
Article

Reinforcement learning in robotics:
A survey

The International Journal of
Robotics Research
32(11) 1238–1274
© The Author(s) 2013
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364913495721
ijr.sagepub.com

Jens Kober1,2, J. Andrew Bagnell3 and Jan Peters4,5

Abstract
Reinforcement learning offers to robotics a framework and set of tools for the design of sophisticated and hard-to-engineer
behaviors. Conversely, the challenges of robotic problems provide both inspiration, impact, and validation for develop-
ments in reinforcement learning. The relationship between disciplines has sufficient promise to be likened to that between
physics and mathematics. In this article, we attempt to strengthen the links between the two research communities by
providing a survey of work in reinforcement learning for behavior generation in robots. We highlight both key chal-
lenges in robot reinforcement learning as well as notable successes. We discuss how contributions tamed the complexity
of the domain and study the role of algorithms, representations, and prior knowledge in achieving these successes. As
a result, a particular focus of our paper lies on the choice between model-based and model-free as well as between
value-function-based and policy-search methods. By analyzing a simple problem in some detail we demonstrate how rein-
forcement learning approaches may be profitably applied, and we note throughout open questions and the tremendous
potential for future research.

Keywords
Reinforcement learning, learning control, robot, survey

1. Introduction

A remarkable variety of problems in robotics may be
naturally phrased as problems of reinforcement learning.
Reinforcement learning enables a robot to autonomously
discover an optimal behavior through trial-and-error inter-
actions with its environment. Instead of explicitly detail-
ing the solution to a problem, in reinforcement learning
the designer of a control task provides feedback in terms
of a scalar objective function that measures the one-step
performance of the robot. Figure 1 illustrates the diverse
set of robots that have learned tasks using reinforcement
learning.

Consider, for example, attempting to train a robot to
return a table tennis ball over the net (Muelling et al.,
2012). In this case, the robot might make an observations
of dynamic variables specifying ball position and velocity
and the internal dynamics of the joint position and veloc-
ity. This might in fact capture well the state s of the sys-
tem, providing a complete statistic for predicting future
observations. The actions a available to the robot might
be the torque sent to motors or the desired accelerations
sent to an inverse dynamics control system. A function π
that generates the motor commands (i.e. the actions) based
on the incoming ball and current internal arm observations

(i.e. the state) would be called the policy. A reinforcement
learning problem is to find a policy that optimizes the long-
term sum of rewards R(s, a); a reinforcement learning algo-
rithm is one designed to find such a (near-)optimal policy.
The reward function in this example could be based on the
success of the hits as well as secondary criteria such as
energy consumption.

1.1. Reinforcement learning in the context of
machine learning

In the problem of reinforcement learning, an agent explores
the space of possible strategies and receives feedback on

1Bielefeld University, CoR-Lab Research Institute for Cognition and
Robotics, Bielefeld, Germany
2Honda Research Institute Europe, Offenbach/Main, Germany
3Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, USA
4Max Planck Institute for Intelligent Systems, Department of Empirical
Inference, Tübingen, Germany
5Technische Universität Darmstadt, FB Informatik, FG Intelligent
Autonomous Systems, Darmstadt, Germany

Corresponding author:
Jens Kober, Bielefeld University, CoR-Lab Research Institute for Cogni-
tion and Robotics, Universitätsstraße 25, 33615 Bielefeld, Germany.
Email: jkober@cor-lab.uni-bielefeld.de

http://crossmark.crossref.org/dialog/?doi=10.1177%2F0278364913495721&domain=pdf&date_stamp=2013-08-23

Kober et al. 1239

(a) (b)

(c) (d)

Fig. 1. A small sample of robots with behaviors that were rein-
forcement learned. These cover the whole range of aerial vehi-
cles, robotic arms, autonomous vehicles, and humanoid robots.
(a) The OBELIX robot is a wheeled mobile robot that learned
to push boxes (Mahadevan and Connell, 1992) with a value-
function-based approach. (Reprinted with permission from Srid-
har Mahadevan.) (b) A Zebra Zero robot arm learned a peg-in-hole
insertion task (Gullapalli et al., 1994) with a model-free policy
gradient approach. (Reprinted with permission from Rod Gru-
pen.) (c) Carnegie Mellon’s autonomous helicopter leveraged a
model-based policy-search approach to learn a robust flight con-
troller (Bagnell and Schneider, 2001). (d) The Sarcos humanoid
DB learned a pole-balancing task (Schaal, 1996) using forward
models. (Reprinted with permission from Stefan Schaal.)

the outcome of the choices made. From this informa-
tion, a “good”, or ideally optimal, policy (i.e. strategy or
controller) must be deduced.

Reinforcement learning may be understood by contrast-
ing the problem with other areas of study in machine learn-
ing. In supervised learning (Langford and Zadrozny, 2005),
an agent is directly presented a sequence of independent
examples of correct predictions to make in different circum-
stances. In imitation learning, an agent is provided demon-
strations of actions of a good strategy to follow in given
situations (Argall et al., 2009; Schaal, 1999).

To aid in understanding the reinforcement learning prob-
lem and its relation with techniques widely used within
robotics, Figure 2 provides a schematic illustration of two
axes of problem variability: the complexity of sequential
interaction and the complexity of reward structure. This
hierarchy of problems, and the relations between them, is
a complex one, varying in manifold attributes and difficult
to condense to something like a simple linear ordering on
problems. Much recent work in the machine learning com-
munity has focused on understanding the diversity and the
inter-relations between problem classes. The figure should
be understood in this light as providing a crude picture of
the relationship between areas of machine learning research
important for robotics.

Fig. 2. An illustration of the inter-relations between well-studied
learning problems in the literature along axes that attempt to cap-
ture both the information and complexity available in reward sig-
nals and the complexity of sequential interaction between learner
and environment. Each problem subsumes those to the left and
below; reduction techniques provide methods whereby harder
problems (above and right) may be addressed using repeated appli-
cation of algorithms built for simpler problems (Langford and
Zadrozny, 2005).

Each problem subsumes those that are both below and
to the left in the sense that one may always frame the sim-
pler problem in terms of the more complex one; note that
some problems are not linearly ordered. In this sense, rein-
forcement learning subsumes much of the scope of classical
machine learning as well as contextual bandit and imi-
tation learning problems. Reduction algorithms (Langford
and Zadrozny, 2005) are used to convert effective solutions
for one class of problems into effective solutions for others,
and have proven to be a key technique in machine learning.

At lower left, we find the paradigmatic problem of super-
vised learning, which plays a crucial role in applications
as diverse as face detection and spam filtering. In these
problems (including binary classification and regression),
a learner’s goal is to map observations (typically known as
features or covariates) to actions which are usually a dis-
crete set of classes or a real value. These problems possess
no interactive component: the design and analysis of algo-
rithms to address these problems rely on training and testing
instances as independent and identical distributed random
variables. This rules out any notion that a decision made
by the learner will impact future observations: supervised
learning algorithms are built to operate in a world in which
every decision has no effect on the future examples consid-
ered. Further, within supervised learning scenarios, during
a training phase the “correct” or preferred answer is pro-
vided to the learner, so there is no ambiguity about action
choices.

More complex reward structures are also often studied:
one example is known as cost-sensitive learning, where
each training example and each action or prediction is anno-
tated with a cost for making such a prediction. Learning
techniques exist that reduce such problems to the sim-
pler classification problem, and active research directly
addresses such problems as they are crucial in practical
learning applications.

1240 The International Journal of Robotics Research 32(11)

Contextual bandit or associative reinforcement learning
problems begin to address the fundamental problem of
exploration versus exploitation, as information is provided
only about a chosen action and not what might have been.
These find widespread application in problems as diverse as
pharmaceutical drug discovery to ad placement on the web,
and are one of the most active research areas in the field.

Problems of imitation learning and structured prediction
may be seen to vary from supervised learning on the alter-
nate dimension of sequential interaction. Structured pre-
diction, a key technique used within computer vision and
robotics, where many predictions are made in concert by
leveraging inter-relations between them, may be seen as a
simplified variant of imitation learning (Daumé et al., 2009;
Ross et al., 2011a). In imitation learning, we assume that an
expert (for example, a human pilot) that we wish to mimic
provides demonstrations of a task. While “correct answers”
are provided to the learner, complexity arises because any
mistake by the learner modifies the future observations
from what would have been seen had the expert chosen
the controls. Such problems provably lead to compound-
ing errors and violate the basic assumption of independent
examples required for successful supervised learning. In
fact, in sharp contrast with supervised learning problems
where only a single data set needs to be collected, repeated
interaction between learner and teacher appears to both nec-
essary and sufficient (Ross et al., 2011b) to provide perfor-
mance guarantees in both theory and practice in imitation
learning problems.

Reinforcement learning embraces the full complexity of
these problems by requiring both interactive, sequential pre-
diction as in imitation learning as well as complex reward
structures with only “bandit” style feedback on the actions
actually chosen. It is this combination that enables so many
problems of relevance to robotics to be framed in these
terms; it is this same combination that makes the problem
both information-theoretically and computationally hard.

We note here briefly the problem termed “baseline dis-
tribution reinforcement learning”: this is the standard rein-
forcement learning problem with the additional benefit for
the learner that it may draw initial states from a distri-
bution provided by an expert instead of simply an initial
state chosen by the problem. As we describe further in Sec-
tion 5.1, this additional information of which states matter
dramatically affects the complexity of learning.

1.2. Reinforcement learning in the context of
optimal control

Reinforcement learning is very closely related to the theory
of classical optimal control, as well as dynamic program-
ming, stochastic programming, simulation-optimization,
stochastic search, and optimal stopping (Powell, 2012).
Both reinforcement learning and optimal control address
the problem of finding an optimal policy (often also called

the controller or control policy) that optimizes an objec-
tive function (i.e. the accumulated cost or reward), and
both rely on the notion of a system being described by an
underlying set of states, controls, and a plant or model that
describes transitions between states. However, optimal con-
trol assumes perfect knowledge of the system’s description
in the form of a model (i.e. a function T that describes what
the next state of the robot will be given the current state and
action). For such models, optimal control ensures strong
guarantees which, nevertheless, often break down due to
model and computational approximations. In contrast, rein-
forcement learning operates directly on measured data and
rewards from interaction with the environment. Reinforce-
ment learning research has placed great focus on addressing
cases which are analytically intractable using approxima-
tions and data-driven techniques. One of the most important
approaches to reinforcement learning within robotics cen-
ters on the use of classical optimal control techniques (e.g.
linear-quadratic regulation and differential dynamic pro-
gramming (DDP)) to system models learned via repeated
interaction with the environment (Atkeson, 1998; Bagnell
and Schneider, 2001; Coates et al., 2009). A concise discus-
sion of viewing reinforcement learning as “adaptive optimal
control” is presented by Sutton et al. (1991).

1.3. Reinforcement learning in the context of
robotics

Robotics as a reinforcement learning domain differs con-
siderably from most well-studied reinforcement learning
benchmark problems. In this article, we highlight the
challenges faced in tackling these problems. Problems in
robotics are often best represented with high-dimensional,
continuous states and actions (note that the 10–30 dimen-
sional continuous actions common in robot reinforcement
learning are considered large (Powell, 2012)). In robotics,
it is often unrealistic to assume that the true state is com-
pletely observable and noise-free. The learning system will
not be able to know precisely in which state it is and
even vastly different states might look very similar. Thus,
robotics reinforcement learning are often modeled as par-
tially observed, a point we take up in detail in our formal
model description below. The learning system must hence
use filters to estimate the true state. It is often essential
to maintain the information state of the environment that
not only contains the raw observations but also a notion of
uncertainty on its estimates (e.g. both the mean and the vari-
ance of a Kalman filter tracking the ball in the robot table
tennis example).

Experience on a real physical system is tedious to obtain,
expensive and often hard to reproduce. Even getting to the
same initial state is impossible for the robot table tennis sys-
tem. Every single trial run, also called a roll-out, is costly
and, as a result, such applications force us to focus on
difficulties that do not arise as frequently in classical rein-
forcement learning benchmark examples. In order to learn

Kober et al. 1241

within a reasonable time frame, suitable approximations of
state, policy, value function, and/or system dynamics need
to be introduced. However, while real-world experience is
costly, it usually cannot be replaced by learning in simula-
tions alone. In analytical or learned models of the system
even small modeling errors can accumulate to a substan-
tially different behavior, at least for highly dynamic tasks.
Hence, algorithms need to be robust with respect to models
that do not capture all the details of the real system, also
referred to as under-modeling, and to model uncertainty.
Another challenge commonly faced in robot reinforcement
learning is the generation of appropriate reward functions.
Rewards that guide the learning system quickly to success
are needed to cope with the cost of real-world experience.
This problem is called reward shaping (Laud, 2004) and
represents a substantial manual contribution. Specifying
good reward functions in robotics requires a fair amount
of domain knowledge and may often be hard in practice.

Not every reinforcement learning method is equally
suitable for the robotics domain. In fact, many of the
methods thus far demonstrated on difficult problems have
been model-based (Atkeson et al., 1997; Abbeel et al.,
2007; Deisenroth and Rasmussen, 2011) and robot learn-
ing systems often employ policy-search methods rather than
value-function-based approaches (Gullapalli et al., 1994;
Miyamoto et al., 1996; Bagnell and Schneider, 2001; Kohl
and Stone, 2004; Tedrake et al., 2005; Kober and Peters,
2009; Peters and Schaal, 2008a,b; Deisenroth et al., 2011).
Such design choices stand in contrast to possibly the bulk
of the early research in the machine learning community
(Kaelbling et al., 1996; Sutton and Barto, 1998). We attempt
to give a fairly complete overview on real robot reinforce-
ment learning citing most original papers while grouping
them based on the key insights employed to make the robot
reinforcement learning problem tractable. We isolate key
insights such as choosing an appropriate representation for
a value function or policy, incorporating prior knowledge,
and transfer knowledge from simulations.

This paper surveys a wide variety of tasks where
reinforcement learning has been successfully applied to
robotics. If a task can be phrased as an optimization prob-
lem and exhibits temporal structure, reinforcement learning
can often be profitably applied to both phrase and solve
that problem. The goal of this paper is twofold. On the
one hand, we hope that this paper can provide indications
for the robotics community which type of problems can be
tackled by reinforcement learning and provide pointers to
approaches that are promising. On the other hand, for the
reinforcement learning community, this paper can point out
novel real-world test beds and remarkable opportunities for
research on open questions. We focus mainly on results that
were obtained on physical robots with tasks going beyond
typical reinforcement learning benchmarks.

We concisely present reinforcement learning techniques
in the context of robotics in Section 2. The challenges in
applying reinforcement learning in robotics are discussed
in Section 3. Different approaches to making reinforcement

learning tractable are treated in Sections 4–6. In Section 7,
the example of a ball in a cup is employed to highlight
which of the various approaches discussed in the paper
have been particularly helpful to make such a complex
task tractable. Finally, in Section 8, we summarize the spe-
cific problems and benefits of reinforcement learning in
robotics and provide concluding thoughts on the problems
and promise of reinforcement learning in robotics.

2. A concise introduction to reinforcement
learning

In reinforcement learning, an agent tries to maximize the
accumulated reward over its lifetime. In an episodic setting,
where the task is restarted after each end of an episode, the
objective is to maximize the total reward per episode. If the
task is on-going without a clear beginning and end, either
the average reward over the whole lifetime or a discounted
return (i.e. a weighted average where distant rewards have
less influence) can be optimized. In such reinforcement
learning problems, the agent and its environment may be
modeled being in a state s ∈ S and can perform actions
a ∈ A, each of which may be members of either discrete
or continuous sets and can be multi-dimensional. A state s
contains all relevant information about the current situation
to predict future states (or observables); an example would
be the current position of a robot in a navigation task.1 An
action a is used to control (or change) the state of the sys-
tem. For example, in the navigation task we could have the
actions corresponding to torques applied to the wheels. For
every step, the agent also gets a reward R, which is a scalar
value and assumed to be a function of the state and obser-
vation. (It may equally be modeled as a random variable
that depends on only these variables.) In the navigation task,
a possible reward could be designed based on the energy
costs for taken actions and rewards for reaching targets.
The goal of reinforcement learning is to find a mapping
from states to actions, called policy π , that picks actions
a in given states s maximizing the cumulative expected
reward. The policy π is either deterministic or probabilistic.
The former always uses the exact same action for a given
state in the form a = π (s), the later draws a sample from
a distribution over actions when it encounters a state, i.e.
a ∼ π (s, a) = P (a|s). The reinforcement learning agent
needs to discover the relations between states, actions, and
rewards. Hence, exploration is required which can either be
directly embedded in the policy or performed separately and
only as part of the learning process.

Classical reinforcement learning approaches are based
on the assumption that we have a Markov decision pro-
cess (MDP) consisting of the set of states S, set of actions
A, the rewards R and transition probabilities T that capture
the dynamics of a system. Transition probabilities (or den-
sities in the continuous state case) T(s′, a, s) = P(s′|s, a)
describe the effects of the actions on the state. Transition
probabilities generalize the notion of deterministic dynam-
ics to allow for modeling outcomes are uncertain even given

1242 The International Journal of Robotics Research 32(11)

full state. The Markov property requires that the next state
s′ and the reward only depend on the previous state s and
action a (Sutton and Barto, 1998), and not on additional
information about the past states or actions. In a sense, the
Markov property recapitulates the idea of state: a state is a
sufficient statistic for predicting the future, rendering previ-
ous observations irrelevant. In general in robotics, we may
only be able to find some approximate notion of state.

Different types of reward functions are commonly
used, including rewards depending only on the current state
R = R(s), rewards depending on the current state and
action R = R(s, a), and rewards including the transitions
R = R(s′, a, s). Most of the theoretical guarantees only
hold if the problem adheres to a Markov structure, how-
ever in practice, many approaches work very well for many
problems that do not fulfill this requirement.

2.1. Goals of reinforcement learning

The goal of reinforcement learning is to discover an optimal
policy π∗ that maps states (or observations) to actions so as
to maximize the expected return J , which corresponds to
the cumulative expected reward. There are different models
of optimal behavior (Kaelbling et al., 1996) which result in
different definitions of the expected return. A finite-horizon
model only attempts to maximize the expected reward for
the horizon H , i.e. the next H (time) steps h

J = E

{
H∑

h=0

Rh

}
.

This setting can also be applied to model problems where it
is known how many steps are remaining.

Alternatively, future rewards can be discounted by a
discount factor γ (with 0 ≤ γ < 1)

J = E

{ ∞∑
h=0

γ hRh

}
.

This is the setting most frequently discussed in classical
reinforcement learning texts. The parameter γ affects how
much the future is taken into account and needs to be tuned
manually. As illustrated by Kaelbling et al. (1996), this
parameter often qualitatively changes the form of the opti-
mal solution. Policies designed by optimizing with small
γ are myopic and greedy, and may lead to poor perfor-
mance if we actually care about longer-term rewards. It is
straightforward to show that the optimal control law can
be unstable if the discount factor is too low (e.g. it is not
difficult to show this destabilization even for discounted
linear quadratic regulation problems). Hence, discounted
formulations are frequently inadmissible in robot control.

In the limit when γ approaches 1, the metric approaches
what is known as the average-reward criterion (Bertsekas,
1995),

J = lim
H→∞

E

{
1

H

H∑
h=0

Rh

}
.

