⃗

∗
2,i ,

gβb⃗
∗
3,i , gβb⃗

∗
4,i , and gb⃗

∗
5,i , . . . , gb⃗

∗
12,i .

B must now answer random oracle and key queries made by A. When

A first queries forH(GID) where GID is not the kth queried identity, B chooses

two random exponents h̃1GID, h̃
2
GID ∈ Zp. It returnsH(GID) := (H1

GID, H
2
GID) =

((gη)h̃
1
GID , (gβ)h̃

2
GID) to A and stores the values so that it can respond consis-

tently if A queries H(GID) again. If A submits a query for H(GID) where

GID is the kth queried identity, then B returns H(GID) := (H1
GID, H

2
GID) =

(gητ1 , gβτ2).

When A queries for a key for an identity, attribute pair (GID, i) where

i is controlled by a good authority and GID is not among the first k queried

identities, B produces a normal key as follows. If H(GID) has not yet been

queried, it first defines H1
GID, H

2
GID as above. It then computes:

Ki,GID =
(
gηd⃗

∗
1,i

)α̃1
i+h̃1

GID
(
gηd⃗

∗
2,i

)−h̃1
GID
(
gβd⃗

∗
3,i

)α̃2
i+h̃2

GID
(
gβd⃗

∗
4,i

)−h̃2
GID

.

When A queries for a key for an identity, attribute pair (GID, i) where

i is controlled by a good authority and GID is among the first k − 1 queried

108

identities, B produces a permanent semi-functional key as follows. If H(GID)

has not yet been queried, it first defines H1
GID, H

2
GID as above. Upon the first

key query for GID, it also chooses random values ξ1GID, ξ
2
GID ∈ Zp. It then

computes: (
gηd⃗

∗
1,i

)α̃1
i+h̃1

GID
(
gηd⃗

∗
2,i

)−h̃1
GID
(
gβd⃗

∗
3,i

)α̃2
i+h̃2

GID
(
gβd⃗

∗
4,i

)−h̃2
GID

(for the normal components of Ki,GID) and(
gd⃗

∗
9,i

)ξ1GID
(
gd⃗

∗
10,i

)−ξ1GID
(
gd⃗

∗
11,i

)ξ2GID
(
gd⃗

∗
12,i

)−ξ2GID

(for the permanent semi-functional components). It multiplies these two quan-

tities to together to produce Ki,GID.

When A makes a key query for (GID, i) where GID is the kth queried

identity, B creates the key as follows. If H(GID) has not yet been queried, it

first defines H1
GID, H

2
GID as above. It then computes:

Ki,GID =
(
gηd⃗

∗
1,i

)α̃1
i
(
gβd⃗

∗
3,i

)α̃2
i

T1,iT
−1
2,i .

If T1,i and T2,i do not have the τ3 terms in their exponents, then this is a normal

key. If the τ3 terms are present, then this is a temporary semi-functional key

with ξ3GID = τ3 and ξ4GID = 0.

At some point, A will declare M0,M1 and request the challenge cipher-

text for some ℓ × n access matrix (A, ρ). We let B ⊆ [ℓ] denote the set of

indices j such that ρ(j) is controlled by a corrupted authority, and we let

B ⊆ [ℓ] denote its complement. For each ρ(j) ∈ B, A also supplies e(g, g)α
1
ρ(j) ,

109

e(g, g)α
2
ρ(j) , gb⃗1,ρ(j) , . . . , gb⃗4,ρ(j) . It must be the case that the span of the rows Aj

of A with j ∈ B does not include (1, 0, . . . , 0).

B creates the semi-functional challenge ciphertext as follows. (This will

be quite similar to the creation of the ciphertext in the proof of the previous

lemma, except that U1,i and U2,i will be used in place of T1,i, T2,i and the

remaining semi-functional components can be added easily.) It first chooses

a random s ∈ Zp and a random vector v ∈ Zn
p with first entry equal to s. B

chooses a random vector θ̃ ∈ Zn
p up to the constraint that is orthogonal to all

the rows Aj such that j ∈ B and its first entry is 0. It also chooses random

vectors w̃1, w̃2 ∈ Zn
p up to the constraint that their first entries are 0. It will

implicitly set w1 = µ1θ̃ + w̃1 and w2 = µ2θ̃ + w̃2. We note that w1, w2 are

properly distributed.

B also chooses random values r1j , r
2
j ∈ Zp for each j ∈ B. For each

j ∈ B, it chooses random values r̃1j , r̃
2
j , r̃

3
j ∈ Zp and implicitly sets r1j =

µ1r̃
3
j + r̃1j , r

2
j = µ2r̃

3
j + r̃2j . B chooses random vectors θ1, θ2, θ4 ∈ Zn

p subject

to the constraint that each is orthogonal to Aj for all j ∈ B, and it chooses

random values γ1j , γ
2
j , γ

4
j ∈ Zp for each j ∈ B. It will implicitly set θ3 = µ3θ̃

and γ3j = µ3r̃
3
j . It is clear that all of r1j , r

2
j , γ

1
j , . . . , γ

4
j , θ

1, θ2, θ4 are properly

distributed.

110

The semi-functional ciphertext is computed as:

C = Mbe(g, g)
s,

Dj = e(g, g)Aj ·ve12(U1,ρ(j), g
ηd⃗∗

1,ρ(j))r̃
3
j α̃

1
ρ(j)e(g, gη)r̃

1
j α̃

1
ρ(j)

·e12(U1,ρ(j), g
βd⃗∗

3,ρ(j))r̃
3
j α̃

2
ρ(j)e(g, gβ)r̃

2
j α̃

2
ρ(j) ∀j ∈ B,

Cj = U
r̃3j
1,ρ(j)U

r̃3j+Aj ·θ̃
2,ρ(j)

(
gd⃗1,ρ(j)

)r̃1j (
gd⃗2,ρ(j)

)r̃1j+Aj ·w̃1 (
gd⃗3,ρ(j)

)r̃2j
·
(
gd⃗4,ρ(j)

)r̃2j+Aj ·w̃2 (
gd⃗9,ρ(j)

)γ1
j
(
gd⃗10,ρ(j)

)γ1
j+Aj ·θ1 (

gd⃗11,ρ(j)
)γ2

j

·
(
gd⃗12,ρ(j)

)γ2
j+Aj ·θ2 (

gd⃗7,ρ(j)
)γ4

j
(
gd⃗8,ρ(j)

)γ4
j+Aj ·θ4

∀j ∈ B,

Dj = e(g, g)Aj ·v
(
e(g, g)α

1
ρ(j)

)r1j (
e(g, g)α

2
ρ(j)

)r2j ∀j ∈ B,
Cj =

(
gb⃗1,ρ(j)

)r1j (
gb⃗2,ρ(j)

)r1j+Aj ·w̃1 (
gb⃗3,ρ(j)

)r2j (
gb⃗3,ρ(j)

)r2j+Aj ·w̃2

∀j ∈ B.

