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Abstract— robotic grasping is one of the most important fields
in robotics, in which great progress has been made in recent
years with the help of convolutional neural network (CNN).
However, including multiple objects in one scene can invalidate
the existing CNN-based grasp detection algorithms, because
manipulation relationships among objects are not considered,
which are required to guide the robot to grasp things in the
right order. This paper presents a new CNN architecture called
Visual Manipulation Relationship Network (VMRN) to help
robots detect targets and predict the manipulation relationships
in real time, which ensures that the robot can complete
tasks in a safe and reliable way. To implement end-to-end
training and meet real-time requirements in robot tasks, we
propose the Object Pairing Pooling Layer (OP2L) to help to
predict all manipulation relationships in one forward process.
Moreover, in order to train VMRN, we collect a dataset named
Visual Manipulation Relationship Dataset (VMRD) consisting
of 5185 images with more than 17000 object instances and
the manipulation relationships between all possible pairs of
objects in every image, which is labeled by the manipulation
relationship tree. The experimental results show that the new
network architecture can detect objects and predict manip-
ulation relationships simultaneously and meet the real-time
requirements in robot tasks.

I. INTRODUCTION

When a robot is interacting with the environment, the
first thing is to perceive and understand the environment.
For example, when the robot is ordered to get something, it
should first make clear what and where the target is, then
how to get close to it and grasp it. During interaction with
the environment, one of the most important and frequent
actions is grasping or manipulation. Therefore, perception
and inference before manipulation, which we define as grasp
precondition in this paper, is necessary and significant for
robots, especially for intelligent robots that may face com-
plex environments containing hundreds of object categories.

As described above, grasping is one of the most significant
manipulation in everyday life. robotic grasping has developed
rapidly in recent years. However, it is still far behind human
performance and remains unsolved. For example, when hu-
mans encounter a stack of objects like shown in Fig. 1, they
instinctively know how to grasp them. As for the robot, it still
remains challenging and, therefore, hinder the widespread
use of robots in everyday life.
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Fig. 1. Importance of manipulation order. Left: A cup is on a book. Right:
A phone is on a box. As shown in two scenes, if we do not consider the
relationships of manipulation, and robots choose to pick up the book or the
box first, then the cup or the phone may be dumped or even broken.

Some recent works have proved the effectiveness of deep
learning and convolutional neural network (CNN) in robotic
perception [4], [19], [39] and control [8], [18]. In particular,
deep learning has achieved unprecedented performance in
robotic grasping detection [16], [17], [27], [30]. Most current
robotic grasping detection methods take RGB or RGB-D
images as input and output vectorized and standardized
grasps.

Using this type of grasp detection algorithm for robotic
grasping experiments can only deal with scenes containing a
single target. Some works try to do grasp or grasp pose de-
tection in cluttered scenes [5], [9], [19], [25], [35]. However,
in these works, they just focus on robotic grasping detection
or grasp pose estimation without the recognition of what
object will be grasped and inference of object relationships
that can ensure safe and reliable manipulations. The robot
will execute the grasp having the highest confidence score.
Doing this can have a devastating effect on objects in some
multi-object scenes. For example, as shown in Fig. 1, a cup is
placed on a book, and if the detected grasp with the highest
confidence score belongs to the book, which means the robot
chooses to pick up the book first, the cup may break.

The most relative work that is similar to ours is Guo et
al. [10]. In this work, they try to help robots discover the
specified target and grasp it. However, this algorithm can
only deal with one thing in each iteration and do not concern
about the global information. In other words, before grasping
the last object, the robot will not know whether the target is
in the scene or not. Besides, the original dataset used in this
paper only contains 352 RGB-D images and the objects are
only fruits, which limits the use in real world tasks.

Therefore, in this paper, we focus on helping the robot
infer the right grasping order when it is facing a stack
of objects, which is defined as manipulation relationship



recognition and will help robots manipulate or grasp things
in a safe mode.

