rxKinFu: Moving Volume KinectFusion for 3D Perception and Robotics

Dimitrios Kanoulas¹, Nikos G. Tsagarakis¹, and Marsette Vona²

Abstract—KinectFusion is an impressive algorithm that was introduced in 2011 to simultaneously track the movement of a depth camera in the 3D space and densely reconstruct the environment as a Truncated Signed Distance Formula (TSDF) volume, in real-time. In 2012, we introduced the Moving Volume KinectFusion method that allows the volume/camera move freely in the space. In this work, we further develop the Moving Volume KinectFusion method (as rxKinFu) to fit better to robotic and perception applications, especially for locomotion and manipulation tasks. We describe methods to raycast point clouds from the volume using virtual cameras, and use the point clouds for heightmaps generation (e.g., useful for locomotion) or object dense point cloud extraction (e.g., useful for manipulation). Moreover, we present different methods for keeping the camera fixed with respect to the moving volume, fusing also IMU data and the camera heading/velocity estimation. Last, we integrate and show some demonstrations of rxKinFu on the mini-bipedal robot RPBP, our wheeled quadrupedal robot CENTAURO, and the newly developed full-size humanoid robot COMAN+. We release the code as an open-source package, using the Robotic Operating System (ROS) and the Point Cloud Library (PCL).

I. INTRODUCTION

Three-dimensional (3D) perception is an important tool for several robotic applications. Apart from understanding the environment itself, e.g. for inspection purposes, most of the autonomous locomotion or manipulation tasks require an accurate knowledge of the surrounding surfaces. Several exteroceptive sensors have been used in the past for acquiring 3D data, such as LiDAR scanners or stereo, depth, RGB-D, monocular, and event cameras. There are applications for which a single frame of data is enough for completing a task. These methods that use successive unaligned information have the advantage of time-varying independence, but always lack the ability to work in areas where the sensor does not provide all the required data at a particular time-frame due to the environment conditions, such as lighting or occlusions. For this reason, the fusion of spatiotemporal camera data are usually required for accurate perception that provides useful information. In limbed robotics, this is crucial both for locomotion and manipulation tasks. For instance, a robot needs to know the ground under its feet when stepping on rough terrain. Unless cameras are mounted under its feet, there would always be occlusions between its visual or range sensors and the terrain under its feet, because of its body (legs, arms, etc.). In manipulation, a similar scenario could be true if an object (for instance a box or a mug) needs to be seen from multiple views to be grasped.

Aligning and fusing visual or range data has been studied in the past in the context of sparse Simultaneous Localization and Mapping (SLAM) [1], where features are extracted in the environment and the moving camera is tracked based on them. In 2011, an impressive real-time GPU-based algorithm for dense 3D reconstruction and mapping, named KinectFusion [2], was introduced to function on depth cameras, such as the MS Kinect. The original method was limited in a 3-by-3 meters volume space, which is relative small for robotic applications. For this reason, in 2012 we introduced the Moving Volume KinectFusion algorithm [3], in which we allowed the volume move freely in the space, following the depth camera sensor, through a sequence of volume shifts and remaps. In this way, even though slightly more computationally expensive, the introduced method allowed free-roaming use of KinectFusion in fixed memory space.

In this paper, we further extend the original Moving Volume KinectFusion to the rxKinFu algorithm, that applies better to robotic applications, such as locomotion or manipulation. In particular, we first develop three moving volume policies, that may apply to different tasks. Moreover, we introduce a raycasting method to extract point clouds, based on virtual cameras placed in the moving volume. This is particularly interesting since from the same reconstructed environment, one can select the viewpoint that applies to the purpose of the ongoing task. Using the raycasted clouds, the generation of heightmaps or dense object clouds becomes easier. In this direction, we also introduce the use of an IMU sensor mounted on the camera or robot to fuse gravity information into the volume. This helps in the moving volume policies. Furthermore, we integrate color in the reconstructed representation (which was not available in the original system), which can help with various methods that require RGB data to work (e.g. deep learning methods). Last but not least, we integrate rxKinFu into three different robots, i.e., our mini-bipedal robot RPBP [4], [5], our full-size wheeled/legged centaur-like robot CENTAURO (www.centauro-project.eu), and our full-size humanoid robot COMAN+ (www.cogimon.eu), demonstrating some 3D perceptual methods of our introduced system.