In creating Cj for j ∈ B, we have used the fact that Aj · θ̃ = 0 for these values

of j.

Finally, we must argue that θ3 = µ3θ̃ is properly distributed in the at-

tacker’s view. In other words, we claim that the first entry of θ̃ is information-

theoretically hidden from A. This follows from the same argument given in the

proof of Lemma 15 since the collection of rows Aj such that j ∈ B or ρ(j) is

queried for the kth GID value cannot include the vector (1, 0, . . . , 0) in its span.

For all j ∈ B such that ρ(j) is not queried for the kth GID value, the share

Aj · θ3 is information theoretically hidden since the basis vectors b⃗∗9,ρ(j), b⃗
∗
10,ρ(j)

are never revealed. As in the previous formulation of this argument, we rely

on the fact that ρ is an injective function.

111

Lemma 30. Under the subspace assumption, no PPT attacker can attain a

non-negligible difference in advantage between GameTk and Gamek for any k

from 1 to Q.

Proof. We will accomplish the transition from a temporary semi-functional key

to a permanent semi-functional key in four stages: first, we will move from a

key that has random values of ξ3GID, ξ
4
GID and ξ1GID = ξ2GID = 0 to a key that

has random values of ξ1GID, ξ
3
GID, ξ

4
GID and only ξ2GID = 0. Next, we randomize

ξ2GID, obtaining a key with both temporary and permanent semi-functional

components. We then keep ξ1GID, ξ
2
GID random while zeroing out ξ3GID and ξ4GID

one at a time.

We begin with the first stage. We suppose that we have a PPT attacker

A that achieves a non-negligible difference in advantage between GameTk and

a game where the kth key has random values of ξ1GID, ξ
3
GID, ξ

4
GID while ξ2GID = 0

(for some fixed k). We will build a PPT algorithm B that breaks the subspace

assumption.

We employ the subspace assumption with m = U, ni = 12, and

ki = 2 for all i. We will denote the bases involved in the assumption by

(D1,D∗
1), . . . , (DU,D∗

U) ∈ Dual(Z12
p). B is given (we will ignore gη, gβ, gητ1 ,

gβτ2 , and µ3 because they will not be needed):

G, p, g, {gd⃗1,i , . . . , gd⃗4,i , gd⃗7,i , . . . , gd⃗12,i}i∈[U],

{gηd⃗∗1,i , gηd⃗∗2,i , gβd⃗∗3,i , gβd⃗∗4,i , gd⃗∗5,i , gd⃗∗6,i , . . . , gd⃗∗12,i}i∈[U],

112

{U1,i, U2,i}i∈[U], {T1,i, T2,i}i∈[U].

The exponents of the unknown terms T1,i, T2,i are distributed either as τ1ηd⃗
∗
1,i+

τ2βd⃗
∗
3,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i respectively, or as τ1ηd⃗

∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and

τ1ηd⃗
∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i respectively. It is B’s task to determine if these τ3

contributions are present or not.

B sets the global parameters as G, p, g, and H will be modeled as a

random oracle. We let S denote the set of all authorities, and A declares

S′ ⊆ S, the set of corrupted authorities. For each good authority i, B will set

its public key as follows.

It implicitly sets the bases Bi,B∗
i as:

b⃗1,i = d⃗9,i, . . . , b⃗4,i = d⃗12,i, b⃗5,i = d⃗5,i, . . . , b⃗8,i = d⃗8,i, b⃗9,i = d⃗1,i, . . . , b⃗12,i = d⃗4,i,

b⃗∗1,i = d⃗∗9,i, . . . , b⃗
∗
4,i = d⃗∗12,i, b⃗

∗
5,i = d⃗∗5,i, . . . , b⃗

∗
8,i = d⃗∗8,i, b⃗

∗
9,i = d⃗∗1,i, . . . , b⃗

∗
12,i = d⃗∗4,i.

Observe that (Bi,B∗
i) is just a reordering of the bases (Di,D∗

i), where the first

four and last four vectors have been interchanged within each basis. We note

that (Bi,B∗
i) are properly distributed.

B chooses α1
i , α

2
i ∈ Zp at random. It can then produce the public key

e(g, g)α
1
i , e(g, g)α

2
i , gb⃗1,i , gb⃗2,i , gb⃗3,i , gb⃗4,i

using the terms given in the assumption. We note thatB also knows gb⃗
∗
1,i , . . . , gb⃗

∗
8,i .

B must now answer random oracle and key queries made by A. When

A first queries for H(GID), B chooses two random exponents h1GID, h
2
GID ∈ Zp.

113

It returns H(GID) := (H1
GID, H

2
GID) = (gh

1
GID , gh

2
GID) to A and stores the values

so that it can respond consistently if A queries H(GID) again.

To respond to queries (GID, i) where GID is not among the first k

queried identities, B produces a normal key as follows. If H(GID) has not

been queried previously, it first sets this as above. It then computes:

Ki,GID =
(
gb⃗

∗
1,i

)α1
i+h1

GID
(
gb⃗

∗
2,i

)−h1
GID
(
gb⃗

∗
3,i

)α2
i+h2

GID
(
gb⃗

∗
4,i

)−h2
GID

.

To respond to queries (GID, i) where GID is among the first k − 1

queried identities, B first produces a normal key as above, and then produces

the permanent semi-functional components as follows. The first time a secret

key for GID is requested, B chooses random exponents ξ1GID, ξ
2
GID ∈ Zp. Then

for each request (GID, i), it computes(
gb⃗

∗
5,i

)ξ1GID
(
gb⃗

∗
6,i

)−ξ1GID
(
gb⃗

∗
7,i

)ξ2GID
(
gb⃗

∗
8,i

)−ξ2GID

and multiplies this by the normal key to produce a permanent semi-functional

key.