Some recent works have used CNNs to predict the rela-
tionships between objects rather than just object detection
[1], [20], [23], [36]. These works show that the CNN has
the potential to understand the relationships between objects.
Therefore, we hope to establish a method based on neural
network so that the robot can understand the manipulation
relationships between objects in multi-object scenes to help
the robot finish more complicated grasping tasks.

In our work, we design a new network architecture named
Visual Manipulation Relationship Network (VMRN) to si-
multaneously detect objects and recognize the manipulation
relationships. The network architecture has two stages. The
output of the first-stage is the object detection result, and
the output of the second-stage is the recognition result of
the manipulation relationships. To train our network, we
contribute a new dataset called Visual Manipulation Rela-
tionship Dataset (VMRD). The dataset contains 5185 images
of hundreds of objects with 51530 manipulation relationships
and the category and location information of each object. In
summary, the contributions of our work include three points:

e We design a new CNN architecture to simultaneously
detect objects and recognize manipulation relationships,
which meets the real-time requirements in robot tasks.
We collect a new dataset of hundreds graspable objects,
which includes the location and category information
and the manipulation relationships between pairs of
objects.

As we know, it is the first end-to-end architecture to
predict robotic manipulation relationships directly using
an image as input with a CNN.

II. BACKGROUND
A. Object Detection

Object detection is defined as a process using an image
including several objects as input to locate and classify as
many target objects as possible in the image. Sliding window
used to be the most common method to detect objects. When
using this way to do object detection, the features, such as
HOG [2] and SIFT [22], of the target objects are usually
extracted first, and then they are used to train a classifier,
like Supported Vector Machine, to classify the candidates
coming from sliding window stage. Deformable Parts Model
(DPM) [3] is the most successful one of this type of object
detection algorithms.

Recently, object detection algorithms based on deep fea-
tures, such as Region-based CNN (RCNN) family [31], [33]
and Single Shot Detector (SSD) family [21], are proved
to drastically outperform the previous algorithms which are
based on hand-designed features. Based on the detection
process, the main algorithms are classified into two types,
which we call one-stage algorithms such as SSD [21] and
two-stage algorithms such as Faster RCNN [31]. One-stage
algorithms are usually faster than two-stage algorithms while
two-stage algorithms often get better results [12].
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Our work focuses on not only the object detection, but also
the manipulation relationship recognition. The challenge is
how to combine the relationship recognition stage with object
detection stage. To solve this problem, we design the Object
Pairing Pooling Layer, which is used to generate the input of
manipulation relationship predictor using the object detection
results and convolutional feature maps as input. The details
will be described in following sections.

B. Visual Relationship Detection

Visual relationship detection means understanding object
relationships of an image. Some previous works try to learn
spatial relationships [6], [7]. Later, researchers attempt to
collect relationships from images and videos and help models
map these relationships from images to language [15], [29],
[34], [41]. Recently, with the help of deep learning, the
relationship recognition between objects has made a great
process [1], [20], [23], [36]. Lu et al. [23] collect a new
dataset of object relationships called Visual Relationship
Dataset and propose a new relationship recognition model
consisting of visual and language parts, which outperforms
previous methods. Liang et al. [20] firstly combine deep
reinforcement learning with relationships and their model
can sequentially output the relationships between objects
in one image. Yu et al. [36] use internal and external
linguistic knowledge to compute the conditional probability
distribution of a predicate given a (subject,object) pair,
which achieves better performance. Dai et al. [1] propose
an integrated framework called Deep Relational Network for
exploiting the statistical dependencies between objects and
their relationships.

These works focus on relationships represented by lin-
guistic information between objects but not manipulation
relationships. In our work, we introduce relationship detec-
tion methods to help robots find the right order in which
the objects should be manipulated. And because of the real-
time requirements of robot system, we need to find a way
to accelerate the recognition of manipulation relationships.
Therefore, we propose an end-to-end architecture different
from all previous works.