The introduced rxKinFu system was implemented in C++, runs on GPU, and was integrated into the Robotic Operating System (ROS), using the Point Cloud Library (PCL). The code is publicly available as an open-source package: github.com/RoViL-Team/rxkinfu.

Next, we review the related work (Sec. I-A), followed

¹Dimitrios Kanoulas and Nikos G. Tsagarakis are with the Humanoids and Human-Centered Mechatronics Department, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy. [Dimitrios.Kanoulas, Nikos.Tsagarakis]@iit.it.
²Marsette Vona (NASA Jet Propulsion Laboratory) was with the College of Computer and Information Science, Northeastern University, Boston, Massachusetts, at the time of the associated work. vona@jpl.nasa.gov
by a review of the original KinectFusion algorithm [2] and our previous moving volume version [3] (Sec. II). Then, we present our rxKinFu adaptations to the system for 3D perception and robotic applications (Sec. III), and some demonstrations on our three legged robots (Sec. IV). Finally, we conclude with some future research directions.

A. Related Work

Visual SLAM and structure-from-motion methods, were extensively used over the past few years, such as PTAM [6], [7], LSD-SLAM [8], ORB-SLAM [9], DSO [10], or RK-SLAM [11]. Most of these methods use sparse features (except some, such as the dense DTAM [12]) to drive either visual odometry or localization/mapping, using visual cameras with low computational complexity (running usually in CPUs). The disadvantage of sparsity is that the methods rely in the existence of features in the environment. A particular interesting algorithm was the Parallel Tracking and Mapping (PTAM) method [6] that showed impressive results using an RGB camera and was used on a walking robot [13].

Visual SLAM based on depth cameras [14]–[19], has also an increasing interest after the release of cheap depth sensors, such as the MS Kinect or Xtion ASUS. Moreover, the release of cheap GPUs have enabled a whole new area in dense real-time SLAM and reconstruction methods, based on structures such as the Truncated Signed Distance Formula (TSDF) [20] or the Octomap [21]. The new technological advances in the hardware and sensing, led to the introduction of an impressive system named KinectFusion [2], which was based on the TSDF surface representation for real-time mapping and environment reconstruction, for a fixed and relatively small volume (3 cubic meters). Since then, various methods were developed for dense mapping, using depth sensors. In 2012, we extended the original KinectFusion method to a moving volume [3] version that allowed free-roaming camera movements (rotations and translations), while the Kintinuous [22] and the large scale KinectFusion implemented in PCL [23] worked towards translating the volume. Since then, several works are using the concept of KinectFusion for different applications. For instance, BundleFusion [24] was developed towards improving the accuracy of the fusion, DynamicFusion [25] towards the reconstruction and tracking of non-rigid scenes, and SemanticFusion [26] and DARNN [27] towards incorporating object semantics into the reconstruction and tracking.

Our intention is to extend our previously introduced method [3] to more robotic/perception applications. Visual SLAM has been already used in the past on legged robot locomotion and mapping, based on sparse visual features [28]–[30]. There are various works that used KinectFusion as black box for legged robot applications. For instance, the original KinectFusion or subsequent methods, such as Kintinuous, have been used for humanoid robot locomotion [31]–[35]. We intent to provide a free-roaming method, that fuses also IMU data, for legged robot applications, such as locomotion or manipulation.

II. KinectFusion REVIEW

As mentioned before, the original KinectFusion [2] algorithm works using the Truncated Signed Distance Formula (TSDF) method [20] within a 3D volume structure. The whole volume splits into a fixed amount of voxel grids \(v \), e.g. \(512^3 \) voxels of 3 cubic meters of physical volume space. For each voxel \(v \), two numbers are saved; the signed distance to the closest physical surface \(d \) (negative values mean that the cell is behind a surface with respect to the camera) and a weight \(w \) that represents the confidence of the distance. For time/space efficiency, only the truncated values are stored, i.e., only cells close to surfaces \((−T < d < T, \text{ for } T = 3\text{cm}) \) hold values, whereas the rest are either not-initialized \((w = d = 0) \) or empty \((T = d) \). The input data is a sequence of depth images, from which the camera pose is computed with the Generalized Iterative Closest Point (GICP) [36] method. Through a highly parallelized implementation, every cell is updated (both the distance \(d \) and the confidence \(w \)) by projecting each new depth image into the volume space. Thus, both camera tracking (camera-to-volume transformation: \(C_t \) in frame \(t \)) and data fusion (distance/confidence updates) are achieved simultaneously.