This setting has the problem that it cannot distinguish
between policies that initially gain a transient of large
rewards and those that do not. This transient phase, also
called prefix, is dominated by the rewards obtained in the
long run. If a policy accomplishes both an optimal pre-
fix as well as an optimal long-term behavior, it is called
bias optimal (Lewis and Puterman, 2001). An example in
robotics would be the transient phase during the start of a
rhythmic movement, where many policies will accomplish
the same long-term reward but differ substantially in the
transient (e.g. there are many ways of starting the same
gait in dynamic legged locomotion) allowing for room for
improvement in practical application.

In real-world domains, the shortcomings of the dis-
counted formulation are often more critical than those of
the average reward setting as stable behavior is often more
important than a good transient (Peters et al., 2004). We
also often encounter an episodic control task, where the task
runs only for H time steps and then reset (potentially by
human intervention) and started over. This horizon, H , may
be arbitrarily large, as long as the expected reward over the
episode can be guaranteed to converge. As such episodic
tasks are probably the most frequent ones, finite-horizon
models are often the most relevant.

Two natural goals arise for the learner. In the first, we
attempt to find an optimal strategy at the end of a phase of
training or interaction. In the second, the goal is to maxi-
mize the reward over the whole time the robot is interacting
with the world.

In contrast to supervised learning, the learner must first
discover its environment and is not told the optimal action it
needs to take. To gain information about the rewards and the
behavior of the system, the agent needs to explore by con-
sidering previously unused actions or actions it is uncertain
about. It needs to decide whether to play it safe and stick
to well-known actions with (moderately) high rewards or
to dare trying new things in order to discover new strate-
gies with an even higher reward. This problem is commonly
known as the exploration–exploitation trade-off.

In principle, reinforcement learning algorithms for
MDPs with performance guarantees are known (Brafman
and Tennenholtz, 2002; Kearns and Singh, 2002; Kakade,
2003) with polynomial scaling in the size of the state and
action spaces, an additive error term, as well as in the hori-
zon length (or a suitable substitute including the discount
factor or “mixing time” (Kearns and Singh, 2002)). How-
ever, state-spaces in robotics problems are often tremen-
dously large as they scale exponentially in the number
of state variables and often are continuous. This chal-
lenge of exponential growth is often referred to as the
curse of dimensionality (Bellman, 1957) (also discussed in
Section 3.1).

Off-policy methods learn independent of the employed
policy, i.e. an explorative strategy that is different from
the desired final policy can be employed during the learn-
ing process. On-policy methods collect sample informa-
tion about the environment using the current policy. As a

Kober et al. 1243

result, exploration must be built into the policy and deter-
mines the speed of the policy improvements. Such explo-
ration and the performance of the policy can result in an
exploration–exploitation trade-off between long- and short-
term improvement of the policy. Modeling exploration
models with probability distributions has surprising impli-
cations, e.g. stochastic policies have been shown to be the
optimal stationary policies for selected problems (Jaakkola
et al., 1993; Sutton et al., 1999) and can even break the
curse of dimensionality (Rust, 1997). Furthermore, stochas-
tic policies often allow the derivation of new policy update
steps with surprising ease.

The agent needs to determine a correlation between
actions and reward signals. An action taken does not have
to have an immediate effect on the reward but can also
influence a reward in the distant future. The difficulty in
assigning credit for rewards is directly related to the hori-
zon or mixing time of the problem. It also increases with the
dimensionality of the actions as not all parts of the action
may contribute equally.

The classical reinforcement learning setup is a MDP
where additionally to the states S, actions A, and rewards
R we also have transition probabilities T(s′, a, s). Here, the
reward is modeled as a reward function R (s, a). If both the
transition probabilities and reward function are known, this
can be seen as an optimal control problem (Powell, 2012).

2.2. Reinforcement learning in the average
reward setting

We focus on the average-reward model in this section. Sim-
ilar derivations exist for the finite horizon and discounted
reward cases. In many instances, the average-reward case is
often more suitable in a robotic setting as we do not have
to choose a discount factor and we do not have to explicitly
consider time in the derivation.

To make a policy able to be optimized by continuous
optimization techniques, we write a policy as a conditional
probability distribution π (s, a) = P (a|s). Below, we con-
sider restricted policies that are parametrized by a vector θ .
In reinforcement learning, the policy is usually considered
to be stationary and memoryless. Reinforcement learning
and optimal control aim at finding the optimal policy π∗ or
equivalent policy parameters θ∗ which maximize the aver-
age return J (π) = ∑

s,a μ
π (s) π (s, a)R (s, a) where μπ is

the stationary state distribution generated by policy π acting
in the environment, i.e. the MDP. It can be shown (Puter-
man, 1994) that such policies that map states (even deter-
ministically) to actions are sufficient to ensure optimality
in this setting: a policy needs neither to remember previous
states visited, actions taken, or the particular time step. For
simplicity and to ease exposition, we assume that this dis-
tribution is unique. MDPs where this fails (i.e. non-ergodic
processes) require more care in analysis, but similar results
exist (Puterman, 1994). The transitions between states s
caused by actions a are modeled as T(s, a, s′) = P(s′|s, a).

We can then frame the control problem as an optimization
of

max
π

J (π) = ∑
s,aμ

π (s) π (s, a)R (s, a) , (1)

s.t. μπ (s′) = ∑
s,aμ

π (s) π (s, a)T(s, a, s′) , ∀s′ ∈ S, (2)

1 = ∑
s,aμ

π (s) π (s, a) (3)

π (s, a) ≥ 0, ∀s ∈ S, a ∈ A.

Here, Equation (2) defines stationarity of the state distribu-
tions μπ (i.e. it ensures that it is well defined) and Equation
(3) ensures a proper state–action probability distribution.
This optimization problem can be tackled in two substan-
tially different ways (Bellman, 1967, 1971). We can search
the optimal solution directly in this original, primal prob-
lem or we can optimize in the Lagrange dual formulation.
Optimizing in the primal formulation is known as policy
search in reinforcement learning while searching in the dual
formulation is known as a value-function-based approach.

2.2.1. Value-function approaches Much of the reinforce-
ment learning literature has focused on solving the opti-
mization problem in Equations (1)–(3) in its dual form
(Puterman, 1994; Gordon, 1999).2 Using Lagrange multi-
pliers Vπ

(
s′) and R̄, we can express the Lagrangian of the

problem by

L =
∑
s,a

μπ (s)π (s, a) R(s, a)

+
∑

s′
Vπ (s′)

[∑
s,a

μπ (s)π (s, a) T(s, a, s′) −μπ (s′)

]

+R̄

[
1 −

∑
s,a

μπ (s)π (s, a)

]

=
∑
s,a

μπ (s)π (s, a)

[
R(s, a) +

∑
s′

Vπ (s′) T(s, a, s′) −R̄

]

−
∑

s′
Vπ (s′)μπ (s′)

∑
a′
π (s′, a′)

︸ ︷︷ ︸
=1

+ R̄.

Using the property
∑

s′,a′ V (s′)μπ (s′)π (s′, a′) = ∑
s,a

V (s)μπ (s)π (s, a), we can obtain the Karush–Kuhn–
Tucker conditions (Kuhn and Tucker, 1950) by differen-
tiating with respect to μπ (s)π (s, a) which yields extrema
at

∂μππL = R(s, a) +
∑

s′
Vπ (s′) T(s, a, s′) −R̄ − Vπ (s) = 0.

This statement implies that there are as many equations as
the number of states multiplied by the number of actions.
For each state there can be one or several optimal actions
a∗ that result in the same maximal value and, hence, can
be written in terms of the optimal action a∗ as Vπ∗

(s) =
R(s, a∗) −R̄+∑s′ Vπ∗

(s′) T(s, a∗, s′). As a∗ is generated by

1244 The International Journal of Robotics Research 32(11)

the same optimal policy π∗, we know the condition for the
multipliers at optimality is

V ∗(s) = max
a∗

[
R(s, a∗) −R̄ +

∑
s′

V ∗(s′) T(s, a∗, s′)

]
, (4)

where V ∗(s) is a shorthand notation for Vπ∗
(s). This state-

ment is equivalent to the Bellman principle of optimality
(Bellman, 1957)3 that states “An optimal policy has the
property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal pol-
icy with regard to the state resulting from the first decision”.
Thus, we have to perform an optimal action a∗ and, subse-
quently, follow the optimal policy π∗ in order to achieve
a global optimum. When evaluating Equation (4), we real-
ize that optimal value function V ∗ (s) corresponds to the
long-term additional reward, beyond the average reward R̄,
gained by starting in state s while taking optimal actions a∗

(according to the optimal policy π∗). This principle of opti-
mality has also been crucial in enabling the field of optimal
control (Kirk, 1970).

Hence, we have a dual formulation of the original prob-
lem that serves as condition for optimality. Many traditional
reinforcement learning approaches are based on identifying
(possibly approximate) solutions to this equation, and are
known as value-function methods. Instead of directly learn-
ing a policy, they first approximate the Lagrangian multi-
pliers V ∗ (s), also called the value function, and use it to
reconstruct the optimal policy. The value function Vπ (s)
is defined equivalently, however instead of always taking
the optimal action a∗, the action a is picked according to
a policy π

Vπ (s)=
∑

a

π (s, a)

(
R (s, a)− R̄ +

∑
s′

Vπ
(
s′)T

(
s, a, s′)).

Instead of the value function Vπ (s) many algorithms rely
on the state–action value function Qπ (s, a) instead, which
has advantages for determining the optimal policy as shown
below. This function is defined as

Qπ (s, a) = R (s, a)− R̄ +
∑

s′
Vπ

(
s′)T

(
s, a, s′) .

In contrast to the value function Vπ (s), the state–action
value function Qπ (s, a) explicitly contains the informa-
tion about the effects of a particular action. The optimal
state–action value function is

Q∗ (s, a)=R (s, a)− R̄ +
∑

s′
V ∗ (s′) T

(
s, a, s′)

=R (s, a)− R̄ +
∑

s′

(
max

a′ Q∗ (s′, a′)) T
(
s, a, s′) .

It can be shown that an optimal, deterministic policy
π∗ (s) can be reconstructed by always picking the action a∗

in the current state that leads to the state s with the highest
value V ∗(s)

π∗ (s) = arg max
a

(
R (s, a)− R̄ +

∑
s′

V ∗ (s′) T
(
s, a, s′)) .

If the optimal value function V ∗ (s′) and the transition
probabilities T

(
s, a, s′) for the following states are known,

determining the optimal policy is straightforward in a set-
ting with discrete actions as an exhaustive search is possi-
ble. For continuous spaces, determining the optimal action
a∗ is an optimization problem in itself. If both states and
actions are discrete, the value function and the policy may,
in principle, be represented by tables and picking the appro-
priate action is reduced to a look-up. For large or con-
tinuous spaces representing the value function as a table
becomes intractable. Function approximation is employed
to find a lower-dimensional representation that matches the
real value function as closely as possible, as discussed in
Section 2.4. Using the state–action value function Q∗ (s, a)
instead of the value function V ∗ (s)

π∗ (s) = arg max
a

(
Q∗ (s, a)

)
,

avoids having to calculate the weighted sum over the suc-
cessor states, and hence no knowledge of the transition
function is required.

A wide variety of methods of value-function-based rein-
forcement learning algorithms that attempt to estimate
V ∗ (s) or Q∗ (s, a) have been developed and can be split
mainly into three classes: (i) dynamic programming-based
optimal control approaches such as policy iteration or
value iteration, (ii) rollout-based Monte Carlo methods and
(iii) temporal difference methods such as TD(λ) (Tempo-
ral Difference learning), Q-learning, and SARSA (State–
Action–Reward–State–Action).

Dynamic programming-based methods. These require
a model of the transition probabilities T(s′, a, s) and the
reward function R(s, a) to calculate the value function. The
model does not necessarily need to be predetermined but
can also be learned from data, potentially incrementally.
Such methods are called model-based. Typical methods
include policy iteration and value iteration.

Policy iteration alternates between the two phases of pol-
icy evaluation and policy improvement. The approach is
initialized with an arbitrary policy. Policy evaluation deter-
mines the value function for the current policy. Each state
is visited and its value is updated based on the current
value estimates of its successor states, the associated tran-
sition probabilities, as well as the policy. This procedure
is repeated until the value function converges to a fixed
point, which corresponds to the true value function. Pol-
icy improvement greedily selects the best action in every
state according to the value function as shown above. The
two steps of policy evaluation and policy improvement are
iterated until the policy does not change any longer.

Kober et al. 1245

Policy iteration only updates the policy once the pol-
icy evaluation step has converged. In contrast, value iter-
ation combines the steps of policy evaluation and policy
improvement by directly updating the value function based
on Equation (4) every time a state is updated.

Monte Carlo methods. These use sampling in order
to estimate the value function. This procedure can be
used to replace the policy evaluation step of the dynamic
programming-based methods above. Monte Carlo methods
are model-free, i.e. they do not need an explicit transition
function. They perform roll-outs by executing the current
policy on the system, hence operating on-policy. The fre-
quencies of transitions and rewards are kept track of and are
used to form estimates of the value function. For example,
in an episodic setting the state–action value of a given state
action pair can be estimated by averaging all of the returns
that were received when starting from them.

Temporal difference methods. These, unlike Monte
Carlo methods, do not have to wait until an estimate of the
return is available (i.e. at the end of an episode) to update
the value function. Rather, they use temporal errors and
only have to wait until the next time step. The temporal error
is the difference between the old estimate and a new esti-
mate of the value function, taking into account the reward
received in the current sample. These updates are done iter-
atively and, in contrast to dynamic programming methods,
only take into account the sampled successor states rather
than the complete distributions over successor states. Like
the Monte Carlo methods, these methods are model-free, as
they do not use a model of the transition function to deter-
mine the value function. In this setting, the value function
cannot be calculated analytically but has to be estimated
from sampled transitions in the MDP. For example, the
value function could be updated iteratively by

V ′ (s) = V (s)+ α
(
R (s, a)− R̄ + V

(
s′)− V (s)

)
,

where V (s) is the old estimate of the value function, V ′ (s)
the updated one, and α is a learning rate. This update step
is called the TD(0)-algorithm in the discounted reward case.
In order to perform action selection a model of the transition
function is still required.

The equivalent temporal difference learning algorithm
for state–action value functions is the average reward case
version of SARSA with

Q′(s, a) = Q(s, a) +α(R(s, a) −R̄ + Q(s′, a′) −Q(s, a)) ,

where Q (s, a) is the old estimate of the state–action value
function and Q′ (s, a) the updated one. This algorithm is on-
policy as both the current action a as well as the subsequent
action a′ are chosen according to the current policy π . The
off-policy variant is called R-learning (Schwartz, 1993),
which is closely related to Q-learning, with the updates

Q′(s, a)=Q(s, a) +α(R(s, a) −R̄+max
a′ Q(s′, a′) −Q(s, a)) .

These methods do not require a model of the transition
function for determining the deterministic optimal policy
π∗ (s). H-learning (Tadepalli and Ok, 1994) is a related
method that estimates a model of the transition probabil-
ities and the reward function in order to perform updates
that are reminiscent of value iteration.

An overview of publications using value-function-based
methods is presented in Table 1. Here, model-based meth-
ods refers to all methods that employ a predetermined or a
learned model of system dynamics.

2.2.2. Policy search The primal formulation of the prob-
lem in terms of policy rather then value offers many features
relevant to robotics. It allows for a natural integration of
expert knowledge, e.g. through both structure and initial-
izations of the policy. It allows domain-appropriate pre-
structuring of the policy in an approximate form without
changing the original problem. Optimal policies often have
many fewer parameters than optimal value functions. For
example, in linear quadratic control, the value function has
quadratically many parameters in the dimensionality of the
state variables while the policy requires only linearly many
parameters. Local search in policy space can directly lead to
good results as exhibited by early hill-climbing approaches
(Kirk, 1970), as well as more recent successes (see Table 2).
Additional constraints can be incorporated naturally, e.g.
regularizing the change in the path distribution. As a result,
policy search often appears more natural to robotics.

Nevertheless, policy search has been considered the
harder problem for a long time as the optimal solu-
tion cannot directly be determined from Equations (1)–(3)
while the solution of the dual problem leveraging Bellman
principle of optimality (Bellman, 1957) enables dynamic-
programming-based solutions.

Notwithstanding this, in robotics, policy search has
recently become an important alternative to value-function-
based methods due to better scalability as well as the con-
vergence problems of approximate value-function methods
(see Sections 2.3 and 4.2). Most policy-search methods
optimize locally around existing policies π , parametrized
by a set of policy parameters θi, by computing changes in
the policy parameters �θi that will increase the expected
return and results in iterative updates of the form

θi+1 = θi +�θi.

The computation of the policy update is the key step
here and a variety of updates have been proposed ranging
from pairwise comparisons (Strens and Moore, 2001; Ng
et al., 2004a) over gradient estimation using finite policy
differences (Sato et al., 2002; Kohl and Stone, 2004; Mit-
sunaga et al., 2005; Tedrake et al., 2005; Geng et al., 2006;
Roberts et al., 2010), and general stochastic optimization
methods (such as Nelder–Mead (Bagnell and Schneider,
2001), cross-entropy (Rubinstein and Kroese, 2004) and
population-based methods (Goldberg, 1989)) to approaches
coming from optimal control such as DDP (Atkeson, 1998)

1246 The International Journal of Robotics Research 32(11)

Table 1. Value-function-based reinforcement learning methods employed for robotic tasks (both average and discounted reward cases)
and associated publications.

Approach Employed by…

Model-based Bakker et al. (2006), Hester et al. (2010, 2012), Kalmár et al. (1998), Martínez-Marín and Duckett (2005),
Schaal (1996), and Touzet (1997)

Model-free Asada et al. (1996), Bakker et al. (2003), Benbrahim et al. (1992), Benbrahim and Franklin (1997), Birdwell
and Livingston (2007), Bitzer et al. (2010), Conn and Peters II (2007), Duan et al. (2007, 2008), Fagg et al.
(1998), Gaskett et al. (2000), Gräve et al. (2010), Hafner and Riedmiller (2007), Huang and Weng (2002),
Huber and Grupen (1997), Ilg et al. (1999), Katz et al. (2008), Kimura et al. (2001), Kirchner (1997), Konidaris
et al. (2011a, 2012), Kroemer et al. (2009, 2010), Kwok and Fox (2004), Latzke et al. (2007), Mahadevan and
Connell (1992), Matarić (1997), Morimoto and Doya (2001), Nemec et al. (2009, 2010), Oßwald et al. (2010),
Paletta et al. (2007), Pendrith (1999), Platt et al. (2006), Riedmiller et al. (2009), Rottmann et al. (2007), Smart
and Kaelbling (1998, 2002), Soni and Singh (2006), Tamošiūnaitė et al. (2011), Thrun (1995), Tokic et al.
(2009), Touzet (1997), Uchibe et al. (1998), Wang et al. (2006), and Willgoss and Iqbal (1999)

Table 2. Policy-search reinforcement learning methods employed for robotic tasks and associated publications.