C. Spatial Relationship Reasoning

Spatial relationship in robotics is similar to our ma-
nipulation relationship. Spatial relationship reasoning often
takes point clouds of the environment as input, and through
analysis, gets spatial relationships between objects in the
scene. Rosman et al. [32] segment objects in the point
cloud, use SVM to extract contact point network for spatial
relationship reasoning and redescribe a scene in terms of a
layered representation to help robots manipulate interacting
objects in a meaningful way. Zampogiannis et al. [37] use
point cloud tracking to equip robot the ability of understand-
ing and reproducing the evolution of the spatial relations
between involved objects during observing and executing
complex manipulation actions such as pouring water and
placing objects in a bowl. Ziaeetabar et al. [40] apply
spatial relationship reasoning in semantically comparing and



identifying actions, which is called Enriched Semantic Event
Chain representation. Another term “support relationship” is
similar to spatial relationship, which means the support order
of stacked objects [24]. In [24], geometry and static equi-
librium in classical mechanics are used to support relations
between object pairs. Later, single and multiple view support
order is inferred into three classes: “support from below”,
“support from side”, and ‘“containment” [26]. Recently, a
safe manipulation strategy based on spatial relationship is
proposed in [14], which can handle situations uncertainties
in support relation.

However, spatial relationship differs from manipulation
relationship since it focuses on the relative position instead
of directly manipulation order. Our proposed manipulation
relationship network directly outputs which object should be
manipulated and grasped first to ensure the stability of the
other objects. It is more simple and only needs RGB images
instead of point clouds to do the inference, which is inspired
by the idea of visual relationship detection.

III. PROPOSED APPROACH

The proposed network architecture is shown in Fig. 3.
The inputs of our network are images and outputs are object
detection results and manipulation relationship trees. Our
network consists of three parts: feature extractor, object
detector and manipulation relationship predictor, with param-
eters denoted by @, €2 and O respectively.

In our work, taking into account the real-time requirements
of object detection, we use Single Shot Detector (SSD)
algorithm [21] as our object detector. SSD is an one-stage
object detection algorithm based on CNN. It utilizes multi-
scale feature maps to regress and classify bounding boxes in
order to adapt to object instances with different size. Input of
object detector is convolution feature maps (in our work, we
use VGG16 [13] or ResNet50 [11] features). Through object
classification and multi-scale object location regression, we
obtain the final object detection results. The result of each ob-
ject is a 5-dimensional vector (cls, Zymin, Ymin, Tmazs Ymaz)-
Then the inputs of Object Pairing Pooling Layer (OP?L) are
object detection results and convolution features. The outputs
are concatenated as a mini-batch for predicting manipulation
relationships by traversing all possible pairs of objects.
Finally, the manipulation relationship between each pair of
objects is predicted by manipulation relationship predictor.
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Fig. 2. An example of manipulation relationship tree. Left: Images
including several objects. Middle: All pair of objects and manipulation
relationships. Right: manipulation relationship tree, in which the leaf nodes
should be manipulated before the other nodes.
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A. Manipulation Relationship Representation

In this paper, manipulation relationship is the order of
grasping. Therefore, we need a objective criterion to deter-
mine the grasping order, which is described as following:
if moving one object will have an effect on the stability of
another object, this object should not be moved first. Since
we only focus on the manipulation relationships between
objects and do not concern the linguistic information, a tree-
like structure (two objects may have one same child), called
manipulation relationship tree in the following, can be
constructed to represent the manipulation relationships of
all the objects in each image. Objects are represented by
nodes and parent-child relationships between nodes indicate
the manipulation relationships. In manipulation relationship
tree, the object represented by the parent node should be
grasped after the object represented by the child node. Fig.
2 is an example of the manipulation relationship tree. A pen
is on a remote controller, and a remote controller, an apple
and a stapler are on a book. Therefore, the pen is the child
of the remote controller and the remote controller, the apple
and the stapler are children of the book in the manipulation
tree.