The original algorithm runs in 30fps, using 512 GPU cores for the MS Kinect range sensor and only depth information. Notice that point clouds could be downloaded from the GPU, using either marching cubes or ray-casting where through zero crossing. The KinectFusion original results were very impressive and worked great for small physical spaces.

A. Moving Volume KinectFusion

In [3], we introduced a tweak in the original method, by allowing free-roaming of the camera, introducing the Moving Volume KinectFusion algorithm (Fig. 1). The main difference with the original method is that the volume moves freely with the camera into the space, through a set of volume
A. Task-based Remapping Strategies

Originally, the initial camera pose was centered behind the volume. When the distance \((l_{max})\) and orientation \((\alpha_{max})\) thresholds were met, the volume shifting/remapping was taking place. In this work, we extend this by introducing three different task-relevant strategies for the camera pose inside the volume. First, we define the TSDF volume’s frame to be at its upper-left-back corner (Fig. 1), with the x, y, and z axes towards right, down, and forward directions, correspondingly. We have implemented the following moving volume policies, given a down vector \(v_d\) (e.g. the gravity vector) and a forward vector \(v_f\) (e.g. the direction of the camera movement).

The goal is to determine the rotation matrix \(R_{vol}\) and the translation vector \(t_{vol}\) from the new volume frame to the old one, i.e. \(P_i = [R_{vol,i} \mid t_{vol,i}]\) from volume \(i\) to \(i - 1\). The identity transformation denotes no change/movement.

- **Fix Volume (fv):** In this case the volume is not moving at all, as in the original KinectFusion algorithm.
- **Fix Camera in Volume (fcv):** Transform the volume (rotate and translate) as needed, to keep the camera at its initial pose relative to the volume frame. To do that, we need to factor the current camera pose \([R_{C_{curr}} \mid t_{C_{curr}}]\) into the initial camera transform \([R_{C_{init}} \mid t_{C_{init}}]\) followed by the volume transform:

 \[
 R_{vol} = R_{C_{curr}} R_{C_{init}}^{-1} \\
 t_{vol} = t_{C_{curr}} - R_{vol} t_{C_{init}}
 \]

- **Fix Down and then Forward in the Volume (fdv):**
 First, rotate the volume to keep its \(+y\)-axis direction parallel to a specified down vector, and then orient its \(+z\)-axis as close as possible to a specified forward vector. The volume is also automatically translated to keep the camera at its initial location. To do that, we let the volume rotation matrix be formed from the following column-wise vectors:

 \[
 R_{vol} = [v_d \mid v_f \mid v_f \times v_d]
 \]

For the volume translation vector we need to factor the current camera pose \([R_{C_{curr}} \mid t_{C_{curr}}]\) into a new
camera pose $[R'_{C_{curr}} \mid t'_{C_{curr}}]$:

$$[R'_{C_{curr}} \mid t'_{C_{curr}}] = [R'_{C_{curr}} \mid t_{Cinit}]$$

followed by the volume transformation:

$$[R_{C_{curr}} \mid t_{C_{curr}}] = [R_{vol} \mid t_{vol}] \ast [R'_{C_{curr}} \mid t_{Cinit}]$$

Now, the two unknowns are the translation part of the volume transformation t_{vol} and the rotation part of the new camera pose $R'_{C_{curr}}$:

$$R_{C_{curr}} = R_{vol}R'_{C_{curr}} \Rightarrow R'_{C_{curr}} = R'_{vol}R_{C_{curr}}$$

$$t_{C_{curr}} = R_{vol}t_{Cinit} + t_{vol}$$

The last is resulting to:

$$t_{vol} = t_{C_{curr}} - R_{vol}t_{Cinit} \quad (4)$$

- **Fix Forward and then Down in the Volume (ffv):**
 First, rotate the volume to keep its $+z$-axis direction parallel to a specified forward vector, and then orient its $+y$-axis as close as possible to a specified down vector. The volume is also automatically translated to keep the camera at its initial location. Following the same methodology as fdv, we have that:

$$R_{vol} = [v_r := v_f \times v_d \mid v_d \mid v_d \times v_r] \quad (5)$$

$$t_{vol} = t_{C_{curr}} - R_{vol}t_{Cinit} \quad (6)$$

These strategies provide several options for the moving volume configuration over time, depending on the robotic task to be completed. For instance, a simple option is to have the moving volume down and forward vectors fixed to the default $+y$ (mvfd) and $+z$ (mvff) axes of the starting volume configuration.