Approach Employed by…

Gradient Deisenroth and Rasmussen (2011); Deisenroth et al. (2011), Endo et al. (2008), Fidelman and Stone (2004),
Geng et al. (2006), Guenter et al. (2007), Gullapalli et al. (1994), Hailu and Sommer (1998), Ko et al. (2007),
Kohl and Stone (2004), Kolter and Ng (2009a), Michels et al. (2005), Mitsunaga et al. (2005), Miyamoto et al.
(1996), Ng et al. (2004a,b), Peters and Schaal (2008c,b), Roberts et al. (2010), Rosenstein and Barto (2004),
Tamei and Shibata (2009), and Tedrake (2004); Tedrake et al. (2005)

Other Abbeel et al. (2006, 2007), Atkeson and Schaal (1997); Atkeson (1998), Bagnell and Schneider (2001); Bagnell
(2004), Buchli et al. (2011), Coates et al. (2009), Daniel et al. (2012), Donnart and Meyer (1996), Dorigo and
Colombetti (1993), Erden and Leblebicioğlu (2008), Kalakrishnan et al. (2011), Kober and Peters (2009); Kober
et al. (2010), Kolter et al. (2008), Kuindersma et al. (2011), Lizotte et al. (2007), Matarić (1994), Pastor et al.
(2011), Peters and Schaal (2008a); Peters et al. (2010a), Schaal and Atkeson (1994), Stulp et al. (2011), Svinin
et al. (2001), Tamošiūnaitė et al. (2011), Yasuda and Ohkura (2008), and Youssef (2005)

and multiple shooting approaches (Betts, 2001). We may
broadly break down policy-search methods into “black box”
and “white box” methods. Black box methods are general
stochastic optimization algorithms (Spall, 2003) using only
the expected return of policies, estimated by sampling, and
do not leverage any of the internal structure of the rein-
forcement learning problem. These may be very sophis-
ticated techniques (Tesch et al., 2011) that use response
surface estimates and bandit-like strategies to achieve good
performance. White box methods take advantage of some
of additional structure within the reinforcement learning
domain, including, for instance, the (approximate) Markov
structure of problems, developing approximate models,
value-function estimates when available (Peters and Schaal,
2008c), or even simply the causal ordering of actions and
rewards. A major open issue within the field is the rel-
ative merits of the these two approaches: in principle,
white box methods leverage more information, but with
the exception of models (which have been demonstrated
repeatedly to often make tremendous performance improve-
ments, see Section 6), the performance gains are traded-off
with additional assumptions that may be violated and less
mature optimization algorithms. Some recent work includ-
ing (Tesch et al., 2011; Stulp and Sigaud, 2012) suggest
that much of the benefit of policy search is achieved by
black-box methods.

Some of the most popular white-box general reinforce-
ment learning techniques that have translated particularly
well into the domain of robotics include: (i) policy gradi-
ent approaches based on likelihood-ratio estimation (Sutton
et al., 1999), (ii) policy updates inspired by expectation–
maximization (EM) (Toussaint et al., 2010), and (iii) the
path integral methods (Kappen, 2005).

Let us briefly take a closer look at gradient-based
approaches first. The updates of the policy parameters are
based on a hill-climbing approach, that is following the
gradient of the expected return J for a defined step size α

θi+1 = θi + α∇θJ .

Different methods exist for estimating the gradient ∇θJ and
many algorithms require tuning of the step-size α.

In finite difference gradients P perturbed policy parame-
ters are evaluated to obtain an estimate of the gradient. Here
we have �Ĵp ≈ J (θi +�θp) −Jref, where p = [1 . . .P] are
the individual perturbations,�Ĵp the estimate of their influ-
ence on the return, and Jref is a reference return, e.g. the
return of the unperturbed parameters. The gradient can now
be estimated by linear regression

∇θJ ≈ (
��T��

)−1
��T�Ĵ ,

Kober et al. 1247

where the matrix �� contains all of the stacked samples
of the perturbations �θp and �Ĵ contains the correspond-
ing �Ĵp. In order to estimate the gradient the number of
perturbations needs to be at least as large as the number of
parameters. The approach is very straightforward and even
applicable to policies that are not differentiable. However,
it is usually considered to be very noisy and inefficient. For
the finite difference approach tuning the step size α for the
update, the number of perturbations P, and the type and
magnitude of perturbations are all critical tuning factors.

Likelihood ratio methods rely on the insight that in an
episodic setting where the episodes τ are generated accord-
ing to the distribution Pθ (τ) = P (τ |θ)with the return of an
episode J τ = ∑H

h=1 Rh and number of steps H the expected
return for a set of policy parameter θ can be expressed as

J θ =
∑
τ

Pθ (τ) J τ . (5)

The gradient of the episode distribution can be written as4

∇θP
θ (τ) = Pθ (τ)∇θ log Pθ (τ) , (6)

which is commonly known as the likelihood ratio or
REINFORCE (REward Increment = Nonnegative Factor
times Offset Reinforcement times Characteristic Eligibil-
ity) (Williams, 1992) trick. Combining Equations (5) and
(6) we get the gradient of the expected return in the form

∇θJ
θ=
∑
τ

∇θP
θ (τ) J τ =

∑
τ

Pθ (τ)∇θ log Pθ (τ) J τ

=E
{∇θ log Pθ (τ) J τ

}
.

If we have a stochastic policy πθ (s, a) that generates the
episodes τ , we do not need to keep track of the probabilities
of the episodes but can directly express the gradient in terms
of the policy as ∇θ log Pθ (τ) = ∑H

h=1 ∇θ logπθ (s, a).
Finally the gradient of the expected return with respect to
the policy parameters can be estimated as

∇θJ
θ = E

{(
H∑

h=1

∇θ logπθ (sh, ah)

)
J τ
}

.

If we now take into account that rewards at the beginning
of an episode cannot be caused by actions taken at the end
of an episode, we can replace the return of the episode J τ by
the state–action value function Qπ (s, a) and obtain (Peters
and Schaal, 2008c)

∇θJ
θ = E

{
H∑

h=1

∇θ logπθ (sh, ah)Qπ (sh, ah)

}
,

which is equivalent to the policy gradient theorem (Sutton
et al., 1999). In practice, it is often advisable to subtract
a reference Jref, also called a baseline, from the return of
the episode J τ or the state–action value function Qπ (s, a),
respectively, to get better estimates, similar to the finite

difference approach. In these settings, the exploration is
automatically taken care of by the stochastic policy.

Initial gradient-based approaches such as finite differ-
ences gradients or REINFORCE (Williams, 1992) have
been rather slow. The weight perturbation algorithm is
related to REINFORCE but can deal with non-Gaussian
distributions which significantly improves the signal-to-
noise ratio of the gradient (Roberts et al., 2010). Recent
natural policy gradient approaches (Peters and Schaal,
2008c,b) have allowed for faster convergence which may
be advantageous for robotics as it reduces the learning time
and required real-world interactions.

A different class of safe and fast policy-search methods,
that are inspired by EM, can be derived when the reward is
treated as an improper probability distribution (Dayan and
Hinton, 1997). Some of these approaches have proven suc-
cessful in robotics, e.g. reward-weighted regression (Peters
and Schaal, 2008a), policy learning by weighting explo-
ration with the returns (Kober and Peters, 2009), Monte
Carlo EM (Vlassis et al., 2009), and cost-regularized ker-
nel regression (Kober et al., 2010). Algorithms with closely
related update rules can also be derived from different per-
spectives including policy improvements with path integrals
(Theodorou et al., 2010) and relative entropy policy search
(Peters et al., 2010a).

Finally, the policy search by dynamic programming
(Bagnell et al., 2003) method is a general strategy that
combines policy search with the principle of optimality.
The approach learns a non-stationary policy backward in
time like dynamic programming methods, but does not
attempt to enforce the Bellman equation and the resulting
approximation instabilities (see Section 2.4). The resulting
approach provides some of the strongest guarantees that are
currently known under function approximation and limited
observability. It has been demonstrated in learning walking
controllers and in finding near-optimal trajectories for map
exploration (Kollar and Roy, 2008). The resulting method
is more expensive than the value-function methods because
it scales quadratically in the effective time horizon of the
problem. Like DDP methods (Atkeson, 1998), it is tied to a
non-stationary (time-varying) policy.

An overview of publications using policy-search methods
is presented in Table 2.

One of the key open issues in the field is determin-
ing when it is appropriate to use each of these methods.
Some approaches leverage significant structure specific to
the reinforcement learning problem (e.g. Theodorou et al.,
2010), including reward structure, Markovanity, causality
of reward signals (Williams, 1992), and value-function esti-
mates when available (Peters and Schaal, 2008c). Oth-
ers embed policy search as a generic, black-box, prob-
lem of stochastic optimization (Bagnell and Schneider,
2001; Lizotte et al., 2007; Kuindersma et al., 2011; Tesch
et al., 2011). Significant open questions remain regarding
which methods are best in which circumstances and fur-
ther, at an even more basic level, how effective leveraging

1248 The International Journal of Robotics Research 32(11)

the kinds of problem structures mentioned above are in
practice.

2.3. Value-function approaches versus policy
search

Some methods attempt to find a value function or policy
which eventually can be employed without significant fur-
ther computation, whereas others (e.g. the roll-out methods)
perform the same amount of computation each time.

If a complete optimal value function is known, a glob-
ally optimal solution follows simply by greedily choos-
ing actions to optimize it. However, value-function-based
approaches have thus far been difficult to translate into
high-dimensional robotics as they require function approx-
imation for the value function. Most theoretical guarantees
no longer hold for this approximation and even finding the
optimal action can be a hard problem due to the brittle-
ness of the approximation and the cost of optimization. For
high-dimensional actions, it can be as hard to compute an
improved policy for all states in policy search as finding a
single optimal action on-policy for one state by searching
the state–action value function.

In principle, a value function requires total coverage of
the state-space and the largest local error determines the
quality of the resulting policy. A particularly significant
problem is the error propagation in value functions. A small
change in the policy may cause a large change in the value
function, which again causes a large change in the policy.
While this may lead more quickly to good, possibly glob-
ally optimal solutions, such learning processes often prove
unstable under function approximation (Boyan and Moore,
1995; Kakade and Langford, 2002; Bagnell et al., 2003)
and are considerably more dangerous when applied to real
systems where overly large policy deviations may lead to
dangerous decisions.

In contrast, policy-search methods usually only consider
the current policy and its neighborhood in order to grad-
ually improve performance. The result is that usually only
local optima, and not the global one, can be found. How-
ever, these methods work well in conjunction with contin-
uous features. Local coverage and local errors results into
improved scalability in robotics.

Policy-search methods are sometimes called actor-only
methods; value-function methods are sometimes called
critic-only methods. The idea of a critic is to first observe
and estimate the performance of choosing controls on the
system (i.e. the value function), then derive a policy based
on the gained knowledge. In contrast, the actor directly tries
to deduce the optimal policy. A set of algorithms called
actor–critic methods attempt to incorporate the advantages
of each: a policy is explicitly maintained, as is a value-
function for the current policy. The value function (i.e.
the critic) is not employed for action selection. Instead, it
observes the performance of the actor and decides when
the policy needs to be updated and which action should
be preferred. The resulting update step features the local

convergence properties of policy gradient algorithms while
reducing update variance (Greensmith et al., 2004). There
is a trade-off between the benefit of reducing the variance of
the updates and having to learn a value function as the sam-
ples required to estimate the value function could also be
employed to obtain better gradient estimates for the update
step. Rosenstein and Barto (2004) proposed an actor–critic
method that additionally features a supervisor in the form
of a stable policy.

2.4. Function approximation

Function approximation (Rivlin, 1969) is a family of
mathematical and statistical techniques used to repre-
sent a function of interest when it is computationally or
information-theoretically intractable to represent the func-
tion exactly or explicitly (e.g. in tabular form). Typically, in
reinforcement learning the function approximation is based
on sample data collected during interaction with the envi-
ronment. Function approximation is critical in nearly every
reinforcement learning problem, and becomes inevitable in
continuous state ones. In large discrete spaces it is also often
impractical to visit or even represent all states and actions,
and function approximation in this setting can be used as a
means to generalize to neighboring states and actions.

Function approximation can be employed to represent
policies, value functions, and forward models. Broadly
speaking, there are two kinds of function approximation
methods: parametric and non-parametric. A parametric
function approximator uses a finite set of parameters or
arguments with the goal is to find parameters that make
this approximation fit the observed data as closely as pos-
sible. Examples include linear basis functions and neural
networks. In contrast, non-parametric methods expand rep-
resentational power in relation to collected data and, hence,
are not limited by the representation power of a chosen
parametrization (Bishop, 2006). A prominent example that
has found much use within reinforcement learning is Gaus-
sian process regression (GPR) (Rasmussen and Williams,
2006). A fundamental problem with using supervised learn-
ing methods developed in the literature for function approx-
imation is that most such methods are designed for inde-
pendently and identically distributed sample data. However,
the data generated by the reinforcement learning process
is usually neither independent nor identically distributed.
Usually, the function approximator itself plays some role
in the data collection process (for instance, by serving to
define a policy that we execute on a robot).

Linear basis function approximators form one of the most
widely used approximate value-function techniques in con-
tinuous (and discrete) state-spaces. This is largely due to the
simplicity of their representation as well as a convergence
theory, albeit limited, for the approximation of value func-
tions based on samples (Tsitsiklis and Van Roy, 1997). Let
us briefly take a closer look at a radial basis function net-
work to illustrate this approach. The value-function maps
states to a scalar value. The state-space can be covered by a

Kober et al. 1249

grid of points, each of which correspond to the center of a
Gaussian-shaped basis function. The value of the approxi-
mated function is the weighted sum of the values of all basis
functions at the query point. As the influence of the Gaus-
sian basis functions drops rapidly, the value of the query
points will be predominantly influenced by the neighboring
basis functions. The weights are set in a way to minimize
the error between the observed samples and the recon-
struction. For the mean squared error, these weights can be
determined by linear regression. Kolter and Ng (2009b) dis-
cussed the benefits of regularization of such linear function
approximators to avoid over-fitting.

Other possible function approximators for value func-
tions include wire fitting, which Baird and Klopf (1993)
suggested as an approach that makes continuous action
selection feasible. The Fourier basis had been suggested
by Konidaris et al. (2011b). Even discretizing the state-
space can be seen as a form of function approximation
where coarse values serve as estimates for a smooth con-
tinuous function. One example is tile coding (Sutton and
Barto, 1998), where the space is subdivided into (poten-
tially irregularly shaped) regions, called tiling. The num-
ber of different tilings determines the resolution of the
final approximation. For more examples, please refer to
Sections 4.1 and 4.2.

Policy search also benefits from a compact representation
of the policy as discussed in Section 4.3.

Models of the system dynamics can be represented using
a wide variety of techniques. In this case, it is often impor-
tant to model the uncertainty in the model (e.g. by a stochas-
tic model or Bayesian estimates of model parameters) to
ensure that the learning algorithm does not exploit model
inaccuracies. See Section 6 for a more detailed discussion.

3. Challenges in robot reinforcement learning

Reinforcement learning is generally a hard problem and
many of its challenges are particularly apparent in the
robotics setting. As the states and actions of most robots are
inherently continuous, we are forced to consider the resolu-
tion at which they are represented. We must decide how fine
grained the control is that we require over the robot, whether
we employ discretization or function approximation, and
what time step we establish. In addition, as the dimension-
ality of both states and actions can be high, we face the
“curse of dimensionality” (Bellman, 1957) as discussed in
Section 3.1. As robotics deals with complex physical sys-
tems, samples can be expensive due to the long execution
time of complete tasks, required manual interventions, and
the need maintenance and repair. In these real-world mea-
surements, we must cope with the uncertainty inherent in
complex physical systems. A robot requires that the algo-
rithm runs in real-time. The algorithm must be capable
of dealing with delays in sensing and execution that are
inherent in physical systems (see Section 3.2). A simula-
tion might alleviate many problems but these approaches

Fig. 3. The state-space used in the modeling of a robot reinforce-
ment learning task of paddling a ball.

need to be robust with respect to model errors as discussed
in Section 3.3. An often underestimated problem is the goal
specification, which is achieved by designing a good reward
function. As noted in Section 3.4, this choice can make the
difference between feasibility and an unreasonable amount
of exploration.

3.1. Curse of dimensionality

When Bellman (1957) explored optimal control in discrete
high-dimensional spaces, he faced an exponential explosion
of states and actions for which he coined the term “curse
of dimensionality”. As the number of dimensions grows,
exponentially more data and computation are needed to
cover the complete state–action space. For example, if we
assume that each dimension of a state-space is discretized
into 10 levels, we have 10 states for a one-dimensional state-
space, 103 = 1000 unique states for a three-dimensional
state-space, and 10n possible states for a n-dimensional
state-space. Evaluating every state quickly becomes infea-
sible with growing dimensionality, even for discrete states.
Bellman originally coined the term in the context of opti-
mization, but it also applies to function approximation
and numerical integration (Donoho, 2000). While super-
vised learning methods have tamed this exponential growth
by considering only competitive optimality with respect
to a limited class of function approximators, such results
are much more difficult in reinforcement learning where
data must collected throughout state-space to ensure global
optimality.

Robotic systems often have to deal with these high-
dimensional states and actions due to the many degrees of
freedom (DoFs) of modern anthropomorphic robots. For

1250 The International Journal of Robotics Research 32(11)

example, in the ball-paddling task shown in Figure 3, a
proper representation of a robot’s state would consist of
its joint angles and velocities for each of its seven DoFs
as well as the Cartesian position and velocity of the ball.
The robot’s actions would be the generated motor com-
mands, which often are torques or accelerations. In this
example, we have 2×(7 + 3) = 20 state dimensions and
7-dimensional continuous actions. Obviously, other tasks
may require even more dimensions. For example, human-
like actuation often follows the antagonistic principle (Yam-
aguchi and Takanishi, 1997), which additionally enables
control of stiffness. Such dimensionality is a major chal-
lenge for both the robotics and the reinforcement learning
communities.

In robotics, such tasks are often rendered tractable to the
robot engineer by a hierarchical task decomposition that
shifts some complexity to a lower layer of functionality.
Classical reinforcement learning approaches often consider
a grid-based representation with discrete states and actions,
often referred to as a grid-world. A navigational task for
mobile robots could be projected into this representation
by employing a number of actions such as “move to the
cell to the left” that use a lower-level controller that takes
care of accelerating, moving, and stopping while ensuring
precision. In the ball-paddling example, we may simplify
by controlling the robot in racket space (which is lower-
dimensional as the racket is orientation-invariant around
the string’s mounting point) with an operational space con-
trol law (Nakanishi et al., 2008). Many commercial robot
systems also encapsulate some of the state and action com-
ponents in an embedded control system (e.g. trajectory frag-
ments are frequently used as actions for industrial robots).
However, this form of a state dimensionality reduction
severely limits the dynamic capabilities of the robot accord-
ing to our experience (Schaal et al., 2002; Peters et al.,
2010b).

The reinforcement learning community has a long his-
tory of dealing with dimensionality using computational
abstractions. It offers a larger set of applicable tools rang-
ing from adaptive discretizations (Buşoniu et al., 2010)
and function approximation approaches (Sutton and Barto,
1998) to macro-actions or options (Barto and Mahadevan,
2003; Hart and Grupen, 2011). Options allow a task to be
decomposed into elementary components and quite natu-
rally translate to robotics. Such options can autonomously
achieve a sub-task, such as opening a door, which reduces
the planning horizon (Barto and Mahadevan, 2003). The
automatic generation of such sets of options is a key
issue in order to enable such approaches. We will discuss
approaches that have been successful in robot reinforce-
ment learning in Section 4.