B. Object Pairing Pooling Layer

OPZL is designed to implement the end-to-end training of
the whole network. In our work, weights of feature extractor
® are shared by manipulation relationship predictor and
object detector. OP?L is added between feature extractor
and manipulation relationship predictor like in Fig. 3, using
object location (e.g. the online output of object detection or
the offline ground truth bounding box) and shared feature
maps CNN(I;®) as input, where [ is the input image. It
finds out all possible pairs (n objects correspond to n(n —1)
pairs) of objects and makes their features a mini-batch
to train the manipulation relationship predictor. Although
in complex visual relationship recognition tasks, traversing
all possible object pairs is time-consuming [38] due to
the large number of objects in the scene and the sparsity
of the relationships between the objects. However, in our
manipulation relationship recognition task, there are only a
few of objects in the scene and it does not take a long time
to traverse all the object pairs.

Let O; and O; stand for an object pair. OP?L can generate
the features of O; and O; denoted by CNN(O;,0;;®),
which includes features of two objects and their union. In
detail, the features are cropped from shared feature maps
and adaptively pooled into a fixed spatial size H x W
(e.g.7 x 7). The gradients with respect to the same object or
union bounding box coming from manipulation relationship
predictor are accumulated and propagated backward to the
front layers.

C. Training Data of Relation Predictor

An extra branch of CNN is cascaded after OP?L to
predict manipulation relationships between objects. Train-
ing data for manipulation relationship predictor Dgp is
generated by OP2L, which includes two parts: online data
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of convolution layers (e.g. VGG [13] or ResNet [11]), which output feature maps with size of 512 x 38 x 38. These features are used by object detector
and OP2L to respectively detect objects and generate the feature groups of all possible object pairs which are used to predict manipulation relationships

by manipulation relationship predictor.
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Fig. 4. Method to label online data. First, we match the predicted bounding
boxes to the ground truth by areas of overlap. Then we use the manipulation
relationship between ground truth bounding boxes as the ground truth
manipulation relationship between predicted bounding boxes to generate
online data used to train manipulation relationship predictor.

D, and offline data D,sr, coming from object detection
results and ground truth bounding boxes respectively. That
is to say Drp = Dy, U Dyyy. For each image, Drp
is a set of CNN features CNN(O;,O,; ®) of all possible
object pairs and their labels (O;, R,0,), where R is the
manipulation relationship between O; and O;. The reason
we mix online data and offline data to train manipulation
relationship predictor is that online data can be seen as the
augmentation of offline data while offline data can be seen
as the correction of online data. Manipulation relationships
between online object instances are labeled according to the
manipulation relationships between ground truth bounding
boxes that maximumly overlap the online ones. As shown
in Fig. 4, object detection result is shown in right. The
manipulation relationship between the mobile phone and the
box is determined by the following two steps: 1) match
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detected bounding boxes of the mobile phone and the box
to the ground truth ones by overlaps; 2) use manipulation
relationship between the ground truth bounding boxes to
label the manipulation relationship of detected bounding
boxes.

D. Loss Function of Relation Predictor

In our work, there are three manipulation relationship
types between any two objects in one image:

o 1) object 1 is the parent of object 2

e 2) object 2 is the parent of object 1

e 3) object 1 and object 2 have no manipulation relation-
ship.

Therefore, our manipulation relationship recognition pro-
cess is essentially a classification problem of three cate-
gories for any pair of objects CNN(O;,0;;®). Let ©
denote the weights of relation recognition branch. Note that
because exchanging the subject and object will possibly
change the manipulation relationship type (e.g. from parent
to child), the resultsrecognition of CNN(O;,O;; ®) and
CNN(Oj,O;; ®) may be different. The manipulation rela-
tionship likelihood of R is defined as:

eh&(CNN(0;,0;;9))

P(R|O,,0;:0) = (1)

Zle el (CNN(0;,04;9))

We choose multi-class cross entropy function as loss
function of manipulation relationship recognition:

Lyp(R|O;,05;0) = —log(P(R|0;, 05;0))  (2)

For each image, manipulation relationship recognition loss
includes two parts: online data loss L,,, and offline data loss
Loyy. The loss for the whole image is:



Lrp(Drp;©) =ALon + (1 = XN)Loyy
=AY Lp(R|O;,05;0)+

Don

(1=X) > Lyy(R|O;,05;0)

Doy

3)

where )\ is used to balance the importance of online data
D,y and offline data D,¢¢. In our work, we set A to 0.5.