To respond to a query (GID, i) where GID is the kth queried identity,

B again first produces a normal key as above. It implicitly sets ξ3GID = ητ1 and

ξ4GID = βτ2. We note that these values are random, hence properly distributed.

It multiplies the normal key by T1,i (T2,i)
−1 to form the semi-functional key.

If the exponents of T1,i and T2,i do not include τ3 terms, then this

produces a properly distributed temporary semi-functional key (with ξ3GID, ξ
4
GID

being random and ξ1GID, ξ
2
GID = 0). If the exponents of T1,i and T2,i do include

114

τ3 terms, then this is a semi-functional key with ξ1GID = τ3, and hence all of

ξ1GID, ξ
3
GID, ξ

4
GID are random, while ξ2GID = 0.

At some point, A will declare M0,M1 and request the challenge cipher-

text for some ℓ × n access matrix (A, ρ). We let B ⊆ [ℓ] denote the set of

indices j such that ρ(j) is controlled by a corrupted authority, and we let

B ⊆ [ℓ] denote its complement. For each ρ(j) ∈ B, A also supplies e(g, g)α
1
ρ(j) ,

e(g, g)α
2
ρ(j) , gb⃗1,ρ(j) , . . . , gb⃗4,ρ(j) . It must be the case that the span of the rows Aj

of A with j ∈ B does not include (1, 0, . . . , 0).

B creates the semi-functional challenge ciphertext as follows. It first

forms the normal components of the ciphertext using the normal encryption

algorithm. To form the semi-functional components, it chooses random vectors

θ̃, θ2, θ̃3, θ̃4 ∈ Zn
p subject to the constraint that they are orthogonal to all rows

Aj of A such that ρ(j) ∈ B (note that the first entry of each will be randomly

distributed). It will implicity set θ1 = µ3θ̃, θ
3 = µ1θ̃ + θ̃3, and θ4 = µ2θ̃ + θ̃4.

We note that these are properly distributed.

For each j ∈ B, B chooses random exponents γ̃j, γ
2
j , γ̃

3
j , γ̃

4
j ∈ Zp. It

implicitly sets γ1j = µ3γ̃j, γ
3
j = µ1γ̃j + γ̃3j , and γ

4
j = µ2γ̃j + γ̃4j . We note that B

has the values gb⃗7,ρ(j) , . . . , gb⃗12,ρ(j) , but it only has access to b⃗5,ρ(j), b⃗6,ρ(j) in the

exponents of the U1,ρ(j), U2,ρ(j) terms. It forms the semi-functional components

of Cj as:

U
γ̃j
1,ρ(j)U

γ̃j+Aj ·θ̃
2,ρ(j)

(
gb⃗7,ρ(j)

)γ2
j
(
gb⃗8,ρ(j)

)γ2
j+Aj ·θ2 (

gb⃗9,ρ(j)
)γ̃3

j

·
(
gb⃗10,ρ(j)

)γ̃3
j+Aj ·θ̃3 (

gb⃗11,ρ(j)
)γ̃4

j
(
gb⃗12,ρ(j)

)γ̃4
j+Aj ·θ̃4

.

115

Multiplying the normal components of each Cj for j ∈ B by these values

produces a properly distributed semi-functional ciphertext.

Hence, if the τ3 terms are not present, then B has properly simulated

GameTk . If they are present, B has simulated a game where the kth key has

properly distributed components in the temporary semi-functional space as

well as the first half of the permanent space. This completes the first stage of

our argument.

The other three stages are nearly identical - in the second stage, we may

similarly use the subspace assumption to expand the kth key’s semi-functional

components from the span of b⃗∗9,i, . . . , b⃗
∗
12,i into the span of b⃗∗7,i, . . . , b⃗

∗
12,i. Here,

the simulator B will know the terms gb⃗
∗
5,i , gb⃗

∗
6,i , so the semi-functional terms in

this space can be added easily. The third and fourth stages are then essentially

reversals of the first two stages, with the roles of the permanent semi-functional

space and temporary semi-functional space interchanged.

Lemma 31. Under the subspace assumption, no PPT attacker can attain a

non-negligible difference in advantage between GameQ and Gamefinal.

Proof. We suppose there is a PPT algorithm A that attains a non-negligible

difference in advantage between these two games. We will build a PPT algo-

rithm B to break the subspace assumption with parameters m = U, ni = 12,

and ki = 2 for all i. We will denote the bases involved in the assumption by

(D1,D∗
1), . . . , (DU,D∗

U).

116

B is given (we will ignore gητ1 , gβτ2 , and µ3 because they will not be

needed):

G, p, g, gη, gβ, {gd⃗1,i , . . . , gd⃗4,i , gd⃗7,i , . . . , gd⃗12,i}i∈[U],

{gηd⃗∗1,i , gηd⃗∗2,i , gβd⃗∗3,i , gβd⃗∗4,i , gd⃗∗5,i , gd⃗∗6,i , . . . , gd⃗∗12,i}i∈[U],

{U1,i, U2,i}i∈[U], {T1,i, T2,i}i∈[U].

The exponents of the unknown terms T1,i, T2,i are distributed either as τ1ηd⃗
∗
1,i+

τ2βd⃗
∗
3,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i respectively, or as τ1ηd⃗

∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and

τ1ηd⃗
∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i respectively. It is B’s task to determine if these τ3

contributions are present or not.

B sets the global parameters as G, p, g, and H will be modeled as a

random oracle. We let S denote the set of all authorities, and A declares

S′ ⊆ S, the set of corrupted authorities. For each attribute i controlled by a

good authority, B implicitly sets the bases as follows.

B chooses a random scalar ψ ∈ Zp and defines the 4× 4 matrix P as

P =


−1 1 0 0
0 0 −ψ−1 ψ−1

1 0 0 0
0 0 1 0

 , P−1 =


0 0 1 0
1 0 1 0
0 0 0 1
0 ψ 0 1

 ,

We define another orthonormal bases pair DP,i, D∗
P,i as in Section 3.2.1:

we let Di be the 12 × 4 matrix whose columns correspond to the vectors

d⃗5,i, . . . , d⃗8,i respectively. Then DiP is also a 12 × 4 matrix, and we replace

the vectors d⃗5,i, . . . , d⃗8,i with its columns to form DP,i. For D∗
P,i, we do the

117

same using (P−1)t. By Lemma 2, DP,i and D∗
P,i are a properly distributed

orthonormal bases pair. B implicitly sets Bi = DP,i and B∗
i = D∗

P,i.