3.2. Curse of real-world samples

Robots inherently interact with the physical world. Hence,
robot reinforcement learning suffers from most of the

resulting real-world problems. For example, robot hard-
ware is usually expensive, suffers from wear and tear, and
requires careful maintenance. Repairing a robot system is
a non-negligible effort associated with cost, physical labor
and long waiting periods. To apply reinforcement learning
in robotics, safe exploration becomes a key issue of the
learning process (Schneider, 1996; Bagnell, 2004; Deisen-
roth and Rasmussen, 2011; Moldovan and Abbeel, 2012),
a problem often neglected in the general reinforcement
learning community. Perkins and Barto (2002) have come
up with a method for constructing reinforcement learning
agents based on Lyapunov functions. Switching between
the underlying controllers is always safe and offers basic
performance guarantees.

However, several more aspects of the real-world make
robotics a challenging domain. As the dynamics of a robot
can change due to many external factors ranging from
temperature to wear, the learning process may never fully
converge, i.e. it needs a “tracking solution” (Sutton et al.,
2007). Frequently, the environment settings during an ear-
lier learning period cannot be reproduced. External factors
are not always clear, for example, how light conditions
affect the performance of the vision system and, as a result,
the task’s performance. This problem makes comparing
algorithms particularly hard. Furthermore, the approaches
often have to deal with uncertainty due to inherent measure-
ment noise and the inability to observe all states directly
with sensors.

Most real robot learning tasks require some form of
human supervision, e.g. putting the pole back on the robot’s
end-effector during pole balancing (see Figure 1d) after a
failure. Even when an automatic reset exists (e.g. by hav-
ing a smart mechanism that resets the pole), learning speed
becomes essential as a task on a real robot cannot be sped
up. In some tasks such as a slowly rolling robot, the dynam-
ics can be ignored; in others such as a flying robot, they can-
not. In particular in the latter case, often the whole episode
needs to be completed as it is not possible to start from
arbitrary states.

For such reasons, real-world samples are expensive in
terms of time, labor and, potentially, finances. In robotic
reinforcement learning, it is often considered to be more
important to limit the real-world interaction time instead of
limiting memory consumption or computational complex-
ity. Thus, sample efficient algorithms that are able to learn
from a small number of trials are essential. In Section 6 we
will point out several approaches that allow the amount of
required real-world interactions to be reduced.

Since the robot is a physical system, there are strict con-
straints on the interaction between the learning algorithm
and the robot setup. For dynamic tasks, the movement can-
not be paused and actions must be selected within a time-
budget without the opportunity to pause to think, learn or
plan between actions. These constraints are less severe in
an episodic setting where the time intensive part of the
learning can be postponed to the period between episodes.

Kober et al. 1251

Hester et al. (2012) has proposed a real-time architec-
ture for model-based value-function reinforcement learning
methods taking into account these challenges.

As reinforcement learning algorithms are inherently
implemented on a digital computer, the discretization of
time is unavoidable despite that physical systems are inher-
ently continuous time systems. Time-discretization of the
actuation can generate undesirable artifacts (e.g. the distor-
tion of distance between states) even for idealized physical
systems, which cannot be avoided. As most robots are con-
trolled at fixed sampling frequencies (in the range between
500 Hz and 3 kHz) determined by the manufacturer of the
robot, the upper bound on the rate of temporal discretization
is usually pre-determined. The lower bound depends on the
horizon of the problem, the achievable speed of changes in
the state, as well as delays in sensing and actuation.

All physical systems exhibit such delays in sensing and
actuation. The state of the setup (represented by the filtered
sensor signals) may frequently lag behind the real state due
to processing and communication delays. More critically,
there are also communication delays in actuation as well
as delays due to the fact that neither motors, gear boxes
nor the body’s movement can change instantly. Owing to
these delays, actions may not have instantaneous effects
but are observable only several time steps later. In con-
trast, in most general reinforcement learning algorithms, the
actions are assumed to take effect instantaneously as such
delays would violate the usual Markov assumption. This
effect can be addressed by putting some number of recent
actions into the state. However, this significantly increases
the dimensionality of the problem.

The problems related to time budgets and delays can also
be avoided by increasing the duration of the time steps.
One downside of this approach is that the robot cannot be
controlled as precisely; another is that it may complicate a
description of system dynamics.

3.3. Curse of under-modeling and model
uncertainty

One way to offset the cost of real-world interaction is to
use accurate models as simulators. In an ideal setting, this
approach would render it possible to learn the behavior in
simulation and subsequently transfer it to the real robot.
Unfortunately, creating a sufficiently accurate model of the
robot and its environment is challenging and often requires
very many data samples. As small model errors due to
this under-modeling accumulate, the simulated robot can
quickly diverge from the real-world system. When a policy
is trained using an imprecise forward model as simulator,
the behavior will not transfer without significant modifi-
cations as experienced by Atkeson (1994) when learning
the underactuated pendulum swing-up. The authors have
achieved a direct transfer in only a limited number of
experiments; see Section 6.1 for examples.

For tasks where the system is self-stabilizing (that is,
where the robot does not require active control to remain
in a safe state or return to it), transferring policies often
works well. Such tasks often feature some type of damp-
ening that absorbs the energy introduced by perturbations
or control inaccuracies. If the task is inherently stable, it is
safer to assume that approaches that were applied in simu-
lation work similarly in the real world (Kober and Peters,
2010). Nevertheless, tasks can often be learned better in
the real world than in simulation due to complex mechani-
cal interactions (including contacts and friction) that have
proven difficult to model accurately. For example, in the
ball-paddling task (Figure 3) the elastic string that attaches
the ball to the racket always pulls back the ball towards the
racket even when hit very hard. Initial simulations (includ-
ing friction models, restitution models, dampening models,
models for the elastic string, and air drag) of the ball–racket
contacts indicated that these factors would be very hard to
control. In a real experiment, however, the reflections of the
ball on the racket proved to be less critical than in simula-
tion and the stabilizing forces due to the elastic string were
sufficient to render the whole system self-stabilizing.

In contrast, in unstable tasks small variations have dras-
tic consequences. For example, in a pole balancing task,
the equilibrium of the upright pole is very brittle and con-
stant control is required to stabilize the system. Transferred
policies often perform poorly in this setting. Nevertheless,
approximate models serve a number of key roles which we
discuss in Section 6, including verifying and testing the
algorithms in simulation, establishing proximity to theo-
retically optimal solutions, calculating approximate gradi-
ents for local policy improvement, identifying strategies for
collecting more data, and performing “mental rehearsal”.

3.4. Curse of goal specification

In reinforcement learning, the desired behavior is implicitly
specified by the reward function. The goal of reinforcement
learning algorithms then is to maximize the accumulated
long-term reward. While often dramatically simpler than
specifying the behavior itself, in practice, it can be sur-
prisingly difficult to define a good reward function in robot
reinforcement learning. The learner must observe variance
in the reward signal in order to be able to improve a
policy: if the same return is always received, there is no
way to determine which policy is better or closer to the
optimum.

In many domains, it seems natural to provide rewards
only upon task achievement, for example, when a table ten-
nis robot wins a match. This view results in an apparently
simple, binary reward specification. However, a robot may
receive such a reward so rarely that it is unlikely to ever
succeed in the lifetime of a real-world system. Instead of
relying on simpler binary rewards, we frequently need to
include intermediate rewards in the scalar reward function

1252 The International Journal of Robotics Research 32(11)

to guide the learning process to a reasonable solution, a
process known as reward shaping (Laud, 2004).

Beyond the need to shorten the effective problem horizon
by providing intermediate rewards, the trade-off between
different factors may be essential. For instance, hitting a
table tennis ball very hard may result in a high score but
is likely to damage a robot or shorten its life span. Simi-
larly, changes in actions may be penalized to avoid high-
frequency controls that are likely to be very poorly captured
with tractable low-dimensional state-space or rigid-body
models. Reinforcement learning algorithms are also noto-
rious for exploiting the reward function in ways that are
not anticipated by the designer. For example, if the distance
between the ball and the desired highest point is part of the
reward in ball paddling (see Figure 3), many locally optimal
solutions would attempt to simply move the racket upwards
and keep the ball on it. Reward shaping gives the system a
notion of closeness to the desired behavior instead of rely-
ing on a reward that only encodes success or failure (Ng
et al., 1999).

Often the desired behavior can be most naturally rep-
resented with a reward function in a particular state and
action space. However, this representation does not nec-
essarily correspond to the space where the actual learning
needs to be performed due to both computational and statis-
tical limitations. Employing methods to render the learning
problem tractable often result in different, more abstract
state and action spaces which might not allow accurate rep-
resentation of the original reward function. In such cases, a
reward fully specified in terms of the features of the space in
which the learning algorithm operates can prove remarkably
effective. There is also a trade-off between the complexity
of the reward function and the complexity of the learning
problem. For example, in the ball in a cup task (Section 7)
the most natural reward would be a binary value depend-
ing on whether the ball is in the cup or not. To render the
learning problem tractable, a less-intuitive reward needed
to be devised in terms of a Cartesian distance with addi-
tional directional information (see Section 7.1 for details).
Another example is Crusher (Ratliff et al., 2006a), an out-
door robot, where the human designer was interested in a
combination of minimizing time and risk to the robot. How-
ever, the robot reasons about the world on the long time
horizon scale as if it was a very simple, deterministic, holo-
nomic robot operating on a fine grid of continuous costs.
Hence, the desired behavior cannot be represented straight-
forwardly in this state-space. Nevertheless, a remarkably
human-like behavior that seems to respect time and risk
priorities can be achieved by carefully mapping features
describing each state (discrete grid location with features
computed by an on-board perception system) to cost.

Inverse optimal control, also known as inverse reinforce-
ment learning (Russell, 1998), is a promising alternative to
specifying the reward function manually. It assumes that a
reward function can be reconstructed from a set of expert
demonstrations. This reward function does not necessar-
ily correspond to the true reward function, but provides

guarantees on the resulting performance of learned behav-
iors (Abbeel and Ng, 2004; Ratliff et al., 2006b). Inverse
optimal control was initially studied in the control commu-
nity (Kalman, 1964) and in the field of economics (Keeney
and Raiffa, 1976). The initial results were only applica-
ble to limited domains (linear quadratic regulator prob-
lems) and required closed-form access to plant and con-
troller, hence samples from human demonstrations could
not be used. Russell (1998) brought the field to the atten-
tion of the machine learning community. Abbeel and Ng
(2004) defined an important constraint on the solution to the
inverse reinforcement learning problem when reward func-
tions are linear in a set of features: a policy that is extracted
by observing demonstrations has to earn the same reward as
the policy that is being demonstrated. Ratliff et al. (2006b)
demonstrated that inverse optimal control can be under-
stood as a generalization of ideas in machine learning of
structured prediction and introduced efficient sub-gradient-
based algorithms with regret bounds that enabled large-
scale application of the technique within robotics. Ziebart
et al. (2008) extended the technique developed by Abbeel
and Ng (2004) by rendering the idea robust and probabilis-
tic, enabling its effective use for both learning policies and
predicting the behavior of sub-optimal agents. These tech-
niques, and many variants, have been recently successfully
applied to outdoor robot navigation (Ratliff et al., 2006a;
Silver et al., 2008, 2010), manipulation (Ratliff et al., 2007),
and quadruped locomotion (Ratliff et al., 2006a, 2007;
Kolter et al., 2007).

More recently, the notion that complex policies can be
built on top of simple, easily solved optimal control prob-
lems by exploiting rich, parametrized reward functions has
been exploited within reinforcement learning more directly.
Sorg et al. (2010) and Zucker and Bagnell (2012) derived
complex policies by adapting a reward function for simple
optimal control problems using policy-search techniques.
Zucker and Bagnell (2012) demonstrate that this technique
can enable efficient solutions to robotic marble-maze prob-
lems that effectively transfer between mazes of varying
design and complexity. These works highlight the natural
trade-off between the complexity of the reward function and
the complexity of the underlying reinforcement learning
problem for achieving a desired behavior.

4. Tractability through representation

As discussed above, reinforcement learning provides a
framework for a remarkable variety of problems of signifi-
cance to both robotics and machine learning. However, the
computational and information-theoretic consequences that
we outlined above accompany this power and generality. As
a result, naive application of reinforcement learning tech-
niques in robotics is likely to be doomed to failure. The
remarkable successes that we reference in this article have
been achieved by leveraging a few key principles: effective
representations, approximate models, and prior knowledge
or information. In the following three sections, we review

Kober et al. 1253

these principles and summarize how each has been made
effective in practice. We hope that understanding these
broad approaches will lead to new successes in robotic rein-
forcement learning by combining successful methods and
encourage research on novel techniques that embody each
of these principles.

Much of the success of reinforcement learning meth-
ods has been due to the clever use of approximate
representations. The need of such approximations is
particularly pronounced in robotics, where table-based
representations (as discussed in Section 2.2.1) are rarely
scalable. The different ways of making reinforcement learn-
ing methods tractable in robotics are tightly coupled to the
underlying optimization framework. Reducing the dimen-
sionality of states or actions by smart state–action dis-
cretization is a representational simplification that may
enhance both policy-search and value-function-based meth-
ods (see Section 4.1). A value-function-based approach
requires an accurate and robust but general function approx-
imator that can capture the value function with sufficient
precision (see Section 4.2) while maintaining stability dur-
ing learning. Policy-search methods require a choice of
policy representation that controls the complexity of rep-
resentable policies to enhance learning speed (see Section
4.3). An overview of publications that make particular use
of efficient representations to render the learning problem
tractable is presented in Table 3.

4.1. Smart state–action discretization

Decreasing the dimensionality of state or action spaces
eases most reinforcement learning problems significantly,
particularly in the context of robotics. Here, we give a short
overview of different attempts to achieve this goal with
smart discretization.

4.1.1. Hand-crafted discretization A variety of authors
have manually developed discretizations so that basic tasks
can be learned on real robots. For low-dimensional tasks,
we can generate discretizations straightforwardly by split-
ting each dimension into a number of regions. The main
challenge is to find the right number of regions for each
dimension that allows the system to achieve a good final
performance while still learning quickly. Example appli-
cations include balancing a ball on a beam (Benbrahim
et al., 1992), one-DoF ball in a cup (Nemec et al., 2010),
two-DoF crawling motions (Tokic et al., 2009), and gait pat-
terns for four-legged walking (Kimura et al., 2001). Much
more human experience is needed for more complex tasks.
For example, in a basic navigation task with noisy sen-
sors (Willgoss and Iqbal, 1999), only some combinations
of binary state or action indicators are useful (e.g. you
can drive left and forward at the same time, but not back-
ward and forward). The state-space can also be based on
vastly different features, such as positions, shapes, and col-
ors, when learning object affordances (Paletta et al., 2007)

where both the discrete sets and the mapping from sensor
values to the discrete values need to be crafted. Kwok and
Fox (2004) used a mixed discrete and continuous represen-
tation of the state-space to learn active sensing strategies
in a RoboCup scenario. They first discretize the state-space
along the dimension with the strongest nonlinear influence
on the value function and subsequently employ a linear
value-function approximation (Section 4.2) for each of the
regions.

4.1.2. Learned from data Instead of specifying the dis-
cretizations by hand, they can also be built adaptively
during the learning process. For example, a rule-based rein-
forcement learning approach automatically segmented the
state-space to learn a cooperative task with mobile robots
(Yasuda and Ohkura, 2008). Each rule is responsible for a
local region of the state-space. The importance of the rules
are updated based on the rewards and irrelevant rules are
discarded. If the state is not covered by a rule yet, a new
one is added. In the related field of computer vision, Piater
et al. (2011) propose an approach that adaptively and incre-
mentally discretizes a perceptual space into discrete states,
training an image classifier based on the experience of the
reinforcement learning agent to distinguish visual classes,
which correspond to the states.

4.1.3. Meta-actions Automatic construction of meta-
actions (and the closely related concept of options) has
fascinated reinforcement learning researchers and there
are various examples in the literature. The idea is to have
more intelligent actions that are composed of a sequence
of movements and that in themselves achieve a simple
task. A simple example would be to have a meta-action
“move forward 5 m”. A lower-level system takes care of
accelerating, stopping, and correcting errors. For example,
in Asada et al. (1996), the state and action sets are con-
structed in a way that repeated action primitives lead to a
change in the state to overcome problems associated with
the discretization. Q-learning and dynamic programming
based approaches have been compared in a pick-n-place
task (Kalmár et al., 1998) using modules. Huber and
Grupen (1997) used a set of controllers with associated
predicate states as a basis for learning turning gates with
a quadruped. Fidelman and Stone (2004) used a policy-
search approach to learn a small set of parameters that
controls the transition between a walking and a capturing
meta-action in a RoboCup scenario. A task of transporting
a ball with a dog robot (Soni and Singh, 2006) can be
learned with semi-automatically discovered options. Using
only the sub-goals of primitive motions, a humanoid robot
can learn a pouring task (Nemec et al., 2009). Other
examples include foraging (Matarić, 1997) and cooperative
tasks (Matarić, 1994) with multiple robots, grasping with
restricted search spaces (Platt et al., 2006), and mobile
robot navigation (Dorigo and Colombetti, 1993). If the
meta-actions are not fixed in advance, but rather learned

1254 The International Journal of Robotics Research 32(11)

Table 3. Different methods of making robot reinforcement learning tractable by employing a suitable representation.

Smart state–action discretization

Approach Employed by…

Hand-crafted Benbrahim et al. (1992), Kimura et al. (2001), Kwok and Fox (2004), Nemec et al. (2010),
Paletta et al. (2007), Tokic et al. (2009), and Willgoss and Iqbal (1999)

Learned Piater et al. (2011) and Yasuda and Ohkura (2008)
Meta-actions Asada et al. (1996), Dorigo and Colombetti (1993), Fidelman and Stone (2004), Huber and

Grupen (1997), Kalmár et al. (1998), Konidaris et al. (2011a, 2012), Matarić (1994, 1997),
Platt et al. (2006), Soni and Singh (2006), and Nemec et al. (2009)

Relational Representation Cocora et al. (2006) and Katz et al. (2008)

Value-function approximation

Approach Employed by …

Physics-inspired features An et al. (1988) and Schaal (1996)
Neural networks Benbrahim and Franklin (1997), Duan et al. (2008), Gaskett et al. (2000), Hafner and Riedmiller

(2003), Riedmiller et al. (2009), and Thrun (1995)
Neighbors Hester et al. (2010), Mahadevan and Connell (1992), and Touzet (1997)
Local models Bentivegna (2004), Schaal (1996), and Smart and Kaelbling (1998)
GPR Gräve et al. (2010), Kroemer et al. (2009, 2010), and Rottmann et al. (2007)

Pre-structured policies

Approach Employed by…

Via points and splines Kuindersma et al. (2011), Miyamoto et al. (1996), and Roberts et al. (2010)
Linear models Tamei and Shibata (2009)
Motor primitives Kohl and Stone (2004), Kober and Peters (2009), Peters and Schaal (2008c,b), Stulp et al.