E. Training Method

The whole network is trained end-to-end, which means
that the object detector and manipulation relationship pre-
dictor are trained simultaneously.

Let 2 be the weights of object detector and Dpp be the
training data of object detector including shared features of
the whole image CNN(I;®) and object detection ground
truth (cls,loc). The loss function for object detector is the
same as Liu et al. described in [21]:

Lop (DOD§ Q) = Lioc + aLconf 4

where « is set to 1 according to experience. Like in [21],
default bounding boxes are defined as a set of predeter-
mined bounding boxes with a few of fixed sizes, which serve
as a reference during object detection process. Location loss
Lioe is smooth L1 loss between ground truth bounding box
and matched default bounding box and all bounding boxes
are encoded as offsets. Classification confidence loss Loy
is also multi-class cross entropy loss.

Loss function of manipulation relationship recognition
Lgp is detailed in section IV.B. Combining Lrp and Lop,
the complete loss for shared layers is:

L(I;®) = uLop(Dop; Q)+(1 — u)Lrp(Drp;©)  (5)

1 is used to balance the importance of Lop and Lrp. In
our work, u is set to 0.5. And according to chain rule:

oL _  OLop OCNN(L®)
9% "9CNN(I;®) 0D ©
- OLgpp ACNN(0;,0,; ®)

OCNN(O;, OF D)
IV. DATASET

0P

A. Data Collection

Different from visual relationship dataset [23], we focus
on manipulation relationships, so objects included in our
dataset should be manipulatable or graspable. Moreover,
manipulation relationship dataset should contain not only
objects localized in images, but also rich variety of position
relationships.

Our data are collected and labeled using hundreds of
objects coming from 31 categories. There are totally 5185
images including 17688 object instances and 51530 manipu-
lation relationships. Category and manipulation relationship
distribution is shown in Fig. 5(a). Each object node includes
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Fig. 5. Visual Manipulation Relationship Dataset. (a) Category and
manipulation relationship distribution of our dataset. (b) Some dataset
examples

category information, bounding box location, the index of
the current node and indexes of its parent nodes and child
nodes. Some examples of our dataset is shown in Fig. 5(b).
Complete dataset can be downloaded at this link!.

During training, we randomly split the dataset into a
training set and a testing set in a ratio of nine to one. In detail,
training set includes 4656 images, 15911 object instances and
46934 manipulation relationships, and testing set contains the
rest.

B. Labeling Criterion

Because our dataset focuses on the manipulation relation-
ship with no linguistic or position information, instead of
directly giving position relationships (e.g. under, on, beside
and so on) between objects, we only give the order of ma-
nipulation of objects: manipulation relationship tree. There
are several advantages over giving position relationships:
1) the manipulation relationships are more simpler, which
makes relationship recognition task easier; 2) the results
can directly give the manipulation relationships between
objects, without the need to reconstruct the manipulation
relationships through position relationships.