To set the public keys, B chooses random values α̃1
i , α̃

2
i ∈ Zp and im-

plicitly sets α1
i = τ1η + ηα̃1

i and α2
i = τ2β + βα̃2

i . It forms the public keys

as:

{e(g, g)α1
i = e12(T1,i, g

d⃗1,i)e(gη, g)α̃
1
i , e(g, g)α

2
i = e12(T1,i, g

d⃗3,i)e(gβ, g)α̃
2
i ,

gb⃗1,i = gd⃗1,i , . . . , gb⃗4,i = gd⃗4,i}

using the terms given in the assumption (for each attribute i controlled by a

good authority). It gives these to A.

B must now answer random oracle and key queries made by A. When

A first queries for H(GID), B chooses two random exponents h̃1GID, h̃
2
GID ∈ Zp.

It returns H(GID) := (H1
GID, H

2
GID) = ((gη)h̃

1
GID , (gβ)h̃

2
GID) to A and stores the

values so that it can respond consistently if A queries H(GID) again.

When A queries for a key for an identity, attribute pair (GID, i) where

i is controlled by a good authority, B responds as follows. The first time GID

is queried, B chooses random values ξ̃1GID, ξ̃
2
GID ∈ Zp. It forms the secret key

as:

Ki,GID = T1,i

(
gηd⃗

∗
1,i

)α̃1
i+h̃1

GID
(
gηd⃗

∗
2,i

)−h̃1
GID
(
gβd⃗

∗
3,i

)α̃2
i+h̃2

GID

·
(
gβd⃗

∗
4,i

)−h̃2
GID
(
gd⃗

∗
5,i

)−ξ̃1GID
(
gd⃗

∗
6,i

)−ξ̃2GID

.

Recalling that B∗
i = D∗

P,i, we can calculate the coefficients of b⃗∗5,i, . . . , b⃗
∗
8,i

in the exponent vector of Ki,GID. We let −ξ1GID denote the coefficient of d⃗∗5:

118

this ξ1GID will be equal to ξ̃1GID when the τ3 term is absent from T1,i and will be

equal to ξ̃1GID − τ3 otherwise. (Either way, ξ1GID is properly distributed.) The

coefficients of b⃗∗5,i, . . . , b⃗
∗
8,i can then be computed as:

P t ·


−ξ1GID

−ξ̃2GID

0
0

 =


ξ1GID

−ξ1GID

ξ2GID

−ξ2GID

 ,

where ξ2GID = ψ−1ξ̃2GID. (We note that (−ξ1GID,−ξ̃2GID, 0, 0) are the coefficients

of the exponent vector in terms of the basis D∗
i . To obtain the coefficients in

terms of the basis D∗
P,i, we multiply by P t.) This shows that the keys produced

by B are properly distributed as permanent semi-functional keys.

At some point, A declares messages M0,M1 and a ℓ× n access matrix

(A, ρ). We let B ⊆ [ℓ] denote the set of indices j such that ρ(j) is controlled

by a corrupt authority and B ⊆ [ℓ] denote its complement. A also declares the

public keys for all ρ(j) such that j ∈ B. To encryptMb, B proceeds as follows.

It chooses a random s ∈ Zp and a random vector v ∈ Zn
p with s as its first entry.

It chooses random vectors w̃1, w̃2 ∈ Zn
p with first entries equal to 0. It chooses

random vectors θ̃, θ3, θ4 ∈ Zn
p subject to the constraint that each is orthogonal

to all rows Aj of A with j ∈ B. It chooses a random vector w̃ ∈ Zn
p with first

entry equal to 0 also subject to the constraint that it is orthogonal to all rows

Aj of A with j ∈ B. It will implicitly set w1 = µ1w̃ + w̃1, w2 = µ2w̃ + w̃2,

θ1 = µ3θ̃, and θ
2 = ψµ3(θ̃+w̃). We note that w1, w2 are distributed as random

vectors with first entry equal to 0, while θ1, . . . , θ4 are distributed as random

vectors orthogonal to all Aj such that j ∈ B (note that ψ, µ3 are nonzero with

119

all but negligible probability).

For all j ∈ B, B chooses random values r1j , r
2
j ∈ Zp. For all j ∈ B,

B chooses random values r̃1j , r̃
2
j , γ

1
j , . . . , γ

4
j ∈ Zp and implicitly sets r1j = r̃1j +

µ1Aj · θ̃ and r2j = r̃2j + µ2Aj · θ̃. It computes the ciphertext as:

C = Mbe(g, g)
s,

Dj = e(g, g)Aj ·ve(gη, g)r̃
1
j α̃

1
ρ(j)e12(T1,ρ(j), g

d⃗1,ρ(j))r̃
1
j

·e12(U1,ρ(j), g
ηd⃗∗

1,ρ(j))α̃
1
ρ(j)

Aj ·θ̃e(gβ, g)r̃
2
j α̃

2
ρ(j)e12(T1,ρ(j), g

d⃗2,ρ(j))r̃
2
j

·e12(U1,ρ(j), g
βd⃗∗

2,ρ(j))α̃
2
ρ(j)

Aj ·θ̃e12(U1,ρ(j), T1,ρ(j))
Aj ·θ̃ ∀j ∈ B,

Cj = U
Aj ·θ̃
1,ρ(j)

(
gd⃗1,ρ(j)

)r̃1j
U

Aj ·θ̃+Aj ·w̃
2,ρ(j)

(
gd⃗2,ρ(j)

)r̃1j+Aj ·w̃1 (
gd⃗3,ρ(j)

)r̃2j
·
(
gd⃗4,ρ(j)

)r̃2j+Aj ·w̃2 (
gd⃗7,ρ(j)

)γ1
j
(
gd⃗8,ρ(j)

)γ2
j
(
gd⃗9,ρ(j)

)γ3
j

·
(
gd⃗10,ρ(j)

)γ3
j+Aj ·θ3 (

gd⃗11,ρ(j)
)γj

4
(
gd⃗12,ρ(j)

)γ4
j+Aj ·θ4

∀j ∈ B

Dj = e(g, g)Aj ·v
(
e(g, g)α

1
ρ(j)

)r1j (
e(g, g)α

2
ρ(j)

)r2j ∀j ∈ B,
Cj =

(
gb⃗1,ρ(j)

)r1j (
gb⃗2,ρ(j)

)r1j+Aj ·w̃1 (
gb⃗3,ρ(j)

)r2j (
gb⃗3,ρ(j)

)r2j+Aj ·w̃2

∀j ∈ B.