(2011), Tamošiūnaitė et al. (2011), and Theodorou et al. (2010)
GMM and LLM Deisenroth and Rasmussen (2011); Deisenroth et al. (2011), Guenter et al. (2007), Lin and Lai

(2012), and Peters and Schaal (2008a)
Neural networks Endo et al. (2008), Geng et al. (2006), Gullapalli et al. (1994), Hailu and Sommer (1998), and

Bagnell and Schneider (2001)
Controllers Bagnell and Schneider (2001), Kolter and Ng (2009a), Tedrake (2004); Tedrake et al. (2005),

Vlassis et al. (2009), and Zucker and Bagnell (2012)
Non-parametric Kober et al. (2010), Mitsunaga et al. (2005), and Peters et al. (2010a)

at the same time, these approaches are hierarchical rein-
forcement learning approaches as discussed in Section 5.2.
Konidaris et al. (2011a, 2012) proposes an approach that
constructs a skill tree from human demonstrations. Here,
the skills correspond to options and are chained to learn a
mobile manipulation skill.

4.1.4. Relational representations In a relational represen-
tation, the states, actions, and transitions are not rep-
resented individually. Entities of the same predefined
type are grouped and their relationships are considered.
This representation may be preferable for highly geo-
metric tasks (which frequently appear in robotics) and
has been employed to learn to navigate buildings with
a real robot in a supervised setting (Cocora et al.,
2006) and to manipulate articulated objects in simulation
(Katz et al., 2008).

4.2. Value-function approximation

Function approximation has always been the key com-
ponent that allowed value-function methods to scale into

interesting domains. In robot reinforcement learning, the
following function approximation schemes have been pop-
ular and successful. Using function approximation for the
value function can be combined with using function approx-
imation for learning a model of the system (as discussed
in Section 6) in the case of model-based reinforcement
learning approaches.

Unfortunately the max-operator used within the Bell-
man equation and temporal-difference updates can theoreti-
cally make most linear or nonlinear approximation schemes
unstable for either value iteration or policy iteration. Quite
frequently such an unstable behavior is also exhibited in
practice. Linear function approximators are stable for pol-
icy evaluation, while nonlinear function approximation (e.g.
neural networks) can even diverge if just used for policy
evaluation (Tsitsiklis and Van Roy, 1997).

4.2.1. Physics-inspired features If good hand-crafted fea-
tures are known, value-function approximation can be
accomplished using a linear combination of features. How-
ever, good features are well known in robotics only for
a few problems, such as features for local stabilization

Kober et al. 1255

Fig. 4. The Brainstormer Tribots that won the RoboCup 2006
MidSize League (Riedmiller et al., 2009). (Reproduced with
permission from Martin Riedmiller.)

(Schaal, 1996) and features describing rigid-body dynam-
ics (An et al., 1988). Stabilizing a system at an unstable
equilibrium point is the most well-known example, where
a second-order Taylor expansion of the state together with
a linear value-function approximator often suffice as fea-
tures in the proximity of the equilibrium point. For example,
Schaal (1996) showed that such features suffice for learn-
ing how to stabilize a pole on the end-effector of a robot
when within ±15–30◦ of the equilibrium angle. For suf-
ficient features, linear function approximation is likely to
yield good results in an on-policy setting. Nevertheless, it
is straightforward to show that impoverished value-function
representations (e.g. omitting the cross-terms in quadratic
expansion in Schaal’s setup) will make it impossible for the
robot to learn this behavior. Similarly, it is well known that
linear value-function approximation is unstable in the off-
policy case (Tsitsiklis and Van Roy, 1997; Sutton and Barto,
1998; Gordon, 1999).

4.2.2. Neural networks As good hand-crafted features are
rarely available, various groups have employed neural net-
works as global, nonlinear value-function approximation.
Many different flavors of neural networks have been applied
in robotic reinforcement learning. For example, multi-
layer perceptrons were used to learn a wandering behavior
and visual servoing (Gaskett et al., 2000). Fuzzy neural
networks (Duan et al., 2008) and explanation-based neural
networks (Thrun, 1995) have allowed robots to learn basic
navigation. CMAC neural networks have been used for
biped locomotion (Benbrahim and Franklin, 1997).

The Brainstormers RoboCup soccer team is a particu-
larly impressive application of value-function approxima-
tion (see Figure 4). It used multi-layer perceptrons to learn
various sub-tasks such as learning defenses, interception,
position control, kicking, motor speed control, dribbling,

and penalty shots (Hafner and Riedmiller, 2003; Riedmiller
et al., 2009). The resulting components contributed substan-
tially to winning the world cup several times in the simula-
tion and the mid-size real robot leagues. As neural networks
are global function approximators, overestimating the value
function at a frequently occurring state will increase the
values predicted by the neural network for all other states,
causing fast divergence (Boyan and Moore, 1995; Gor-
don, 1999). Riedmiller et al. (2009) solved this problem by
always defining an absorbing state where they set the value
predicted by their neural network to zero, which “clamps
the neural network down” and thereby prevents divergence.
It also allows re-iterating on the data, which results in an
improved value-function quality. The combination of iter-
ation on data with the clamping technique appears to be
the key to achieving good performance with value-function
approximation in practice.

4.2.3. Generalize to neighboring cells As neural networks
are globally affected from local errors, much work has
focused on simply generalizing from neighboring cells.
One of the earliest papers in robot reinforcement learning
(Mahadevan and Connell, 1992) introduced this idea by sta-
tistically clustering states to speed up a box-pushing task
with a mobile robot, see Figure 1a. This approach was also
used for a navigation and obstacle avoidance task with a
mobile robot (Touzet, 1997). Similarly, decision trees have
been used to generalize states and actions to unseen ones,
e.g. to learn a penalty kick on a humanoid robot (Hester
et al., 2010). The core problem of these methods is the lack
of scalability to high-dimensional state and action spaces.

4.2.4. Local models Local models can be seen as an exten-
sion of generalization among neighboring cells to gener-
alizing among neighboring data points. Locally weighted
regression creates particularly efficient function approxima-
tion in the context of robotics both in supervised and rein-
forcement learning. Here, regression errors are weighted
down by proximity to query point to train local models. The
predictions of these local models are combined using the
same weighting functions. Using local models for value-
function approximation has allowed learning a navigation
task with obstacle avoidance (Smart and Kaelbling, 1998),
a pole swing-up task (Schaal, 1996), and an air hockey task
(Bentivegna, 2004).

4.2.5. GPR Parametrized global or local models need to
pre-specify, which requires a trade-off between represen-
tational accuracy and the number of parameters. A non-
parametric function approximator such as GPR could be
employed instead, but potentially at the cost of a higher
computational complexity. GPR has the added advantage
of providing a notion of uncertainty about the approxima-
tion quality for a query point. Hovering with an autonomous

1256 The International Journal of Robotics Research 32(11)

blimp (Rottmann et al., 2007) has been achieved by approx-
imation the state–action value function with a GPR. Sim-
ilarly, another paper shows that grasping can be learned
using GPR (Gräve et al., 2010) by additionally taking into
account the uncertainty to guide the exploration. Grasp-
ing locations can be learned by approximating the rewards
with a GPR, and trying candidates with predicted high
rewards (Kroemer et al., 2009), resulting in an active learn-
ing approach. High reward uncertainty allows intelligent
exploration in reward-based grasping (Kroemer et al., 2010)
in a bandit setting.

4.3. Pre-structured policies

Policy-search methods greatly benefit from employing an
appropriate function approximation of the policy. For exam-
ple, when employing gradient-based approaches, the trade-
off between the representational power of the policy (in the
form of many policy parameters) and the learning speed
(related to the number of samples required to estimate
the gradient) needs to be considered. To make policy-
search approaches tractable, the policy needs to be rep-
resented with a function approximation that takes into
account domain knowledge, such as task-relevant param-
eters or generalization properties. As the next action picked
by a policy depends on the current state and action, a pol-
icy can be seen as a closed-loop controller. Roberts et al.
(2011) demonstrate that care needs to be taken when select-
ing closed-loop parameterizations for weakly stable sys-
tems, and suggest forms that are particularly robust during
learning. However, especially for episodic reinforcement
learning tasks, sometimes open-loop policies (i.e. policies
where the actions depend only on the time) can also be
employed.

4.3.1. Via points and splines An open-loop policy may
often be naturally represented as a trajectory, either in the
space of states or targets or directly as a set of controls.
Here, the actions are only a function of time, which can be
considered as a component of the state. Such spline-based
policies are very suitable for compressing complex trajec-
tories into few parameters. Typically the desired joint or
Cartesian position, velocities, and/or accelerations are used
as actions. To minimize the required number of parameters,
not every point is stored. Instead, only important via-points
are considered and other points are interpolated. Miyamoto
et al. (1996) optimized the position and timing of such
via-points in order to learn a kendama task (a traditional
Japanese toy similar to a ball in a cup). A well-known type
of a via-point representations are splines, which rely on
piecewise-defined smooth polynomial functions for inter-
polation. For example, Roberts et al. (2010) used a periodic
cubic spline as a policy parametrization for a flapping sys-
tem and Kuindersma et al. (2011) used a cubic spline to
represent arm movements in an impact recovery task.

4.3.2. Linear models If model knowledge of the system
is available, it can be used to create features for linear
closed-loop policy representations. For example, Tamei and
Shibata (2009) used policy-gradient reinforcement learning
to adjust a model that maps from human EMG signals to
forces that in turn is used in a cooperative holding task.

4.3.3. Motor primitives Motor primitives combine linear
models describing dynamics with parsimonious movement
parametrizations. While originally biologically-inspired,
they have a lot of success for representing basic move-
ments in robotics such as a reaching movement or basic
locomotion. These basic movements can subsequently be
sequenced and/or combined to achieve more complex
movements. For both goal oriented and rhythmic move-
ment, different technical representations have been pro-
posed in the robotics community. Dynamical system motor
primitives (Ijspeert et al., 2003; Schaal et al., 2007) have
become a popular representation for reinforcement learn-
ing of discrete movements. The dynamical system motor
primitives always have a strong dependence on the phase
of the movement, which corresponds to time. They can be
employed as an open-loop trajectory representation. Never-
theless, they can also be employed as a closed-loop policy
to a limited extent. In our experience, they offer a number
of advantages over via-point or spline-based policy repre-
sentation (see Section 7.2). The dynamical system motor
primitives have been trained with reinforcement learning
for a T-ball batting task (Peters and Schaal, 2008c,b), an
underactuated pendulum swing-up and a ball in a cup task
(Kober and Peters, 2009), flipping a light switch (Buchli
et al., 2011), pouring water (Tamošiūnaitė et al., 2011), and
playing pool and manipulating a box (Pastor et al., 2011).
For rhythmic behaviors, a representation based on the same
biological motivation but with a fairly different technical
implementation (based on half-elliptical locuses) have been
used to acquire the gait patterns for an AIBO robot dog
locomotion (Kohl and Stone, 2004).

4.3.4. Gaussian mixture models and radial basis function
models When more general policies with a strong state
dependence are needed, general function approximators
based on radial basis functions, also called Gaussian ker-
nels, become reasonable choices. While learning with fixed
basis function centers and widths often works well in prac-
tice, estimating them is challenging. These centers and
widths can also be estimated from data prior to the rein-
forcement learning process. This approach has been used to
generalize a open-loop reaching movement (Guenter et al.,
2007; Lin and Lai, 2012) and to learn the closed-loop
cart-pole swing-up task (Deisenroth and Rasmussen, 2011).
Globally linear models were employed in a closed-loop
block stacking task (Deisenroth et al., 2011).

Kober et al. 1257

Fig. 5. Boston Dynamics LittleDog jumping (Kolter and Ng, 2009a). (Reprinted with permission from Zico Kolter.)

4.3.5. Neural networks These are another general function
approximation used to represent policies. Neural oscilla-
tors with sensor feedback have been used to learn rhyth-
mic movements where open- and closed-loop information
were combined, such as gaits for a two-legged robot (Geng
et al., 2006; Endo et al., 2008). Similarly, a peg-in-hole (see
Figure 1b), a ball-balancing task (Gullapalli et al., 1994),
and a navigation task (Hailu and Sommer, 1998) have been
learned with closed-loop neural networks as policy function
approximators.

4.3.6. Locally linear controllers. As local linearity is
highly desirable in robot movement generation to avoid
actuation difficulties, learning the parameters of a locally
linear controller can be a better choice than using a neural
network or radial basis function representation. Several of
these controllers can be combined to form a global, inher-
ently closed-loop policy. This type of policy has allowed
for many applications, including learning helicopter flight
(Bagnell and Schneider, 2001), learning biped walk pat-
terns (Tedrake, 2004; Tedrake et al., 2005), driving a radio-
controlled (RC) car, learning a jumping behavior for a robot
dog (Kolter and Ng, 2009a) (illustrated in Figure 5), and
balancing a two-wheeled robot (Vlassis et al., 2009). Oper-
ational space control was also learned by Peters and Schaal
(2008a) using locally linear controller models. In a marble
maze task, Zucker and Bagnell (2012) used such a con-
troller as a policy that expressed the desired velocity of the
ball in terms of the directional gradient of a value function.

4.3.7. Non-parametric policies Polices based on non-
parametric regression approaches often allow a more data-
driven learning process. This approach is often preferable
over the purely parametric policies listed above because
the policy structure can evolve during the learning pro-
cess. Such approaches are especially useful when a policy
learned to adjust the existing behaviors of a lower-level

controller, such as when choosing among different robot–
human interaction possibilities (Mitsunaga et al., 2005),
selecting among different striking movements in a table ten-
nis task (Peters et al., 2010a), and setting the meta-actions
for dart throwing and table tennis hitting tasks (Kober et al.,
2010).

5. Tractability through prior knowledge

Prior knowledge can dramatically help guide the learning
process. It can be included in the form of initial policies,
demonstrations, initial models, a predefined task structure,
or constraints on the policy such as torque limits or order-
ing constraints of the policy parameters. These approaches
significantly reduce the search space and, thus, speed up the
learning process. Providing a (partially) successful initial
policy allows a reinforcement learning method to focus on
promising regions in the value function or in policy space,
see Section 5.1. Pre-structuring a complex task such that it
can be broken down into several more tractable ones can
significantly reduce the complexity of the learning task, see
Section 5.2. An overview of publications using prior knowl-
edge to render the learning problem tractable is presented
in Table 4. Constraints may also limit the search space, but
often pose new, additional problems for the learning meth-
ods. For example, policy-search limits often do not handle
hard limits on the policy well. Relaxing such constraints (a
trick often applied in machine learning) is not feasible if
they were introduced to protect the robot in the first place.

5.1. Prior knowledge through demonstration

People and other animals frequently learn using a com-
bination of imitation and trial and error. When learning
to play tennis, for instance, an instructor will repeatedly
demonstrate the sequence of motions that form an orthodox
forehand stroke. Students subsequently imitate this behav-
ior, but still need hours of practice to successfully return

1258 The International Journal of Robotics Research 32(11)

Table 4. Different methods of making robot reinforcement learning tractable by incorporating prior knowledge.

Prior knowledge through demonstration

Approach Employed by…

Teacher Atkeson and Schaal (1997), Bentivegna et al. (2004), Bitzer et al. (2010), Conn and Peters II (2007),
Gräve et al. (2010), Kober et al. (2008); Kober and Peters (2009), Latzke et al. (2007), and Peters and
Schaal (2008c,b)

Policy Birdwell and Livingston (2007), Erden and Leblebicioğlu (2008), Martínez-Marín and Duckett (2005),
Rosenstein and Barto (2004), Smart and Kaelbling (1998), Tedrake (2004); Tedrake et al. (2005), and
Wang et al. (2006)

Prior knowledge through task structuring

Approach Employed by…

Hierarchical Daniel et al. (2012), Donnart and Meyer (1996), Hart and Grupen (2011), Huber and Grupen (1997),
Kirchner (1997), Morimoto and Doya (2001), Muelling et al. (2012), and Whitman and Atkeson (2010)

Progressive tasks Asada et al. (1996) and Randløv and Alstrøm (1998)

Directed exploration with prior knowledge

Approach Employed by…

Directed exploration Huang and Weng (2002), Kroemer et al. (2010), and Pendrith (1999)

balls to a precise location on the opponent’s court. Input
from a teacher need not be limited to initial instruction.
The instructor may provide additional demonstrations in
later learning stages (Latzke et al., 2007; Ross et al., 2011a)
and which can also be used as differential feedback (Argall
et al., 2008).

This combination of imitation learning with reinforce-
ment learning is sometimes termed apprenticeship learning
(Abbeel and Ng, 2004) to emphasize the need for learning
both from a teacher and by practice. The term “appren-
ticeship learning” is often employed to refer to “inverse
reinforcement learning” or “inverse optimal control” but
is intended here to be employed in this original, broader
meaning. For a recent survey detailing the state of the art in
imitation learning for robotics, see Argall et al. (2009).

Using demonstrations to initialize reinforcement learning
provides multiple benefits. Perhaps the most obvious benefit
is that it provides supervised training data of what actions
to perform in states that are encountered. Such data may be
helpful when used to bias policy action selection.

The most dramatic benefit, however, is that demonstra-
tion, or a hand-crafted initial policy, removes the need for
global exploration of the policy or state-space of the rein-
forcement learning problem. The student can improve by
locally optimizing a policy knowing what states are impor-
tant, making local optimization methods feasible. Intu-
itively, we expect that removing the demands of global
exploration makes learning easier. However, we can only
find local optima close to the demonstration, that is, we rely
on the demonstration to provide a good starting point. Per-
haps the textbook example of such in human learning is
the rise of the “Fosbury Flop” (Wikipedia, 2013) method of
high-jump (see Figure 6). This motion is very different from
a classical high-jump and took generations of Olympians

Fig. 6. The “Fosbury Flop”. (Source: Public domain
picture from Wikimedia Commons, http://en.wikipedia.
org/wiki/Fosbury_Flop.)

to discover. But after it was first demonstrated, it was soon
mastered by virtually all athletes participating in the sport.
On the other hand, this example also illustrates nicely that
such local optimization around an initial demonstration can
only find local optima.

In practice, both approximate value-function-based
approaches and policy-search methods work best for real
system applications when they are constrained to make
modest changes to the distribution over states while learn-
ing. Policy-search approaches implicitly maintain the state
distribution by limiting the changes to the policy. On the
other hand, for value-function methods, an unstable esti-
mate of the value function can lead to drastic changes in
the policy. Multiple policy-search methods used in robotics
are based on this intuition (Bagnell and Schneider, 2003;

http://en.wikipedia.org/wiki/Fosbury_Flop

Kober et al. 1259

Peters and Schaal, 2008b; Peters et al., 2010a; Kober and
Peters, 2010).

The intuitive idea and empirical evidence that demon-
stration makes the reinforcement learning problem simpler
can be understood rigorously. In fact, Kakade and Langford
(2002) and Bagnell et al. (2003) demonstrate that know-
ing approximately the state-distribution of a good policy5

transforms the problem of reinforcement learning from one
that is provably intractable in both information and compu-
tational complexity to a tractable one with only polynomial
sample and computational complexity, even under func-
tion approximation and partial observability. This type of
approach can be understood as a reduction from reinforce-
ment learning to supervised learning. Both algorithms are
policy-search variants of approximate policy iteration that
constrain policy updates. Kollar and Roy (2008) demon-
strate the benefit of this reinforcement learning approach
for developing state-of-the-art map exploration policies and
Kolter et al. (2008) employed a space-indexed variant to
learn trajectory following tasks with an autonomous vehicle
and a RC car.