During labeling, there should be a criterion that can be
strictly enforced. Therefore, in our work, we set a labeling
criterion of manipulation relationship: when the movement

Thttp://gr.xjtu.edu.cn/web/zeuslan/visual-manipulation-relationship-
dataset;jsessionid=E6F2B81979FA7849D9D773A7A389B809



TABLE I
ACCURACY OF OBJECT DETECTION AND VISUAL MANIPULATION RELATIONSHIP RECOGNITION

Author ‘ Algorithm ‘ Training Data mAP ‘ Rel. ‘ Obj.Rec.  Obj.Prec. ‘ Img. ‘ Speed (ms) ‘

Lu et al. [23] | VGG16-SSD, VAM Don UDgyy 93.01 88.76 75.50 71.28 46.88 ~100
ResNet50-SSD, VAM Don UDyyy 91.72 88.76 74.33 75.19 49.72

Ours VGG16-VMRN (No Rel. Grad.) Don UDgyy 93.01 88.36 77.28 73.04 50.66
ResNet50-VMRN (No Rel. Grad.) | Don U Dyyy 91.72 90.73 77.68 77.55 53.12
VGG16-VMRN Don 94.18 92.80 82.64 77.76 60.49
VGG16-VMRN Dy 94.36 92.75 81.55 76.09 58.60 28
VGG16-VMRN Don UDgyy 94.09 93.36 82.29 78.01 63.14
ResNet50-VMRN Don 91.81 92.01 79.03 72.55 54.44
ResNet50-VMRN Dyyy 92.71 91.86 79.33 74.71 55.95
ResNet50-VMRN Don UDyyy 92.67 92.19 80.55 76.02 57.28

of an object will affect the stability of other objects, the
object should not be the leaf node of the manipulation
relationship tree, which means that the object should not
be moved first. For example, as shown in the up-left image
in Fig. 5(b), there are three objects: on the left, there is an
orange can and on the right, a red box is put on a green box.
If the green box is moved first, it will have an effect on the
stability of the red box, so it should not be the leaf node of
the manipulation relationship tree. If the red box or the can
is moved first, it will not affect stability of any other object,
so they should be the leaf node.

V. EXPERIMENTS
A. Training Settings

Our models are trained on Titan Xp with 12 GB memory.
We have trained two Visual Manipulation Relationship Net-
work (VMRN) models based on VGG16 net and ResNet50
called VGG16-VMRN and ResNet50-VMRN. Because of
the unstability of the random object detection results in the
beginning, the two VMRN models are pretrained with only
D,y for the first 10k iterations. Learning rate for both net-
works is 0.001 and will decay to 0.0001 after 80k iterations.
Weight decay for VGG16 and ResNet is 0.003 and 0.0001
respectively. Batch size is 8 and momentum is 0.9. We set
Nesterov to True for both networks. Training will take 120
epochs with 1000 iterations per epoch. The hyperparameters
are shared with object detector and manipulation relationship
predictor.

B. Testing Settings

Comparison Model As we know, there is no research
about vision-based robotic manipulation relationship recog-
nition with CNN so far. Therefore, we compare our experi-
mental results with Visual Appearance Model (VAM) in Lu
et al. [23], which is modified to adapt to our task. VAM takes
union bounding box as input and outputs the relationship. But
in our work, exchanging the subject and object may change
the manipulation relationship. Therefore, instead of only
using union bounding box, we parallel subject, object and
union bounding boxes as input to get the final manipulation
relationship.
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Self Comparison To study the contribution of OP?L and
end-to-end training, we also confirm the performance of our
models that are trained with no gradients backward from
manipulation relationship predictor ({VGG16-SSD, VMRN
(No Rel. Grad.)} and {ResNet50-SSD, VMRN (No Rel.
Grad.)}). To explore the benefits from online and offline data,
we also train our models with only online (D,,) or offline
(Do) training data.

Metrics Three metrics are used in our experiment: 1)
Manipulation Relationship Testing (Rel.): this metric focus
on the accuracy of manipulation relationship model on
ground truth object instance pairs, in which the input features
or image patches of manipulation relationship predictor are
obtained based on the offline ground truth bounding boxes; 2)
Object-based Testing (Obj. Rec. and Obj. Prec.): this metric
tests the accuracy based on object pairs. In this setting,
the triplet (O;, R,O;) is treated as a whole. The result
is considered correct if both objects are detected correctly
(category is right and IoU between predicted bounding box
and ground truth is more than 0.5) and the predicted manip-
ulation relationship is correct. We compute the recall (Obj.
Rec.) and precision (Obj. Prec.) of our models during object-
based testing 3) Image-based Testing (Img.): this metric tests
the accuracy based on the whole image. In this setting, the
image is considered correct only when all possible triplets
are predicted correctly.