In creating Cj for j ∈ B, we have used the fact that Aj · w̃ = 0 for these values

of j.

We observe that the coefficients of the exponent vector of Cj for j ∈ B

in terms of the basis vectors b⃗5,ρ(j), . . . , b⃗8,ρ(j) can be computed as:

P−1 ·


µ3Aj · θ̃

µ3Aj · (θ̃ + w̃)
γ1j
γ2j

 =


γ1j

γ1j + Aj · (µ3θ̃)
γ2j

γ2j + Aj · (ψµ3(θ̃ + w̃))

 .

This demonstrates the implicit assignments for θ1, θ2 claimed above.

120

Now, we examine the exponents of the Dj values for j ∈ B. If the τ3

term is not present on T1,ρ(j), Dj is equal to

e(g, g)Aj ·v+α1
ρ(j)

r1j+α2
ρ(j)

r2j ,

as required in GameQ. If the τ3 term is present, then we have an extra con-

tribution of τ3µ3Aj · θ̃. This is equivalent to replacing the sharing vector v by

v + τ3µ3θ̃. Crucially, the value of τ3 is only involved elsewhere in ξ1GID, but

its contribution is masked by the random value ξ̃1GID and θ̃ has a nonzero first

entry, since the collection of rows Aj for j ∈ B is not allowed to include the

vector (1, 0, . . . , 0) in its span. Thus, v+τ3µ3θ̃ is distributed as a truly random

vector, independent of s. In this case, the ciphertext is properly distributed

as a semi-functional encryption of a random element of GT , independent of

the value of Mb, as required in Gamefinal. Thus, B can leverage A’s difference

in advantage between these games to break the subspace assumption.

Combining Lemmas 4, 28, 29, 30, and 31, Theorem 27 follows.

121

Chapter 8

Further Work and Future Directions

We have now presented three CP-ABE schemes and accompanying se-

curity proofs. These results demonstrate the flexibility and breadth of the

dual system encryption paradigm, which can be used to prove full security

under simple, standard assumptions and can also leverage more complex, pa-

rameterized assumptions to prove full security for more efficient systems. We

have additionally demonstrated how it can be adapted to the functionality of

multi-authority schemes. Here, we briefly discuss further work on functional

encryption that we have presented elsewhere and open problems for future

work.

8.1 Further Work

Unbounded ABE Schemes All of the schemes we have presented here have

public parameters that scale linearly with the size of the attribute universe.

This is often called “small universe ABE.” There has also been prior work

on “large universe ABE,” which allows the size of the attribute universe to

be exponential in comparison to the size of the public parameters. The first

large universe ABE construction [39] was a KP-ABE scheme that was proven

122

selectively secure and required ciphertexts to obey a preset bound on the size

of the associated attribute sets.

Requiring such a bound is an undesirable feature and is counter to

the intention of allowing greater freedom by enlarging the attribute universe.

In joint work with Waters [52], we provide a selectively secure large universe

KP-ABE scheme without any such bounds. We expect that our techniques

presented here could also be used in the large universe setting to obtain fully

secure unbounded CP-ABE and KP-ABE schemes under q-type assumptions.

Such schemes would allow an exponentially large attribute universe and not

require any restrictions on the use of attributes or the size of attribute sets - this

would maintain full security without requiring any compromises on flexibility.

Leakage Resilience Motivated by side-channel attacks on real world cryp-

tosystems, many recent works have studied the problem of extending security

proofs to instances where an attacker has access to limited side-channel in-

formation about underlying secret keys. Such information is called “leakage,”

and schemes that are proven to remain secure in such contexts are called

“leakage-resilient.” There have been many different models proposed for for-

malizing leakage-resilience. In the “only computation leaks” model introduced

by Micali and Reyzin [56] (further studied in [28, 29, 37, 43], for example), it is

assumed that leakage obtained during a computation only depends on what-

ever portions of the secret state are directly involved in that computation. In

the bounded leakage model introduced by Akavia, Goldwasser, and Vaikun-

123

tanathan [4] (further studied in [5, 6, 18, 45, 57], for example), it is assumed

that all memory can leak, but that the entire leakage obtained over the life-

time of a system is suitably bounded.

In the continual memory leakage model introduced concurrently by

Dodis, Haralambiev, Lopez-Alt, and Wichs [26] and Brakerski, Kalai, Katz,

and Vaikuntanathan [19], the most conservative approach is taken, as it is

supposed that all memory can leak, all the time - the amount of leakage is

only bounded “locally” within discrete time intervals. Working in this model

provides the most complete defense against the variety of potential leakage

attack scenarios. In this challenging setting, one must continually update

secret keys to avoid an attacker leaking an entire key.

In joint work with Rouselakis and Waters [49], we show that the dual

system encryption methodology provides convenient tools for proving leakage

resilience alongside full security. We demonstrated this by presenting fully

secure IBE, HIBE, and ABE systems resilient to bounded leakage from each

of many secret keys per user, as well as master keys. This can be realized as

resilience against continual leakage if we assume keys are periodically updated

and no (or logarithmic) leakage is allowed during the update process.

The assumption that little or no leakage is allowed during a secret key

update was shared by all early works in the continual memory leakage model

[17, 19, 26, 49, 54]. Though this assumption was necessary to implement the

proof strategies in these works, it is a very artificial and undesirable restriction

to place on the attacker. One goal of the continual memory leakage model is

124

to avoid the “only computation leaks” assumption and hence obtain a more

robust result. However, the intuition behind the “only computation leaks”

assumption is that it is usually computation itself that causes leakage, not

storage. Since an update of a secret key is a computation, assuming that this

cannot leak is counter to this intuition, and merely replaces one potentially

unrealistic assumption with an opposite one.