5.1.1. Demonstrations by a teacher Demonstrations by a
teacher can be obtained in two different scenarios. In the
first, the teacher demonstrates the task using his or her own
body; in the second, the teacher controls the robot to do
the task. The first scenario is limited by the embodiment
issue, as the movement of a human teacher usually cannot
be mapped directly to the robot due to different physical
constraints and capabilities. For example, joint angles of a
human demonstrator need to be adapted to account for the
kinematic differences between the teacher and the robot.
Often it is more advisable to only consider task-relevant
information, such as the Cartesian positions and velocities
of the end-effector and the object. Demonstrations obtained
by motion-capture have been used to learn a pendulum
swing-up (Atkeson and Schaal, 1997), ball in a cup (Kober
et al., 2008), and grasping (Gräve et al., 2010).

The second scenario obtains demonstrations by a human
teacher directly controlling the robot. Here the human
teacher first has to learn how to achieve a task with the par-
ticular robot’s hardware, adding valuable prior knowledge.
For example, remotely controlling the robot initialized a Q-
table for a navigation task (Conn and Peters II, 2007). If the
robot is back-drivable, kinesthetic teach-in (i.e. by taking it
by the hand and moving it) can be employed, which enables
the teacher to interact more closely with the robot. This
method has resulted in applications including T-ball bat-
ting (Peters and Schaal, 2008c,b), reaching tasks (Guenter
et al., 2007; Bitzer et al., 2010), ball in a cup (Kober and
Peters, 2009), flipping a light switch (Buchli et al., 2011),
playing pool and manipulating a box (Pastor et al., 2011),
and opening a door and picking up objects (Kalakrishnan
et al., 2011). A marble maze task can be learned using
demonstrations by a human player (Bentivegna et al., 2004).

One of the more stunning demonstrations of the bene-
fit of learning from a teacher is the helicopter airshows of
Coates et al. (2009). This approach combines initial human
demonstration of trajectories, machine learning to extract
approximate models from multiple trajectories, and classi-
cal locally optimal control methods (Jacobson and Mayne,
1970) to achieve state-of-the-art acrobatic flight.

5.1.2. Hand-crafted policies When human interaction
with the system is not straightforward due to technical rea-
sons or human limitations, a pre-programmed policy can
provide alternative demonstrations. For example, a vision-
based mobile robot docking task can be learned faster
with such a basic behavior than using Q-learning alone, as
demonstrated by Martínez-Marín and Duckett (2005) Pro-
viding hand-coded, stable initial gaits can significantly help
in learning robot locomotion, as shown on a six-legged
robot (Erden and Leblebicioğlu, 2008) as well as on a biped
(Tedrake, 2004; Tedrake et al., 2005). Alternatively, hand-
crafted policies can yield important corrective actions as
prior knowledge that prevent the robot to deviates signifi-
cantly from the desired behavior and endanger itself. This
approach has been applied to adapt the walking patterns of a
robot dog to new surfaces (Birdwell and Livingston, 2007)
by Q-learning. Rosenstein and Barto (2004) employed a sta-
ble controller to teach the robot about favorable actions and
avoid risky behavior while learning to move from a start to
a goal position.

5.2. Prior knowledge through task structuring

Often a task can be decomposed hierarchically into basic
components or into a sequence of increasingly difficult
tasks. In both cases the complexity of the learning task is
significantly reduced.

5.2.1. Hierarchical reinforcement learning A task can
often be decomposed into different levels. For example
when using meta-actions (Section 4.1), these meta-actions
correspond to a lower level dealing with the execution of
sub-tasks which are coordinated by a strategy level. Hierar-
chical reinforcement learning does not assume that all but
one levels are fixed but rather learns all of them simultane-
ously. For example, hierarchical Q-learning has been used
to learn different behavioral levels for a six-legged robot:
moving single legs, locally moving the complete body, and
globally moving the robot towards a goal (Kirchner, 1997).
A stand-up behavior considered as a hierarchical reinforce-
ment learning task has been learned using Q-learning in
the upper-level and a continuous actor–critic method in the
lower level (Morimoto and Doya, 2001). Navigation in a
maze can be learned using an actor–critic architecture by
tuning the influence of different control modules and learn-
ing these modules (Donnart and Meyer, 1996). Huber and
Grupen (1997) combined discrete event system and rein-
forcement learning techniques to learn turning gates for

1260 The International Journal of Robotics Research 32(11)

a quadruped. Hart and Grupen (2011) learned bi-manual
manipulation tasks by assembling policies hierarchically.
Daniel et al. (2012) learned options in a tetherball scenario
and Muelling et al. (2012) learned different strokes in a
table tennis scenario. Whitman and Atkeson (2010) showed
that the optimal policy for some global systems (such as a
walking controller) can be constructed by finding the opti-
mal controllers for simpler subsystems and coordinating
these.

5.2.2. Progressive tasks Often complicated tasks are eas-
ier to learn if simpler tasks can already be performed. This
progressive task development is inspired by how biologi-
cal systems learn. For example, a baby first learns how to
roll, then how to crawl, then how to walk. A sequence of
increasingly difficult missions has been employed to learn a
goal shooting task by Asada et al. (1996) using Q-learning.
Randløv and Alstrøm (1998) discussed shaping the reward
function to include both a balancing and a goal-oriented
term for a simulated bicycle riding task. The reward is con-
structed in such a way that the balancing term dominates
the other term and, hence, this more fundamental behavior
is learned first.

5.3. Directing exploration with prior knowledge

As discussed in Section 2.1, balancing exploration and
exploitation is an important consideration. Task knowl-
edge can be employed to guide to robots curiosity to
focus on regions that are novel and promising at the same
time. For example, a mobile robot learns to direct atten-
tion by employing a modified Q-learning approach using
novelty (Huang and Weng, 2002). Using “corrected trun-
cated returns” and taking into account the estimator vari-
ance, a six-legged robot employed with stepping reflexes
can learn to walk (Pendrith, 1999). Offline search can be
used to guide Q-learning during a grasping task (Wang
et al., 2006). Using upper confidence bounds (Kaelbling,
1990) to direct exploration into regions with potentially
high rewards, grasping can be learned efficiently (Kroemer
et al., 2010).

6. Tractability through models

In Section 2, we discussed robot reinforcement learning
from a model-free perspective where the system simply
served as a data generating process. Such model-free rein-
forcement algorithms try to directly learn the value function
or the policy without any explicit modeling of the transition
dynamics. In contrast, many robot reinforcement learning
problems can be made tractable by learning forward mod-
els, i.e. approximations of the transition dynamics based on
data. Such model-based reinforcement learning approaches
jointly learn a model of the system with the value function
or the policy and often allow for training with less inter-
action with the real environment. Reduced learning on the

real robot is highly desirable as simulations are frequently
faster than real-time while safer for both the robot and its
environment. The idea of combining learning in simulation
and in the real environment was popularized by the Dyna-
architecture (Sutton, 1990), prioritized sweeping (Moore
and Atkeson, 1993), and incremental multi-step Q-learning
(Peng and Williams, 1996) in reinforcement learning. In
robot reinforcement learning, the learning step on the simu-
lated system is often called “mental rehearsal”. We first dis-
cuss the core issues and techniques in mental rehearsal for
robotics (Section 6.1) and, subsequently, we discuss learn-
ing methods that have be used in conjunction with learning
with forward models (Section 6.2). An overview of pub-
lications using simulations to render the learning problem
tractable is presented in Table 5.

6.1. Core issues and general techniques in men-
tal rehearsal

Experience collected in the real world can be used to learn a
forward model (Åström and Wittenmark, 1989) from data.
Such forward models allow training by interacting with a
simulated environment. Only the resulting policy is subse-
quently transferred to the real environment. Model-based
methods can make the learning process substantially more
sample efficient. However, depending on the type of model,
these methods may require a great deal of memory. In the
following sections, we deal with the core issues of mental
rehearsal: simulation biases, stochasticity of the real world,
and efficient optimization when sampling from a simulator.

6.1.1. Dealing with simulation biases It is impossible to
obtain a forward model that is accurate enough to simu-
late a complex real-world robot system without error. If
the learning methods require predicting the future or using
derivatives, even small inaccuracies can quickly accumu-
late, significantly amplifying noise and errors (An et al.,
1988). Reinforcement learning approaches exploit such
model inaccuracies if they are beneficial for the reward
received in simulation (Atkeson and Schaal, 1997). The
resulting policies may work well with the forward model
(i.e. the simulator) but poorly on the real system. This is
known as simulation bias. It is analogous to over-fitting in
supervised learning; that is, the algorithm is doing its job
well on the model and the training data, respectively, but
does not generalize well to the real system or novel data.
Simulation bias often leads to biased, potentially physically
non-feasible solutions while even iterating between model
learning and policy will have slow convergence. Averaging
over the model uncertainty in probabilistic models can be
used to reduce the bias; see the next section for examples.
Another result from these simulation biases is that relatively
few researchers have successfully demonstrated that a pol-
icy learned in simulation can directly be transferred to a
real robot while maintaining a high level of performance.
The few examples include maze navigation tasks (Bakker

Kober et al. 1261

Table 5. Different methods of making robot reinforcement learning tractable using models.

Core issues and general techniques in mental rehearsal

Approach Employed by…

Dealing with simulation biases An et al. (1988), Atkeson and Schaal (1997); Atkeson (1998), Bakker et al. (2003), Duan et al.
(2007), Fagg et al. (1998), Ilg et al. (1999), Jakobi et al. (1995), Oßwald et al. (2010), Ross and
Bagnell (2012), Svinin et al. (2001), and Youssef (2005)

Distributions over models for
simulation

Bagnell and Schneider (2001), Deisenroth and Rasmussen (2011); Deisenroth et al. (2011),
Kolter et al. (2010), and Lizotte et al. (2007)

Sampling by re-using random
numbers

Bagnell and Schneider (2001); Bagnell (2004), Ko et al. (2007), Michels et al. (2005), and Ng
et al. (2004a,b)

Successful learning approaches with forward models

Approach Employed by…

Iterative learning control Abbeel et al. (2006), An et al. (1988), van den Berg et al. (2010), Bukkems et al. (2005),
Freeman et al. (2010), and Norrlöf (2002)

Locally linear quadratic regu-
lators

Atkeson and Schaal (1997); Atkeson (1998), Coates et al. (2009), Kolter et al. (2008), Schaal
and Atkeson (1994), and Tedrake et al. (2010)

Value-function methods with
learned models

Bakker et al. (2006), Nemec et al. (2010), and Uchibe et al. (1998)

Policy search with learned
models

Bagnell and Schneider (2001); Bagnell (2004), Deisenroth et al. (2011); Deisenroth and
Rasmussen (2011), Kober and Peters (2010), Ng et al. (2004a,b), and Peters et al. (2010a)

et al., 2003; Youssef, 2005; Oßwald et al., 2010), obstacle
avoidance (Fagg et al., 1998) for a mobile robot, very basic
robot soccer (Duan et al., 2007) and multi-legged robot
locomotion (Ilg et al., 1999; Svinin et al., 2001). Never-
theless, simulation biases can be addressed by introducing
stochastic models or distributions over models even if the
system is very close to deterministic. Artificially adding a
little noise will smooth model errors and avoid policy over-
fitting (Jakobi et al., 1995; Atkeson, 1998). On the down-
side, potentially very precise policies may be eliminated
due to their fragility in the presence of noise. This tech-
nique can be beneficial in all of the approaches described in
this section. Nevertheless, in recent work, Ross and Bagnell
(2012) presented an approach with strong guarantees for
learning the model and policy in an iterative fashion even
if the true system is not in the model class, indicating that it
may be possible to deal with simulation bias.

6.1.2. Distributions over models for simulation Model
learning methods that maintain probabilistic uncertainty
about true system dynamics allow the reinforcement learn-
ing algorithm to generate distributions over the perfor-
mance of a policy. Such methods explicitly model the uncer-
tainty associated with the dynamics at each state and action.
For example, when using a Gaussian process model of the
transition dynamics, a policy can be evaluated by propa-
gating the state and associated uncertainty forward in time.
Such evaluations in the model can be used by a policy-
search approach to identify where to collect more data to
improve a policy, and may be exploited to ensure that con-
trol is safe and robust to model uncertainty (Schneider,
1996; Bagnell and Schneider, 2001). When the new policy
is evaluated on the real system, the novel observations can

subsequently be incorporated into the forward model. Bag-
nell and Schneider (2001) showed that maintaining model
uncertainty and using it in the inner-loop of a policy-search
method enabled effective flight control using only minutes
of collected data, while performance was compromised by
considering a best-fit model. This approach uses explicit
Monte Carlo simulation in the sample estimates.

By treating model uncertainty as if it were noise (Schnei-
der, 1996) as well as employing analytic approximations
of forward simulation, a cart-pole task can be solved with
less than 20 seconds of interaction with the physical system
(Deisenroth and Rasmussen, 2011); a visually driven block-
stacking task has also been learned data-efficiently (Deisen-
roth et al., 2011). Similarly, solving a linearized control
problem with multiple probabilistic models and combin-
ing the resulting closed-loop control with open-loop control
has resulted in autonomous sideways sliding into a parking
spot (Kolter et al., 2010). Instead of learning a model of the
system dynamics, Lizotte et al. (2007) directly learned the
expected return as a function of the policy parameters using
GPR in a black-box fashion and, subsequently, searched for
promising parameters in this model. The method has been
applied to optimize the gait of an Aibo robot.

6.1.3. Sampling by re-using random numbers A forward
model can be used as a simulator to create roll-outs for
training by sampling. When comparing results of different
simulation runs, it is often hard to tell from a small number
of samples whether a policy really worked better or whether
the results are an effect of the simulated stochasticity. Using
a large number of samples to obtain proper estimates of
the expectations become prohibitively expensive if a large
number of such comparisons need to be performed (e.g. for

1262 The International Journal of Robotics Research 32(11)

Fig. 7. Autonomous inverted helicopter flight (Ng et al., 2004b).
(Reproduced with permission from Andrew Ng.)

gradient estimation within an algorithm). A common tech-
nique in the statistics and simulation community (Glynn,
1987) to address this problem is to re-use the series of ran-
dom numbers in fixed models, hence mitigating the noise
contribution. Ng et al. (2004a,b) extended this approach
for learned simulators. The resulting approach, PEGASUS,
found various applications in the learning of maneuvers
for autonomous helicopters (Bagnell and Schneider, 2001;
Bagnell, 2004; Ng et al., 2004a,b), as illustrated in Figure 7.
It has been used to learn control parameters for a RC car
(Michels et al., 2005) and an autonomous blimp (Ko et al.,
2007).

While mental rehearsal has a long history in robotics, it
is currently becoming again a hot topic, especially due to
the work on probabilistic virtual simulation.

6.2. Successful learning approaches with
forward models

Model-based approaches rely on an approach that finds
good policies using the learned model. In this section, we
discuss methods that directly obtain a new policy candi-
date directly from a forward model. Some of these methods
have a long history in optimal control and only work in
conjunction with a forward model.

6.2.1. Iterative learning control A powerful idea that has
been developed in multiple forms in both the reinforce-
ment learning and control communities is the use of crude,
approximate models to determine gradients, e.g. for an
update step. The resulting new policy is then evaluated in
the real world and the model is updated. This approach is
known as iterative learning control (Arimoto et al., 1984).
A similar preceding idea was employed to minimize tra-
jectory tracking errors (An et al., 1988) and is loosely
related to feedback error learning (Kawato, 1990). More
recently, variations on the iterative learning control has been
employed to learn robot control (Norrlöf, 2002; Bukkems
et al., 2005), steering a RC car with a general analysis

of approximate models for policy search in Abbeel et al.
(2006), a pick and place task (Freeman et al., 2010), and an
impressive application of tying knots with a surgical robot
at superhuman speeds (van den Berg et al., 2010).

6.2.2. Locally linear quadratic regulators Instead of sam-
pling from a forward model-based simulator, such learned
models can be directly used to compute optimal control
policies. This approach has resulted in a variety of robot
reinforcement learning applications that include pendulum
swing-up tasks learned with DDP (Atkeson and Schaal,
1997; Atkeson, 1998), devil-sticking (a form of gyroscopic
juggling) obtained with local LQR solutions (Schaal and
Atkeson, 1994), trajectory following with space-indexed
controllers trained with DDP for an autonomous RC car
(Kolter et al., 2008), and the aerobatic helicopter flight
trained with DDP discussed above (Coates et al., 2009).

6.2.3. Value function methods with learned models Obvi-
ously, mental rehearsal can be used straightforwardly with
value-function methods by simply pretending that the simu-
lated roll-outs were generated from the real system. Learn-
ing in simulation while the computer is idle and employing
directed exploration allows Q-learning to learn a naviga-
tion task from scratch in 20 minutes (Bakker et al., 2006).
Two robots taking turns in learning a simplified soccer task
were also able to profit from mental rehearsal (Uchibe et al.,
1998). Nemec et al. (2010) used a value function learned in
simulation to initialize the real robot learning. However, it
is clear that model-based methods that use the model for
creating more direct experience should potentially perform
better.

6.2.4. Policy search with learned models Similarly as for
value-function methods, all model-free policy-search meth-
ods can be used in conjunction with learned simulators. For
example, both pairwise comparisons of policies and pol-
icy gradient approaches have been used with learned sim-
ulators (Bagnell and Schneider, 2001; Bagnell, 2004; Ng
et al., 2004a,b). Transferring EM-like policy search (Kober
and Peters, 2010) and relative entropy policy search (Peters
et al., 2010a) appears to be a natural next step. Neverthe-
less, as mentioned in Section 6.1, a series of policy update
methods has been suggested that were tailored for proba-
bilistic simulation (Lizotte et al., 2007; Deisenroth et al.,
2011; Deisenroth and Rasmussen, 2011).

There still appears to be the need for new methods that
make better use of the model knowledge, both in policy-
search and for value-function methods.

7. A case study: ball in a cup

Up to this point in this paper, we have reviewed a large
variety of problems and associated solutions within robot

Kober et al. 1263

reinforcement learning. In this section, we will take a com-
plementary approach and discuss one task in detail that has
previously been studied.

This ball in a cup task due to its relative simplicity can
serve as an example to highlight some of the challenges
and methods that were discussed earlier. We do not claim
that the method presented is the best or only way to address
the presented problem; instead, our goal is to provide a
case study that shows design decisions which can lead to
successful robotic reinforcement learning.

In Section 7.1, the experimental setting is described with
a focus on the task and the reward. Section 7.2 discusses
a type of pre-structured policies that has been particularly
useful in robotics. Inclusion of prior knowledge is presented
in Section 7.3. The advantages of the employed policy-
search algorithm are explained in Section 7.4. The use of
simulations in this task is discussed in Section 7.5 and
results on the real robot are described in Section 7.6. Finally,
an alternative reinforcement learning approach is briefly
explored in Section 7.7.

7.1. Experimental setting: task and reward

The children’s game ball in a cup, also known as balero and
bilboquet, is challenging even for adults. The toy consists
of a small cup held in one hand (in this case, it is attached
to the end-effector of the robot) and a small ball hanging
on a string attached to the cup’s bottom (for the employed
toy, the string is 40 cm long). Initially, the ball is at rest,
hanging down vertically. The player needs to move quickly
to induce motion in the ball through the string, toss the ball
in the air, and catch it with the cup. A possible movement is
illustrated in Figure 8a.