C. Analysis

Results are shown in Table I. Compared with VAM, we
can conclude that:

1) Performance is better: VAM performs worse than
proposed VMRN models in all three experiment settings.
The gains mainly come from the end-to-end training process,
which improves the accuracy of manipulation relationship
a lot (from 88.76% to 93.36%). This is confirmed in the
following self comparison part.

2) Speed is faster: The proposed VMRN models (VGG-
VMRN and ResNet-VMRN) are both less time-consuming
than VAM. Forward process of OP2L and manipulation
relationship predictor takes 5.5ms per image in average.
As described in [21], the speed of SSD object detector
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is 21.74ms per image on Titan X with mini-batch of 1
image. Therefore, our manipulation relationship recognition
has little effect on speed of the whole network. But because
of the huge network architecture and sequential process,
VAM spends 122ms on each image in average to predict
all of the manipulation relationships. Even when we put all
possible triplets of one image to a batch, it still spends 86ms
for one image.

Self comparison results indicate that proposed VMRN
models trained end-to-end can outperform the models that are
trained without the gradients from manipulation relationship
predictor. It mainly benefits from the influence coming
from manipulation relationship recognition loss Lrp. The
parameters of the network are adjusted to better predict the
visual manipulation relationships and the network is more
holistic. As explored in Pinto et al. [28], multi-task learning
in our network can help improve the performance because of
diversity of data and regularization in learning. Finally, we
can observe that using online and offline data simultaneously
may actually help to improve the performance of the network
due to the complementing of online and offline data.

The difference between the performance of VGG16-
VMRN and ResNet50-VMRN is also interesting. Gradients
coming from manipulation relationship recognition loss Lrp
improve both networks, but its improvement on ResNet50-
VMRN is less than that on VGG16-VMRN as shown in Table
I. Note that VGG16-based feature extractor has 7.63 million
parameters and ResNet50-based feature extractor has 1.45
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million parameters, so the number of parameters may limit
the performance ceiling of ResNet50-VMRN. In the future,
we will try deeper ResNet as our base network.

Some subjective results are shown in Fig. 6. From the four
examples in the first line, we can see that our model can
simultaneously detect objects and manipulation relationships
in one image. From the four examples in the second line,
we can conclude that the occlusion, the similarity between
different categories and visual illusion can have a negative
influence on the predicted results.

Note that when there are more than one objects of the
same kind in one image, VMRN will also work well because
objects are distinguished by the indexes corresponding to
them, which are bound to them when they are detected.

VI. CONCLUSIONS

In this paper, we focus on solving the problem of visual
manipulation relationship recognition to help robots manipu-
late things in the right order. We propose a new network ar-
chitecture named Visual Manipulation Relationship Network
and collect a dataset called Visual Manipulation Relationship
Dataset to implement simultaneously object detection and
manipulation relationship recognition, which meets the real-
time requirement on robot platform. The proposed Object
Paring Pooling Layer (OP?L) can not only accelerate the
manipulation relationship recognition by replacing the se-
quential process with a simple forward process, but also
improve the performance of the whole network by back-



propagating the gradients from manipulation relationship
predictor.

However, due to the limited number of objects used in
training, it is difficult for the object detector to generalize
to objects with a large difference in appearance from our
dataset. Besides, due to the traversal of all object pairs in
the scene, when there are too many objects, memory usage
of the network will become unacceptable. In our future
work, we will expand our dataset using more graspable
objects and combine the grasp detection with VMRN to
implement an all-in-one network which can simultaneously
detects objects and their grasp positions and recognizes the
correct manipulation relationships. Moreover, we will try to
overcome the memory usage shortcoming for scenes with
large number of objects.
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