In joint work with M. Lewko and Waters [47], we present the first

schemes (signatures and PKE) secure in the continual memory leakage model

while allowing significant amounts of leakage on the entire secret state at all

times, including during secret key updates. As long as the amount of leakage

per key update remains bounded by a certain constant fraction of the secret key

size, our schemes remain provably secure. The main technical innovation we

introduce in this work is a strategy for embedding a computational challenge

in an initial key generation and then designing a sequence of updates so that

its effect is realized only after a certain number of updates. This strategy

circumvents the primary obstacle encountered by prior proof techniques, which

required embedding a computational challenge into each update process, hence

preventing the simulator from performing the update “honestly” and knowing

all of the values it would need to compute leakage on during an update. We

extend these results in joint work with Dodis, Waters, and Wichs [27].

125

8.2 Future Directions

Achieving Optimal Efficiency from Simple Assumptions The open

problem most directly suggested by our work here is the task of obtaining

fully secure ABE systems from simple (i.e. non-q-type) assumptions, without

making significant sacrifices on efficiency (we consider our encoding technique

to be a significant sacrifice). Our results suggest that accomplishing this for

CP-ABE in the selective setting will likely suffice, as a new selective proof

technique that can be leveraged within our dual system framework would

ultimately produce a proof of full security. It may also be possible to further

leverage our key isolation mechanism and take more advantage of the fact that

in some sense we need consider only a single key at a time.

More Expressive Functionalities The schemes we have presented here

allow LSSS access structures, which can efficiently express monotonic boolean

formulas, for example. These are quite versatile, but one could imagine allow-

ing even more expressive access structures, such as circuits. Allowing circuits

would enable some access policies to be expressed much more efficiently than

current systems can achieve. However, moving to structures as general as cir-

cuits poses many technical challenges, and we suspect that such an advance

would require many new ideas - perhaps in a different setting than bilinear

groups.

126

Alternate Complexity Settings Given the several examples of lattice-

based cryptographic systems that have built upon ideas first developed in bi-

linear group cryptography (e.g. [1, 21]), lattice-based cryptography is a good

target for new instantiations of dual system encryption techniques. Obtain-

ing dual system proofs in the lattice-based setting would likely extend the

variety of functional encryption systems available in that realm, which are

currently limited to IBE [1, 21, 35], HIBE [1, 21], and predicate encryption

for inner product predicates [3]. It is also possible that functionality in the

lattice-based setting could eventually surpass what is achieved (or even what

is achievable) in the bilinear setting. This is the case, for instance, in the area

of homomorphic encryption, as fully homomorphic encryption was achieved

in the lattice setting by Gentry [33] and is not known to be possible in any

other context. However, expressive functional encryption primitives like ABE

present some distinct technical challenges in the lattice-based setting that have

yet to be overcome.

127

Appendix

128

Appendix 1

Proof of Our q-Based Assumption in the

Generic Group Model

We prove a lower bound for the complexity of our source group q-

parallel BDHE assumption in the generic group model. In the generic group

model [66], an adversary is not given direct access to the group, but rather

only receives “handles” representing elements. It must interact with an oracle

to perform the group operation (multiplication and division are both enabled)

and obtain handles for new elements. It is assumed that it can only use

handles which it has previously received from the oracle. We consider an

experiment where an adversary is given handles for the group elements given

out in the assumption as well as a handle for the challenge term Tβ (here, β

is a uniformly random bit). The adversary may then interact with the oracle

to perform group operations and pairings and it is given the handles for the

group elements resulting from these operations. Finally, the adversary must

guess the bit β. The difference between the adversary’s success probability

and one half is defined to be its advantage. For other examples of uses of the

generic group model to justify assumptions in bilinear groups, see [12, 44].

We now develop some convenient notation. We consider c, d, f, b1, . . . , bq

129

as variables over Zp, and we define M to be the following set of rational func-

tions over these variables:

M := {1, f, df, c1, . . . , cq, cq+2, . . . , c2q, ci/bj ∀i ∈ [2q] \ {q + 1}, ∀j ∈ [q],

dfbj ∀j ∈ [q], dfcibj′/bj ∀i ∈ [q], ∀j, j′ ∈ [q] s.t. j ̸= j′}.

These are the exponents of the group elements given out in our source group

q-parallel BDHE assumption. We let E(M) denote the set of all pairwise prod-

ucts of functions in M. This set of rational functions represents the exponents

of elements in GT that can be obtained by pairing elements with exponents in

M.

We say a function T is dependent on a set of functions S = {S1, . . . , Sk}

if there exist constants r1, . . . , rk ∈ Zp such that T = r1S1 + · · · + rkSk. This

is an equality of functions over Zp, and hence must hold for all settings of the

variables. If no such constants exist, we say that T is independent of S. We

begin by establishing the following lemma.

Lemma 32. For each function M ∈ M ∪ {dcq+1}, the product M · dcq+1 is

independent of E(M) ∪ dcq+1(M \M). (Here, dcq+1(M \M) denotes the set

formed by removing M from M and then multiplying all remaining elements

by dcq+1.)

Proof. We note that every element ofM∪{dcq+1} and every element of E(M)∪

dcq+1(M \ M) is a ratio of monomials. Hence, the only way M(dcq+1) can

be dependent on E(M) ∪ dcq+1(M \ M) is if it is in fact contained in the

130

set E(M) ∪ dcq+1(M \ M). First, we note that d2c2q+2 is not contained in

E(M) ∪ dcq+1M. For any M ∈ M, it is clear that dcq+1M /∈ dcq+1(M \M).

Thus it suffices to prove that for eachM , dcq+1M /∈ E(M). In other words, we

must show that E(M) does not intersect with the set dcq+1M (the set formed

by multiplying each element of M by dcq+1. To see this, we examine the set

dcq+1M.

By definition, we have that

dcq+1M = {dcq+1, dfcq+1, d2fcq+1, dcq+2, . . . , dc2q+1, dc2q+3, . . . , dc3q+1,

dci/bj ∀j ∈ [q], ∀i ∈ {q + 2, . . . , 3q + 1} \ {2q + 2}, d2fbjcq+1 ∀j ∈ [q],

d2fcibj′/bj ∀i ∈ {q + 2, . . . , 2q + 1}, ∀j, j′ ∈ [q] s.t. j ̸= j′}.

We now must check if any of these are in E(M), which is the set of pairwise

products of things in M. We observe that in M, every occurrence of d is

accompanied by f and f−1 never appears: so it is impossible for E(M) to

contain any elements which have higher powers of d than f . This rules out all

of the elements in dcq+1M above except for dfcq+1.