More interestingly, we have implemented three more options. The first one (downgrav) sets the moving volume down vector (v_d) equal to the gravity vector, acquired from an IMU mounted on the camera sensor or robot. This is particularly interesting during locomotion in rough terrain, where heightmaps of the environment need to be generated and the horizontal plane is required (see later Fig. 6 in Sec. IV, where the RPBP robot is using this to acquire point clouds for stepping). The second option (headvel) estimates the forward vector (v_f) as the recent camera velocity, while the third option as the camera’s $+z$-axis vector (see later Fig. 8 in Sec. IV, where the CENTAURO robot is using this to acquire point clouds for manipulation). One can set a threshold and a weight to control a running average filter for these estimations. These options are particularly interesting during navigation, when the camera-view information is important. An example of the “Fix Down and then Forward in the Volume (fdv)” and “downgrav” options is given in Fig. 3.

IMU Integration: Notice, that the integration of the IMU on the range sensor is of high interest, since one can use it as the down vector (v_d) for applications that require the robot in a standing mode, such as locomotion. There are systems such as the CMU Multisense-SL, that visual/range sensors and IMUs come calibrated from the factory. Although, there are cases where these sensors are separated or their relative pose needs to be re-calibrated. To calculate the transformation between the range sensor and a mounted IMU on it, we collect several depth and gravity data from the IMU. Then, for each pair we calculate the dominant plane to extract the normal vector of the point cloud generated from the depth image. For each plane normal and gravity vector we solve the Procrustes problem [37] to get the transformation between the sensors.

B. Raycasting based on Virtual Bubble Cameras

A very important adaptation that we propose in this paper, is about the method that point cloud raycasting from the TSDF volume takes place. Originally, the default option was to raycast from the real camera view-point. This is a reasonable approach for several applications, but in robotics there are cases that different type of raycasting needs to be applied. For instance, when a robot is locomoting on a terrain, it is preferable to have a raycasting view-point from top-down (potentially in the direction of the gravity vector), so that it can easily see “under” its feet and build a heightmap for planning. As long as the robot has moved in the terrain and the voxels of the TSDF volume have already stored some surface information, accumulating data from the previous frames, it is not possible to produce point clouds
IV. ROBOTIC APPLICATIONS

We have implemented the rxKinFu system as an open-source ROS package, to allow robotic and perception researchers use it on their robots for various tasks. To demonstrate this capability, we show an integration of the package on three different robotic systems, using RGB-D range sensors (Primesense Carmine 1.09, Kinect v1, and ASUS Xtion PRO): 1) a mini-biped (RPBP), 2) a centaur-like legged/wheeled quadruped (CENTAURO), and 3) a full-size humanoid (COMAN+), visualized in Fig. 5. To show the visual rxKinFu capabilities on the robots, we first run a stepping experiment on the RPBP robot, then three monitoring experiments on the CENTAURO, and a final monitoring experiment on the COMAN+ robot (Fig. 6–Fig. 9).

![Image of robots and point clouds](image)

Fig. 4. Left: the raycasted RGB point cloud, from the bubble virtual camera. Right: the depth image of the scene from the real camera.

Fig. 5. The three robots, used in the experiments: 1) the mini-biped RPBP, 2) the quadruped CENTAURO, and 3) the humanoid COMAN+.

On the RPBP mini-biped robot, we tested the capability of rxKinFu to generate raycasted point clouds close to the feet of the robot for the purpose of rock stepping. Notice that we used the method of detecting contact surfaces from point clouds, appropriate for stepping, that we introduced in [38]. In Fig. 6 the sequence of moves for the robot are visualized. Initially, the robot is standing and bends over to look down the ground. When a surface appropriate for stepping is recognized in the point cloud the robot moves statically to place its foot on the contact surface (i.e. a rock). For the rxKinFu options, we let the down vector be the gravity one, coming from the IMU which was mounted on the RGB-D sensor of the robot, while we let the b_o distance between the real camera and the bubble frustum be two times the robot’s height. We also used the “Fix Down and then Forward in the Volume (fdv)” option with the down face of the virtual bubble camera acquiring 200px2. The result of using the virtual camera above the robot instead of the real camera view-point is visualized in Fig. 6, allowing the robot to see around its feet and perform the rock stepping task.