The state of the system can be described by joint angles
and joint velocities of the robot as well as the Cartesian
coordinates and velocities of the ball (neglecting states that
cannot be observed straightforwardly such as the state of
the string or global room air movement). The actions are the
joint space accelerations, which are translated into torques
by a fixed inverse dynamics controller. Thus, the reinforce-
ment learning approach has to deal with 20 state and 7
action dimensions, making discretization infeasible.

An obvious reward function would be a binary return
for the whole episode, depending on whether the ball was
caught in the cup or not. In order to give the reinforce-
ment learning algorithm a notion of closeness, Kober and
Peters (2010) initially used a reward function based solely
on the minimal distance between the ball and the cup. How-
ever, the algorithm has exploited rewards resulting from
hitting the cup with the ball from below or from the side,
as such behaviors are easier to achieve and yield compar-
atively high rewards. To avoid such local optima, it was
essential to find a good reward function that contains the
additional prior knowledge that getting the ball into the
cup is only possible from one direction. Kober and Peters
(2010) expressed this constraint by computing the reward as

r(tc) = exp
(−α(xc − xb)2 −α(yc − yb)2

)
while r (t) = 0

for all t �= tc. Here, tc corresponds to the time step when
the ball passes the rim of the cup with a downward direc-
tion, the cup position is denoted by [xc, yc, zc] ∈ R

3, the
ball position is [xb, yb, zb] ∈ R

3 and the scaling parameter
α = 100. This reward function does not capture the case
where the ball does not pass above the rim of the cup, as the
reward will always be zero. The employed approach per-
forms a local policy search and, hence, an initial policy that
brings the ball above the rim of the cup was required.

The task exhibits some surprising complexity as the
reward is not only affected by the cup’s movements but fore-
most by the ball’s movements. As the ball’s movements are
very sensitive to small perturbations, the initial conditions,
or small arm movement changes will drastically affect the
outcome. Creating an accurate simulation is hard due to
the nonlinear, unobservable dynamics of the string and its
non-negligible weight.

7.2. Appropriate policy representation

The policy is represented by dynamical system motor prim-
itives (Ijspeert et al., 2003; Schaal et al., 2007). The global
movement is encoded as a point attractor linear dynamical
system with an additional local transformation that allows a
very parsimonious representation of the policy. This frame-
work ensures the stability of the movement and allows
the representation of arbitrarily shaped movements through
the primitive’s policy parameters. These parameters can be
estimated straightforwardly by locally weighted regression.
Note that the dynamical systems motor primitives ensure
the stability of the movement generation but cannot guaran-
tee the stability of the movement execution. These prim-
itives can be modified through their meta-parameters in
order to adapt to the final goal position, the movement
amplitude, or the duration of the movement. The resulting
movement can start from arbitrary positions and velocities
and go to arbitrary final positions while maintaining the
overall shape of the trajectory.

While the original formulation of Ijspeert et al. (2003) for
discrete dynamical systems motor primitives used a second-
order system to represent the phase z of the movement, this
formulation has proven to be unnecessarily complicated in
practice. Since then, it has been simplified and, in Schaal
et al. (2007), it was shown that a single first-order system
suffices

ż = −ταzz. (7)

This canonical system has the time constant τ = 1/T where
T is the duration of the motor primitive, a parameter αz

which is chosen such that z ≈ 0 at T to ensure that the influ-
ence of the transformation function, shown in Equation (9),
vanishes. Subsequently, the internal state x of a second sys-
tem is chosen such that positions q of all DoFs are given by
q = x1, the velocities q̇ by q̇ = τx2 = ẋ1 and the acceler-
ations q̈ by q̈ = τ ẋ2. Under these assumptions, the learned

1264 The International Journal of Robotics Research 32(11)

(a)

(b)

(c)

Fig. 8. Schematic drawings of the ball in a cup motion (a), the final learned robot motion (c), as well as a kinesthetic teach-in (b). The
green arrows show the directions of the current movements in that frame. The human cup motion was taught to the robot by imitation
learning. The robot manages to reproduce the imitated motion quite accurately, but the ball misses the cup by several centimeters.
After approximately 75 iterations of the Policy learning by Weighting Exploration with the Returns (PoWER) algorithm the robot has
improved its motion so that the ball regularly goes into the cup.

dynamics of Ijspeert motor primitives can be expressed in
the following form

ẋ2 = ταx (βx (g − x1)− x2)+ τAf (z) , (8)

ẋ1 = τx2.

This set of differential equations has the same time con-
stant τ as the canonical system, parameters αx, βx set
such that the system is critically damped, a goal parame-
ter g, a transformation function f and an amplitude matrix
A = diag(a1, a2, . . . , an), with the amplitude modifier
a = [a1, a2, . . . , an]. Schaal et al. (2007) used a = g − x0

1
with the initial position x0

1, which ensures linear scaling.
Alternative choices are possibly better suited for specific
tasks, see, e.g., Park et al. (2008). The transformation func-
tion f (z) alters the output of the first system, in Equa-
tion (7), so that the second system, in Equation (8), can
represent complex nonlinear patterns and it is given by

f (z) = ∑N
i=1ψi (z)wiz. (9)

Here, wi contains the ith adjustable parameter of all DoFs,
N is the number of parameters per DoF, and ψi(z) are the
corresponding weighting functions (Schaal et al., 2007).
Normalized Gaussian kernels are used as weighting func-
tions given by

ψi (z) = exp
(−hi (z − ci)

2
)

∑N
j=1 exp

(
−hj

(
z − cj

)2
) . (10)

These weighting functions localize the interaction in phase
space using the centers ci and widths hi. Note that the DoFs

are usually all modeled as independent in Equation (8).
All DoFs are synchronous as the dynamical systems for all
DoFs start at the same time, have the same duration, and
the shape of the movement is generated using the transfor-
mation f (z) in Equation (9). This transformation function
is learned as a function of the shared canonical system in
Equation (7).

This policy can be seen as a parameterization of a mean
policy in the form ā = θTμ(s, t), which is linear in param-
eters. Thus, it is straightforward to include prior knowledge
from a demonstration using supervised learning by locally
weighted regression.

This policy is augmented by an additive exploration
ε(s, t) noise term to make policy-search methods possi-
ble. As a result, the explorative policy can be given in
the form a = θTμ(s, t) +ε(μ(s, t)). Some policy-search
approaches have previously used state-independent, white
Gaussian exploration, i.e. ε(μ(s, t)) ∼ N (0, �). However,
such unstructured exploration at every step has several dis-
advantages, notably: (i) it causes a large variance which
grows with the number of time-steps; (ii) it perturbs actions
too frequently, thus, “washing out” their effects; and (iii) it
can damage the system that is executing the trajectory.

Alternatively, one could generate a form of struc-
tured, state-dependent exploration (Rückstieß et al., 2008)
ε(μ(s, t)) = εT

t μ(s, t) with [εt]ij ∼ N (0, σ 2
ij), where

σ 2
ij are meta-parameters of the exploration that can also

be optimized. This argument results in the policy a =
(θ + εt)

T μ(s, t) corresponding to the distribution a ∼
π (at|st, t) = N (a|θTμ(s, t) , μ(s, t)T �̂(s, t)). Instead of
directly exploring in action space, this type of policy
explores in parameter space.

Kober et al. 1265

7.3. Generating a teacher demonstration

Children usually learn this task by first observing another
person presenting a demonstration. They then try to dupli-
cate the task through trial-and-error-based learning. To
mimic this process, the motor primitives were first initial-
ized by imitation. Subsequently, they were improved them
by reinforcement learning.

A demonstration for imitation was obtained by record-
ing the motions of a human player performing kinesthetic
teach-in as shown in Figure 8b. Kinesthetic teach-in means
“taking the robot by the hand”, performing the task by mov-
ing the robot while it is in gravity-compensation mode, and
recording the joint angles, velocities and accelerations. It
requires a back-drivable robot system that is similar enough
to a human arm to not cause embodiment issues. Even with
demonstration, the resulting robot policy fails to catch the
ball with the cup, leading to the need for self-improvement
by reinforcement learning. As discussed in Section 7.1, the
initial demonstration was needed to ensure that the ball goes
above the rim of the cup.

7.4. Reinforcement learning by policy search

Policy-search methods are better suited for a scenario such
as this, where the task is episodic, local optimization is
sufficient (thanks to the initial demonstration), and high-
dimensional, continuous states and actions need to be taken
into account. A single update step in a gradient-based
method usually requires as many episodes as parameters
to be optimized. Since the expected number of parameters
was in the hundreds, a different approach had to be taken
because gradient based methods are impractical in this sce-
nario. Furthermore, the step-size parameter for gradient-
based methods often is a crucial parameter that needs to
be tuned to achieve good performance. Instead, an EM-
inspired algorithm was employed that requires significantly
less samples and has no learning rate.

Kober and Peters (2009) have derived a framework of
reward weighted imitation. Based on Dayan and Hinton
(1997) they consider the return of an episode as an improper
probability distribution. A lower bound of the logarithm of
the expected return is maximized. Depending on the strat-
egy of optimizing this lower bound and the exploration
strategy, the framework yields several well-known policy-
search algorithms as well as the novel Policy learning by
Weighting Exploration with the Returns (PoWER) algo-
rithm. PoWER is an EM-inspired algorithm that employs
state-dependent exploration (as discussed in Section 7.2).
The update rule is given by

θ ′=θ + E

{
T∑

t=1

W (st, t)Qπ (st, at, t)

}−1

E

{
T∑

t=1

W (st, t) εtQ
π (st, at, t)

}
,

where W (st, t) = μ(s, t) μ(s, t)T (μ(s, t)T �̂μ(s, t))−1.
Intuitively, this update can be seen as a reward-weighted
imitation, (or recombination) of previously seen episodes.
Depending on its effect on the state–action value function,
the exploration of each episode is incorporated more or less
strongly into the updated policy. To reduce the number of
trials in this on-policy scenario, the trials are reused through
importance sampling (Sutton and Barto, 1998). To avoid
the fragility that sometimes results from importance sam-
pling in reinforcement learning, samples with very small
importance weights were discarded. In essence, this algo-
rithm performs a local search around the policy learned
from demonstration and prior knowledge.

7.5. Use of simulations in robot reinforcement
learning

The robot is simulated by rigid body dynamics with param-
eters estimated from data. The toy is simulated as a pendu-
lum with an elastic string that switches to a ballistic point
mass when the ball is closer to the cup than the string is
long. The spring, damper, and restitution constants were
tuned to match data recorded on a VICON system. The
SL framework (Schaal, 2009) allowed us to switch between
the simulated robot and the real one with a simple recom-
pile. Even though the simulation matches recorded data
very well, policies that get the ball in the cup in simula-
tion usually missed the cup by several centimeters on the
real system and vice versa. One conceivable approach could
be to first improve a demonstrated policy in simulation and
only perform the fine-tuning on the real robot.

However, this simulation was very helpful in developing
and tuning the algorithm as it runs faster in simulation than
real-time and does not require human supervision or inter-
vention. The algorithm was initially confirmed and tweaked
with unrelated, simulated benchmark tasks (as shown by
Kober and Peters, 2010). The use of an importance sampler
was essential to achieve good performance and required
many tests over the course of 2 weeks. A very crude
importance sampler that considers only the n best previous
episodes worked sufficiently well in practice. Depending on
the number n the algorithm exhibits are more or less pro-
nounced greedy behavior. In addition, there are a number
of possible simplifications for the learning algorithm, some
of which work very well in practice even if the underly-
ing assumption do not strictly hold in reality. The finally
employed variant

θ ′ = θ +

〈∑T
t=1 εtQπ (st, at, t)

〉
ω(τ)〈∑T

t=1 Qπ (st, at, t)
〉
ω(τ)

assumes that only a single basis function is active at a
given time, while there is actually some overlap for the
motor primitive basis functions. The importance sampler is

1266 The International Journal of Robotics Research 32(11)

denoted by 〈�〉ω(τ). The implementation is further simplified
as the reward is zero for all but one time step per episode.

To adapt the algorithm to this particular task, the most
important parameters to tune were the “greediness” of the
importance sampling, the initial magnitude of the explo-
ration, and the number of parameters for the policy. These
parameters were identified by a coarse grid search in sim-
ulation with various initial demonstrations and seeds for
the random number generator. Once the simulation and the
grid search were coded, this process only took a few min-
utes. The exploration parameter is fairly robust if it is in
the same order of magnitude as the policy parameters. For
the importance sampler, using the 10 best previous episodes
was a good compromise. The number of policy parameters
needs to be high enough to capture enough details to get
the ball above the rim of the cup for the initial demonstra-
tion. On the other hand, having more policy parameters will
potentially slow down the learning process. The number of
needed policy parameters for various demonstrations were
in the order of 30 parameters per DoF. The demonstration
employed for the results shown in more detail in this paper
employed 31 parameters per DoF for an approximately 3
second long movement, hence 217 policy parameters total.
Having three times as many policy parameters slowed down
the convergence only slightly.

7.6. Results on the real robot

The first run on the real robot used the demonstration shown
in Figure 8 and directly worked without any further param-
eter tuning. For the 5 runs with this demonstration, which
took approximately 1 hour each, the robot got the ball into
the cup for the first time after 42–45 episodes and regu-
larly succeeded at bringing the ball into the cup after 70–80
episodes. The policy always converged to the maximum
after 100 episodes. Running the real robot experiment was
tedious as the ball was tracked by a stereo vision system,
which sometimes failed and required a manual correction
of the reward. As the string frequently entangles during fail-
ures and the robot cannot unravel it, human intervention is
required. Hence, the ball had to be manually reset after each
episode.

If the constraint of getting the ball above the rim of
the cup for the initial policy is fulfilled, the presented
approach works well for a wide variety of initial demon-
strations including various teachers and two different move-
ment strategies (swinging the ball or pulling the ball straight
up). Convergence took between 60 and 130 episodes, which
largely depends on the initial distance to the cup but also on
the robustness of the demonstrated policy.

7.7. Alternative approach with value-function
methods

Nemec et al. (2010) employed an alternate reinforcement
learning approach to achieve the ball in a cup task with a

Mitsubishi PA10 robot. They decomposed the task into two
sub-tasks, the swing-up phase and the catching phase. In
the swing-up phase, the ball is moved above the cup. In
the catching phase, the ball is caught with the cup using
an analytic prediction of the ball trajectory based on the
movement of a flying point mass. The catching behavior is
fixed; only the swing-up behavior is learned. The paper pro-
poses to use SARSA to learn the swing-up movement. The
states consist of the cup positions and velocities as well as
the angular positions and velocities of the ball. The actions
are the accelerations of the cup in a single Cartesian direc-
tion. Tractability is achieved by discretizing both the states
(324 values) and the actions (5 values) and initialization
by simulation. The behavior was first learned in simulation
requiring 220–300 episodes. The state–action value func-
tion learned in simulation was used to initialize the learning
on the real robot. The robot required an additional 40–90
episodes to adapt the behavior learned in simulation to the
real environment.

8. Discussion

We have surveyed the state of the art in robot reinforcement
learning for both general reinforcement learning audiences
and robotics researchers to provide possibly valuable insight
into successful techniques and approaches.

From this overview, it is clear that using reinforcement
learning in the domain of robotics is not yet a straight-
forward undertaking but rather requires a certain amount
of skill. Hence, in this section, we highlight several open
questions faced by the robotic reinforcement learning com-
munity in order to make progress towards “off-the-shelf”
approaches as well as a few current practical challenges.
Finally, we try to summarize several key lessons from
robotic reinforcement learning for the general reinforce-
ment learning community.

8.1. Open questions in robotic reinforcement
learning

Reinforcement learning is clearly not applicable to robotics
“out of the box” yet, in contrast to supervised learning
where considerable progress has been made in large-scale,
easy deployment over the last decade. As this paper illus-
trates, reinforcement learning can be employed for a wide
variety of physical systems and control tasks in robotics. It
is unlikely that single answers do exist for such a heteroge-
neous field, but even for very closely related tasks, appro-
priate methods currently need to be carefully selected. The
user has to decide when sufficient prior knowledge is given
and learning can take over. All methods require hand-tuning
for choosing appropriate representations, reward functions,
and the required prior knowledge. Even the correct use of
models in robot reinforcement learning requires substantial
future research. Clearly, a key step in robotic reinforcement

Kober et al. 1267

learning is the automated choice of these elements and hav-
ing robust algorithms that limit the required tuning to the
point where even a naive user would be capable of using
robotic reinforcement learning.

8.1.1. How to choose representations automatically? The
automated selection of appropriate representations remains
a difficult problem as the action space in robotics often is
inherently continuous and multi-dimensional. While there
are good reasons for using the methods presented in Sec-
tion 4 in their respective domains, the question whether
to approximate states, value functions, policies, or a mix
of the three, remains open. The correct methods to han-
dle the inevitability of function approximation remain under
intense study, as does the theory to back it up.

8.1.2. How to generate reward functions from data? Good
reward functions are always essential to the success of a
robot reinforcement learning approach (see Section 3.4).
While inverse reinforcement learning can be used as an
alternative to manually designing the reward function, it
relies on the design of features that capture the important
aspects of the problem space instead. Finding feature can-
didates may require insights not altogether different from
the ones needed to design the actual reward function.

8.1.3. How much can prior knowledge help? How much is
needed? Incorporating prior knowledge is one of the main
tools to make robotic reinforcement learning tractable (see
Section 5). However, it is often hard to tell in advance how
much prior knowledge is required to enable a reinforcement
learning algorithm to succeed in a reasonable number of
episodes. For such cases, a loop of imitation and reinforce-
ment learning may be a desirable alternative. Nevertheless,
sometimes, prior knowledge may not help at all. For exam-
ple, obtaining initial policies from human demonstrations
can be virtually impossible if the morphology of the robot
is too different from a human’s (which is known as the cor-
respondence problem (Argall et al., 2009)). Whether alter-
native forms of prior knowledge can help here may be a key
question to answer.

8.1.4. How to integrate more tightly with perception?
Much current work on robotic reinforcement learning relies
on subsystems that abstract away perceptual information,
limiting the techniques to simple perception systems and
heavily pre-processed data. This abstraction is in part due to
limitations of existing reinforcement learning approaches at
handling inevitably incomplete, ambiguous, and noisy sen-
sor data. Learning active perception jointly with the robot’s
movement and semantic perception are open problems that
present tremendous opportunities for simplifying as well as
improving robot behavior programming.

8.1.5. How to reduce parameter sensitivity? Many algo-
rithms work fantastically well for a very narrow range of
conditions or even tuning parameters. A simple example
would be the step size in a gradient-based method. However,
searching anew for the best parameters for each situation
is often prohibitive with physical systems. Instead algo-
rithms that work fairly well for a large range of situations
and parameters are potentially much more interesting for
practical robotic applications.

8.1.6. How to deal with model errors and under-modeling?
Model-based approaches can significantly reduce the need
for real-world interactions. Methods that are based on
approximate models and use local optimization often work
well (see Section 6). As real-world samples are usually
more expensive than comparatively cheap calculations, this
may be a significant advantage. However, for most robot
systems, there will always be under-modeling and resulting
model errors. Hence, the policies learned only in simulation
frequently cannot be transferred directly to the robot.