To also rule out dfcq+1, we consider all the possible ways it might be

formed as a product of two elements of M. Since this term contains f , one

of the two factors in M must be a term containing f . We note that neither

f or df can be one of the factors, since dcq+1, cq+1 /∈ M. We note that an

element of the form dfbj cannot be one of the two factors, since cq+1/bj /∈M.

Similarly, an element of the form dfcibj′/bj cannot be one of the two factors,

131

since cq+1−ibj/bj′ /∈ M. We have thus dismissed all ways the f could be

obtained, and we conclude that dfcq+1 /∈ E(M).

We now proceed similarly to the proof strategy in [12, 44] to establish

the following theorem:

Theorem 33. For any adversary A that makes Q queries to the oracles com-

puting the group operations in G,GT and the bilinear map e : G× G → GT ,

the advantage of A against the source group q-parallel BDHE assumption in

the generic group model is at most O
(

Q2q
p

)
.

Proof. In the real experiment, the variables c, d, f, b1, . . . , bq are first set ran-

domly, and then the adversary is given handles for the group elements corre-

sponding to the terms given out in the assumption and to Tβ. A can then issue

oracle queries for handles corresponding to products, divisions, or pairings of

elements that it already has handles for. We define a new experiment in which

the variables are never concretely instantiated, but instead the handles cor-

respond to formal functions. Two elements are now given the same handle if

and only if they are equal as formal functions over the variables.

This differs only from the real experiment when it happens that two

formal functions are unequal, but happen to coincide for the particular choice

of the variable settings. All of the functions created in the course of the

experiment are linear combinations of rational functions whose numerators

are polynomials of degree ≤ 4q and whose denominators are always among

{b1, . . . , bq}. Multiplying such a rational function by the product b1 · · · bq will

132

thus yield a polynomial of degree ≤ 5q. The probability that two formal

polynomials of degree ≤ 5q are unequal but happen to be equal for a random

setting of the variables modulo p is upper bounded by 5q
p

by the Schwartz-

Zippel Lemma. Thus, the probability of the particular setting of the variables

causing a difference between the two experiments is O
(

Q2q
p

)
.

Now, in this new experiment where formal variables are maintained,

the only way for the adversary to have any advantage in guessing β is for it

to generate a two formal functions during the course of the experiment that

are the same only when β takes a particular value. In our case, this must

mean that the attacker generates two functions that are equal only when the

challenge term is gdc
q+1

. We can rearrange terms and express this equality as

dcq+1h1 = h2 for functions h1 and h2 satisfying the following constraints: h1

must be non-zero and generated in G (so without using pairings). Thus, h1

must be a linear combination of elements of M ∪ {dcq+1}. Also, h2 must be a

linear combination of elements in E(M) (note that this set includes M since

1 ∈M). But this means that for someM ∈M∪{dcq+1}, dcq+1M is dependent

on E(M) ∪ dcq+1(M \M), contradicting Lemma 32.

133

Bibliography

[1] S. Agrawal, D. Boneh, and X. Boyen. Efficient lattice (h)ibe in the

standard model. In EUROCRYPT, pages 553–572, 2010.

[2] S. Agrawal, D. Boneh, and X. Boyen. Lattice basis delegation in fixed

dimension and shorter-ciphertext hierarchical ibe. In CRYPTO, pages

98–115, 2010.

[3] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan. Functional en-

cryption for inner product predicates from learning with errors. In ASI-

ACRYPT, pages 21–40, 2011.

[4] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hard-

core bits and cryptography against memory attacks. In TCC, pages

474–495, 2009.

[5] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs. Public-

key encryption in the bounded-retrieval model. In EUROCRYPT, pages

113–134, 2010.

[6] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryp-

tography in the bounded-retrieval model. In CRYPTO, pages 36–54,

2009.

134

[7] A. Beimel. Secure schemes for secret sharing and key distribution. PhD

thesis, Israel Institute of Technology, Technion, Haifa, Israel, 1996.

[8] M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure

against selective opening attack. In TCC, pages 235–252, 2011.

[9] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-

based encryption. In Proceedings of the IEEE Symposium on Security

and Privacy, pages 321–334, 2007.

[10] D. Boneh and X. Boyen. Efficient selective-id secure identity based en-

cryption without random oracles. In EUROCRYPT, pages 223 – 238,

2004.

[11] D. Boneh and X. Boyen. Secure identity based encryption without ran-

dom oracles. In CRYPTO, pages 443–459, 2004.

[12] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption

with constant size ciphertext. In EUROCRYPT, pages 440–456, 2005.

[13] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In

CRYPTO, pages 41–55, 2004.

[14] D. Boneh and M. Franklin. Identity based encryption from the weil

pairing. In CRYPTO, pages 213–229, 2001.

[15] D. Boneh, E. Goh, and K. Nissim. Evaluating 2-dnf formulas on cipher-

texts. In TCC, pages 325–342, 2005.

135

[16] D. Boneh, A. Sahai, and B. Waters. Fully collusion resistant traitor

tracing with short ciphertexts and private keys. In EUROCRYPT, pages

573–592, 2006.

[17] E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In

EUROCRYPT, pages 89–108, 2011.

[18] Z. Brakerski and S. Goldwasser. Circular and leakage resilient public-key

encryption under subgroup indistinguishability - (or: Quadratic residuos-

ity strikes back). In CRYPTO, pages 1–20, 2010.

[19] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming

the hole in the bucket: Public-key cryptography resilient to continual

memory leakage. In FOCS, pages 501–510, 2010.

[20] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryp-

tion scheme. In EUROCRYPT, pages 255–271, 2003.

[21] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to

delegate a lattice basis. In EUROCRYPT, pages 523–552, 2010.

[22] M. Chase. Multi-authority attribute based encryption. In TCC, pages

515–534, 2007.

[23] M. Chase and S. Chow. Improving privacy and security in multi-authority

attribute-based encryption. In ACM Conference on Computer and Com-

munications Security, pages 121–130, 2009.

136

[24] L. Cheung and C. Newport. Provably secure ciphertext policy abe. In

ACM Conference on Computer and Communications Security, pages 456–

465, 2007.

[25] C. Cocks. An identity based encryption scheme based on quadratic

residues. In Proceedings of the 8th IMA International Conference on

Cryptography and Coding, pages 26–28, 2001.

[26] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography

against continuous memory attacks. In FOCS, pages 511–520, 2010.