On the CENTAURO robot, we firstly tested the capability to generate raycasted point clouds using different faces of the virtual bubble cameras in different resolutions. In this way, we were able to generate dense point clouds of objects or sparser heightmaps of the ground, from different viewpoints. Moreover, we tested the capabilities of the raycasting, by tweaking the position of the bubble frustum. Last, we tested the use of the gravity vector (downgrav) and the camera velocity (headvel) for the fdv and ffv moving volume strategies. In particular, for experiment 1 (Fig. 8-left) we set a table with two drills and we manually drive the robot towards the objects, moving forward/backward/sideways using its...
wheels. With a simple whole-body Cartesian interface to control the orientation of its Center-of-Mass (CoM), we also tried some small CoM movements. The real camera was horizontal to the ground, facing almost forward. We used the “Fix Forward and then Down in the Volume (ffv)” option with the front face of the virtual bubble camera acquiring a dense 400px2 cloud. In Fig. 8-left, one could see the nicely raycasted dense point clouds of the drills, using the virtual front bubble camera. Similarly, for experiment 2 (Fig. 8-right) we set some bricks on the ground and we tried similar robot moves as before. Since the camera was heading forward, we had to place the bubble frustum higher and further behind the real camera frame, so that the raycasted point cloud can be extracted, using the down face of the virtual bubble camera. We used also the down (i.e. gravity) vector to align the bubble frustum to the ground in a way that it was straightforward, with a sparse 200px2 raycasted point cloud to extract directly the corresponding heightmap in real-time. The latter is visualized in Fig. 8-right. Last, for experiment 3 (Fig. 9) we set both the drills on the table and the bricks on the ground and we let CENTAURO roll for a slightly bigger distance, with its real camera facing 45deg downwards. The “Fix Down and then Forward in the Volume (fdv)” strategy is used during volume movements, while the face down virtual bubble camera is raycasting 400px2 point clouds. The captured instance in Fig. 9 is notable, since the robot has traversed some distance and stands in front of the bricks, but the raycasted cloud appears also under its feet (something that is not visible from the real camera viewpoint), giving visual capabilities to the robot for locomotion.

Last but not least, for the COMAN+ experiment (Fig. 7) we let the robot make a predefined bending move (similar to those for picking up boxes from the ground) and we tested the ability to raycast dense (400px2) or sparse (100px2) point clouds of the box/debris in front of it in real-time, by ignoring also some small dynamic movements of the arms in the scene.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented the development of rxKinFu, which is the a modified Moving Volume KinectFusion algorithm for robotics and 3D perception. We integrated different strategies for remapping the moving volume over time and new ways on raycasting point clouds from the TSDF volume based on virtual cameras. We released the system as an open-source package in ROS, while we applied the method on three different robotic systems: a mini-biped for rock stepping, a legged/wheeled quadruped and a humanoid for scene inspection. We plan to extend this method further and integrate it to other EKF-based IMU/Kinematics state estimators on our robots, while more complicated locomotion/manipulation tasks, such as rock hiking or tool manipulation is our next goal for this system. Last but not least, we plan in extending the method to sensors other than the standard RGB-D ones (Kinect or ASUS) that were used in this work.

ACKNOWLEDGEMENT

This work is supported by the CogIMon (no 644727) EU project. Marsette Vona was at Northeastern University in Boston, MA when part of this work was performed with support from the National Science Foundation (no 1149235). The Titan Xp used for this research was donated by the
Fig. 8. The experimental results on the CENTAURO robot, including the TSDF volume, the depth/RGB images from the real camera view-point, and the reconstructed information from the TSDF voxels. Left: a dense (400px²) raycasted point cloud from the virtual front face of the bubble camera. Right: a heightmap generated from the sparse (200px²) raycasted point cloud from the virtual down face of the bubble camera.

Fig. 9. The experimental results on the CENTAURO robot, including the TSDF volume, the depth/RGB images from the real camera view-point, the reconstructed information from the TSDF voxels, and a dense (400px²) raycasted point cloud from the virtual down face of the bubble camera. It is notable that even though the robot stands in front of the rock the raycasted cloud is under its feet.

NVIDIA Corporation. The authors would like to also thank Arturo Laurenzi and Enrico Mingo Hoffman for their help with the control system of the CENTAURO and COMAN+

REFERENCES