[27] Y. Dodis, A. Lewko, B. Waters, and D. Wichs. Storing secrets on con-

tinually leaky devices. In FOCS, pages 688–697, 2011.

[28] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In

FOCS, pages 293–302, 2008.

[29] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient

signatures. In TCC, pages 343–360, 2010.

[30] D. M. Freeman. Converting pairing-based cryptosystems from composite-

order groups to prime-order groups. In EUROCRYPT, pages 44–61, 2010.

[31] S. Garg, A. Kumarasubramanian, A. Sahai, and B. Waters. Building

efficient fully collusion-resilient traitor tracing and revocation schemes.

In ACM Conference on Computer and Communications Security, pages

121–130, 2010.

137

[32] C. Gentry. Practical identity-based encryption without random oracles.

In EUROCRYPT, pages 445–464, 2006.

[33] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,

pages 169–178, 2009.

[34] C. Gentry and S. Halevi. Hierarchical identity based encryption with

polynomially many levels. In TCC, pages 437–456, 2009.

[35] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lat-

tices and new cryptographic constructions. In STOC, pages 197–206,

2008.

[36] C. Gentry and A. Silverberg. Hierarchical id-based cryptography. In

ASIACRYPT, pages 548–566, 2002.

[37] S. Goldwasser and G. N. Rothblum. Securing computation against con-

tinuous leakage. In CRYPTO, pages 59–79, 2010.

[38] V. Goyal, A. Jain, O. Pandey, and A. Sahai. Bounded ciphertext policy

attribute-based encryption. In ICALP, pages 579–591, 2008.

[39] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute based encryp-

tion for fine-grained access control of encrypted data. In ACM conference

on Computer and Communications Security, pages 89–98, 2006.

[40] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new

techniques for nizk. In CRYPTO, pages 97–111, 2006.

138

[41] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowl-

edge for np. In EUROCRYPT, pages 339–358, 2006.

[42] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption.

In EUROCRYPT, pages 466–481, 2002.

[43] A. Juma and Y. Vahlis. Protecting cryptographic keys against continual

leakage. In CRYPTO, pages 41–58, 2010.

[44] J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting dis-

junctions, polynomial equations, and inner products. In EUROCRYPT,

pages 146–162, 2008.

[45] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage

resilience. In ASIACRYPT, pages 703–720, 2009.

[46] A. Lewko. Tools for simulating features of composite order bilinear

groups in the prime order setting. In EUROCRYPT, pages 318–335,

2012.

[47] A. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In

STOC, pages 725–734, 2011.

[48] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully se-

cure functional encryption: Attribute-based encryption and (hierarchical)

inner product encryption. In EUROCRYPT, pages 62–91, 2010.

139

[49] A. Lewko, Y. Rouselakis, and B. Waters. Achieving leakage resilience

through dual system encryption. In TCC, pages 70–88, 2011.

[50] A. Lewko and B. Waters. New techniques for dual system encryption and

fully secure hibe with short ciphertexts. In TCC, pages 455–479, 2010.

[51] A. Lewko and B. Waters. Decentralizing attribute-based encryption. In

EUROCRYPT, pages 568–588, 2011.

[52] A. Lewko and B. Waters. Unbounded hibe and attribute-based encryp-

tion. In EUROCRYPT, pages 547–567, 2011.

[53] A. Lewko and B. Waters. New proof methods for attribute-based encryp-

tion: Achieving full security through selective techniques, 2012.

[54] T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to

continual leakage on memory and computation. In TCC, pages 89–106,

2011.

[55] S. Meiklejohn, H. Shacham, and D. M. Freeman. Limitations on transfor-

mations from composite-order to prime-order groups: The case of round-

optimal blind signatures. In ASIACRYPT, pages 519–538, 2010.

[56] S. Micali and L. Reyzin. Physically observable cryptography (extended

abstract). In TCC, pages 278–296, 2004.

[57] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage.

In CRYPTO, pages 18–35, 2009.

140

[58] T. Okamoto and K. Takashima. Homomorphic encryption and signatures

from vector decomposition. In Pairing, pages 57–74, 2008.

[59] T. Okamoto and K. Takashima. Hierarchical predicate encryption for

inner-products. In ASIACRYPT, pages 214–231, 2009.

[60] T. Okamoto and K. Takashima. Fully secure functional encryption with

general relations from the decisional linear assumption. In CRYPTO,

pages 191–208, 2010.

[61] T. Okamoto and K. Takashima. Decentralized attribute-based signatures.

Cryptology ePrint Archive, Report 2011/701, 2011. http://eprint.

iacr.org/.

[62] R. Ostrovksy, A. Sahai, and B. Waters. Attribute based encryption with

non-monotonic access structures. In ACM conference on Computer and

Communications Security, pages 195–203, 2007.

[63] A. Sahai and B. Waters. Fuzzy identity based encryption. In EURO-

CRYPT, pages 457–473, 2005.

[64] A. Shamir. Identity-based cryptosystems and signature schemes. In

CRYPTO, pages 47–53, 1984.

[65] E. Shi and B. Waters. Delegating capabilities in predicate encryption

systems. In Automata, Languages and Programming, volume 5126 of

LNCS, pages 560–578. Springer, 2008.

141

[66] V. Shoup. Lower bounds for discrete logarithms and related problems.

In EUROCRYPT, pages 256–266, 1997.

[67] B. Waters. Efficient identity-based ecnryption without random oracles.

In EUROCRYPT, pages 114–127, 2005.

[68] B. Waters. Dual system encryption: realizing fully secure ibe and hibe

under simple assumptions. In CRYPTO, pages 619–636, 2009.

[69] B. Waters. Ciphertext-policy attribute-based encryption: An expressive,

efficient, and provably secure realization. In PKC, pages 53–70, 2011.

142

Vita

Allison Bishop Lewko was born in South Bend, Indiana on January 26,

1984, the daughter of Marie D. Bishop and Donald C. Bishop. She received

her A.B. degree in Mathematics from Princeton University in 2006 (summa

cum laude) and a Certificate of Advanced Study in Mathematics from the

University of Cambridge in 2007 (with distinction). She began her doctoral

studies at the University of Texas at Austin in the fall of 2007. She married

Mark Joseph Lewko in December, 2009.

Permanent address: 2100 Alexander Avenue
Austin, Texas 78722

This dissertation was typeset with LATEX
† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

143