This problem may be inevitable due to both uncertainty
about true system dynamics, the non-stationarity of system
dynamics6 and the inability of any model in our class to
be perfectly accurate in its description of those dynamics,
which have led to robust control theory (Zhou and Doyle,
1997). Reinforcement learning approaches mostly require
the behavior designer to deal with this problem by incor-
porating model uncertainty with artificial noise or care-
fully choosing reward functions to discourage controllers
that generate frequencies that might excite unmodeled
dynamics.

Tremendous theoretical and algorithmic challenges arise
from developing algorithms that are robust to both model
uncertainty and under-modeling while ensuring fast learn-
ing and performance. A possible approach may be the
full Bayesian treatment of the impact of possible model
errors onto the policy but has the risk of generating overly
conservative policies, as also happened in robust optimal
control.

This list of questions is by no means exhaustive, however,
it provides a fair impression of the critical issues for basic
research in this area.

8.2. Practical challenges for robotic reinforce-
ment learning

More applied problems for future research result from
practical challenges in robot reinforcement learning

8.2.1. Exploit data sets better Humans who learn a new
task build upon previously learned skills. For example, after
a human learns how to throw balls, learning how to throw
darts becomes significantly easier. Being able to transfer
previously learned skills to other tasks and potentially to
robots of a different type is crucial. For complex tasks,

1268 The International Journal of Robotics Research 32(11)

learning cannot be achieved globally. It is essential to reuse
other locally learned information from past data sets. While
such transfer learning has been studied more extensively in
other parts of machine learning, tremendous opportunities
for leveraging such data exist within robot reinforcement
learning. Making such data sets with many skills publicly
available would be a great service for robotic reinforcement
learning research.

8.2.2. Comparable experiments and consistent evaluation
The difficulty of performing, and reproducing, large-scale
experiments due to the expense, fragility, and differences
between hardware remains a key limitation in robotic rein-
forcement learning. The current movement towards more
standardization within robotics may aid these efforts signif-
icantly, e.g. by possibly providing a standard robotic rein-
forcement learning setup to a larger community: both real
and simulated. These questions need to be addressed in
order for research in self-improving robots to progress.

8.3. Robotics lessons for reinforcement learning

Most of the article has aimed equally at both reinforcement
learning and robotics researchers as well as practitioners.
However, this section attempts to convey a few important,
possibly provocative, take-home messages for the classical
reinforcement learning community.

8.3.1. Focus on high-dimensional continuous actions and
constant adaptation Robotic problems clearly have driven
theoretical reinforcement learning research, particularly in
policy search, inverse optimal control approaches, and
model robustness. The practical impact of robotic reinforce-
ment learning problems (e.g. multi-dimensional continuous
action spaces, continuously drifting noise, frequent changes
in the hardware and the environment, and the inevitability of
under-modeling), may not yet have been sufficiently appre-
ciated by the theoretical reinforcement learning commu-
nity. These problems have often caused robotic reinforce-
ment learning to take significantly different approaches than
would be dictated by theory. Perhaps as a result, robotic
reinforcement learning approaches are often closer to clas-
sical optimal control solutions than the methods typically
studied in the machine learning literature.

8.3.2. Exploit domain structure for scalability The
grounding of reinforcement learning in robotics alleviates
the general problem of scaling reinforcement learning into
high-dimensional domains by exploiting the structure of
the physical world. Prior knowledge of the behavior of
the system and the task is often available. Incorporating
even crude models and domain structure into the learning
approach (e.g. to approximate gradients) has yielded
impressive results (Kolter and Ng, 2009a).

8.3.3. Local optimality and controlled state distributions
Much research in classical reinforcement learning aims at
finding value functions that are optimal over the entire state-
space, which is most likely intractable. In contrast, the suc-
cess of policy-search approaches in robotics relies on their
implicit maintenance and controlled change of a state dis-
tribution under which the policy can be optimized. Focus-
ing on slowly changing state distributions may also benefit
value-function methods.

8.3.4. Reward design It has been repeatedly demonstrated
that reinforcement learning approaches benefit significantly
from reward shaping (Ng et al., 1999), and particularly from
using rewards that convey a notion of closeness and are not
only based on simple binary success or failure. A learn-
ing problem is potentially difficult if the reward is sparse,
there are significant delays between an action and the asso-
ciated significant reward, or if the reward is not smooth
(i.e. very small changes to the policy lead to a drastically
different outcome). In classical reinforcement learning, dis-
crete rewards are often considered, e.g. a small negative
reward per time-step and a large positive reward for reach-
ing the goal. In contrast, robotic reinforcement learning
approaches often need more physically motivated reward-
shaping based on continuous values and consider multi-
objective reward functions such as minimizing the motor
torques while achieving a task.

We hope that these points will help in soliciting more
new targeted solutions from the reinforcement learning
community for robotics.

Acknowledgments

We thank the anonymous reviewers for their valuable suggestions
of additional papers and points for discussion. Their input helped
us to significantly extend and improve the paper.

Funding

The was supported by the European Community’s Seventh Frame-
work Programme (grant numbers ICT-248273 GeRT and ICT-
270327 CompLACS), the Defense Advanced Research Project
Agency through Autonomous Robotics Manipulation-Software
and the Office of Naval Research Multidisciplinary University
Research Initiatives Distributed Reasoning in Reduced Informa-
tion Spaces and Provably Stable Vision-Based Control of High-
Speed Flight through Forests and Urban Environments.

Notes

1. When only observations but not the complete state is avail-
able, the sufficient statistics of the filter can alternatively serve
as state s. Such a state is often called information or belief
state.

2. For historical reasons, what we call the dual is often referred
to in the literature as the primal. We argue that problem of
optimizing expected reward is the fundamental problem, and
values are an auxiliary concept.

Kober et al. 1269

3. This optimality principle was originally formulated for a set-
ting with discrete time steps and continuous states and actions
but is also applicable for discrete states and actions.

4. From multi-variate calculus we have ∇θ log Pθ (τ) =
∇θPθ (τ) /Pθ (τ).

5. That is, a probability distribution over states that will be
encountered when following a good policy.

6. Both the environment and the robot itself change dynamically;
for example, vision systems depend on the lighting condition
and robot dynamics change with wear and the temperature of
the grease.

References

Abbeel P, Coates A, Quigley M and Ng AY (2007) An applica-
tion of reinforcement learning to aerobatic helicopter flight. In:
Advances in Neural Information Processing Systems (NIPS).

Abbeel P and Ng AY (2004) Apprenticeship learning via
inverse reinforcement learning. In: International Conference
on Machine Learning (ICML).

Abbeel P, Quigley M and Ng AY (2006) Using inaccurate mod-
els in reinforcement learning. In: International Conference on
Machine Learning (ICML).

An CH, Atkeson CG and Hollerbach JM (1988) Model-based
control of a robot manipulator. Cambridge, MA: MIT Press.

Argall BD, Browning B and Veloso M (2008) Learning robot
motion control with demonstration and advice-operators. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Argall BD, Chernova S, Veloso M and Browning B (2009) A
survey of robot learning from demonstration. Robotics and
Autonomous Systems 57: 469–483.

Arimoto S, Kawamura S and Miyazaki F (1984) Bettering oper-
ation of robots by learning. Journal of Robotic Systems 1(2):
123–140.

Asada M, Noda S, Tawaratsumida S and Hosoda K (1996) Pur-
posive behavior acquisition for a real robot by vision-based
reinforcement learning. Machine Learning 23(2–3): 279–303.

Åström KJ and Wittenmark B (1989) Adaptive Control. Reading,
MA: Addison-Wesley.

Atkeson CG (1994) Using local trajectory optimizers to speed up
global optimization in dynamic programming. In: Advances in
Neural Information Processing Systems (NIPS).

Atkeson CG (1998) Nonparametric model-based reinforcement
learning. In: Advances in Neural Information Processing Sys-
tems (NIPS).

Atkeson CG, Moore A and Stefan S (1997) Locally weighted
learning for control. AI Review 11: 75–113.

Atkeson CG and Schaal S (1997) Robot learning from demon-
stration. In: International Conference on Machine Learning
(ICML).

Bagnell JA (2004) Learning Decisions: Robustness, Uncertainty,
and Approximation. Ph.D. thesis, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA.

Bagnell JA, Ng AY, Kakade S and Schneider J (2003) Pol-
icy search by dynamic programming. In: Advances in Neural
Information Processing Systems (NIPS).

Bagnell JA and Schneider J (2003) Covariant policy search.
In: International Joint Conference on Artifical Intelligence
(IJCAI).

Bagnell JA and Schneider JC (2001) Autonomous helicopter con-
trol using reinforcement learning policy search methods. In:

IEEE International Conference on Robotics and Automation
(ICRA).

Baird LC and Klopf H (1993) Reinforcement Learning with High-
dimensional Continuous Actions. Technical Report WL-TR-
93-1147, Wright Laboratory, Wright-Patterson Air Force Base,
OH, USA.

Bakker B, Zhumatiy V, Gruener G and Schmidhuber J (2003)
A robot that reinforcement-learns to identify and memorize
important previous observations. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Bakker B, Zhumatiy V, Gruener G and Schmidhuber J
(2006) Quasi-online reinforcement learning for robots. In:
IEEE International Conference on Robotics and Automation
(ICRA).

Barto AG and Mahadevan S (2003) Recent advances in hierarchi-
cal reinforcement learning. Discrete Event Dynamic Systems
13(4): 341–379.

Bellman RE (1957) Dynamic Programming. Princeton, NJ:
Princeton University Press.

Bellman RE (1967) Introduction to the Mathematical Theory of
Control Processes, volume 40-I. New York, NY: Academic
Press.

Bellman RE (1971) Introduction to the Mathematical Theory of
Control Processes, volume 40-II. New York, NY: Academic
Press.

Benbrahim H, Doleac J, Franklin J and Selfridge O (1992)
Real-time learning: A ball on a beam. In: International Joint
Conference on Neural Networks (IJCNN).

Benbrahim H and Franklin JA (1997) Biped dynamic walk-
ing using reinforcement learning. Robotics and Autonomous
Systems 22(3–4): 283–302.

Bentivegna DC (2004) Learning from Observation Using Primi-
tives. Ph.D. thesis, Georgia Institute of Technology.

Bentivegna DC, Atkeson CG and Cheng G (2004) Learning
from observation and from practice using behavioral primi-
tives: marble maze. In: Robotics Research (Springer Tracts
in Advanced Robotics, vol. 15). Springer: Berlin, 2005, pp.
551–560

Bertsekas DP (1995) Dynamic Programming and Optimal Con-
trol. New York: Athena Scientific.

Betts JT (2001) Practical methods for optimal control using
nonlinear programming (Advances in Design and Control,
vol. 3). Philadelphia, PA: Society for Industrial and Applied
Mathematics (SIAM).

Birdwell N and Livingston S (2007) Reinforcement learning in
sensor-guided AIBO robots. Technical report, University of
Tennesse, Knoxville, TN. Advised by Dr Itamar Elhanany.

Bishop C (2006) Pattern Recognition and Machine Learning
(Information Science and Statistics). New York: Springer.

Bitzer S, Howard M and Vijayakumar S (2010) Using dimension-
ality reduction to exploit constraints in reinforcement learning.
In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS).

Boyan JA and Moore AW (1995) Generalization in reinforce-
ment learning: Safely approximating the value function. In:
Advances in Neural Information Processing Systems (NIPS).

Brafman RI and Tennenholtz M (2002) R-max - a general polyno-
mial time algorithm for near-optimal reinforcement learning.
Journal of Machine Learning Research 3: 213–231.

Buchli J, Stulp F, Theodorou E and Schaal S (2011) Learning
variable impedance control. International Journal of Robotic
Research 30(7): 820–833.

1270 The International Journal of Robotics Research 32(11)

Bukkems B, Kostic D, de Jager B and Steinbuch M (2005)
Learning-based identification and iterative learning control of
direct-drive robots. IEEE Transactions on Control Systems
Technology 13(4): 537–549.

Buşoniu L, Babuška R, de Schutter B and Ernst D (2010) Rein-
forcement Learning and Dynamic Programming Using Func-
tion Approximators. Boca Raton, FL: CRC Press.

Coates A, Abbeel P and Ng AY (2009) Apprenticeship learn-
ing for helicopter control. Communications of the ACM 52(7):
97–105.

Cocora A, Kersting K, Plagemann C, Burgard W and de Raedt L
(2006) Learning relational navigation policies. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Conn K and Peters II RA (2007) Reinforcement learning with a
supervisor for a mobile robot in a real-world environment. In:
IEEE International Symposium on Computational Intelligence
in Robotics and Automation (CIRA).

Daniel C, Neumann G and Peters J (2012) Learning concur-
rent motor skills in versatile solution spaces. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Daumé III H, Langford J and Marcu D (2009) Search-based
structured prediction. Machine Learning Journal 75: 297–325.

Dayan P and Hinton GE (1997) Using expectation–maximization
for reinforcement learning. Neural Computation 9(2):
271–278.

Deisenroth MP and Rasmussen CE (2011) PILCO: A model-
based and data-efficient approach to policy search. In: 28th
International Conference on Machine Learning (ICML).

Deisenroth MP, Rasmussen CE and Fox D (2011) Learning to con-
trol a low-cost manipulator using data-efficient reinforcement
learning. In: Robotics: Science and Systems (RSS).

Donnart JY and Meyer JA (1996) Learning reactive and planning
rules in a motivationally autonomous animat. Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on
26(3): 381–395.

Donoho DL (2000) High-dimensional data analysis: the curses
and blessings of dimensionality. In: American Mathematical
Society Conference Math Challenges of the 21st Century.

Dorigo M and Colombetti M (1993) Robot Shaping: Devel-
oping Situated Agents Through Learning. Technical report,
International Computer Science Institute, Berkeley, CA.

Duan Y, Cui B and Yang H (2008) Robot navigation based on
fuzzy RL algorithm. In: International Symposium on Neural
Networks (ISNN).

Duan Y, Liu Q and Xu X (2007) Application of reinforcement
learning in robot soccer. Engineering Applications of Artificial
Intelligence 20(7): 936–950.

Endo G, Morimoto J, Matsubara T, Nakanishi J and Cheng G
(2008) Learning CPG-based biped locomotion with a pol-
icy gradient method: Application to a humanoid robot. The
International Journal of Robotics Research 27(2): 213–228.

Erden MS and Leblebicioğlu K (2008) Free gait generation with
reinforcement learning for a six-legged robot. Robotics and
Autonomous Systems 56(3): 199–212.

Fagg AH, Lotspeich DL, Hoff J and Bekey GA (1998) Rapid
reinforcement learning for reactive control policy design for
autonomous robots. In: Artificial Life in Robotics.

Fidelman P and Stone P (2004) Learning ball acquisition on a
physical robot. In: International Symposium on Robotics and
Automation (ISRA).

Freeman C, Lewin P, Rogers E and Ratcliffe J (2010) Iterative
learning control applied to a gantry robot and conveyor sys-
tem. Transactions of the Institute of Measurement and Control
32(3): 251–264.

Gaskett C, Fletcher L and Zelinsky A (2000) Reinforcement
learning for a vision based mobile robot. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Geng T, Porr B and Wörgötter F (2006) Fast biped walking
with a reflexive controller and real-time policy searching. In:
Advances in Neural Information Processing Systems (NIPS).

Glynn P (1987) Likelihood ratio gradient estimation: An
overview. In: Winter Simulation Conference (WSC).

Goldberg DE (1989) Genetic algorithms. Reading, MA: Addision
Wesley.

Gordon GJ (1999) Approximate Solutions to Markov Decision
Processes. Ph.D. thesis, School of Computer Science, Carnegie
Mellon University.

Gräve K, Stückler J and Behnke S (2010) Learning motion
skills from expert demonstrations and own experience using
Gaussian process regression. In: Joint International Sympo-
sium on Robotics (ISR) and German Conference on Robotics
(ROBOTIK).

Greensmith E, Bartlett PL and Baxter J (2004) Variance reduction
techniques for gradient estimates in reinforcement learning.
Journal of Machine Learning Research 5: 1471–1530.

Guenter F, Hersch M, Calinon S and Billard A (2007) Reinforce-
ment learning for imitating constrained reaching movements.
Advanced Robotics 21(13): 1521–1544.

Gullapalli V, Franklin J and Benbrahim H (1994) Acquiring
robot skills via reinforcement learning. IEEE Control Systems
Magazine 14(1): 13–24.

Hafner R and Riedmiller M (2003) Reinforcement learning on
a omnidirectional mobile robot. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).

Hafner R and Riedmiller M (2007) Neural reinforcement learning
controllers for a real robot application. In: IEEE International
Conference on Robotics and Automation (ICRA).

Hailu G and Sommer G (1998) Integrating symbolic knowledge
in reinforcement learning. In: IEEE International Conference
on Systems, Man and Cybernetics (SMC).

Hart S and Grupen R (2011) Learning generalizable control pro-
grams. IEEE Transactions on Autonomous Mental Develop-
ment 3(3): 216–231.

Hester T, Quinlan M and Stone P (2010) Generalized model
learning for reinforcement learning on a humanoid robot. In:
IEEE International Conference on Robotics and Automation
(ICRA).

Hester T, Quinlan M and Stone P (2012) RTMBA: A real-
time model-based reinforcement learning architecture for robot
control. In: IEEE International Conference on Robotics and
Automation (ICRA).

Huang X and Weng J (2002) Novelty and reinforcement learning
in the value system of developmental robots. In: 2nd Interna-
tional Workshop on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems.

Huber M and Grupen RA (1997) A feedback control structure
for on-line learning tasks. Robotics and Autonomous Systems
22(3–4): 303–315.

Ijspeert AJ, Nakanishi J and Schaal S (2003) Learning attrac-
tor landscapes for learning motor primitives. In: Advances in
Neural Information Processing Systems (NIPS).

Kober et al. 1271

Ilg W, Albiez J, Jedele H, Berns K and Dillmann R (1999)
Adaptive periodic movement control for the four legged walk-
ing machine BISAM. In: IEEE International Conference on
Robotics and Automation (ICRA).

Jaakkola T, Jordan MI and Singh SP (1993) Convergence
of stochastic iterative dynamic programming algorithms.
In: Advances in Neural Information Processing Systems
(NIPS).

Jacobson DH and Mayne DQ (1970) Differential Dynamic Pro-
gramming. Amsterdam: Elsevier.

Jakobi N, Husbands P and Harvey I (1995) Noise and the real-
ity gap: The use of simulation in evolutionary robotics. In: 3rd
European Conference on Artificial Life.

Kaelbling LP (1990) Learning in Embedded Systems. Ph.D. thesis,
Stanford University, Stanford, California.

Kaelbling LP, Littman ML and Moore AW (1996) Reinforcement
learning: A survey. Journal of Artificial Intelligence Research
4: 237–285.

Kakade S (2003) On the Sample Complexity of Reinforcement
Learning. Ph.D. thesis, Gatsby Computational Neuroscience
Unit, University College London.

Kakade S and Langford J (2002) Approximately optimal approx-
imate reinforcement learning. In: International Conference on
Machine Learning (ICML).

Kalakrishnan M, Righetti L, Pastor P and Schaal S (2011) Learn-
ing force control policies for compliant manipulation. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

Kalman RE (1964) When is a linear control system optimal?
Journal of Basic Engineering 86(1): 51–60.

Kalmár Z, Szepesvári C and Lőrincz A (1998) Modular reinforce-
ment learning: an application to a real robot task. In Learning
Robots (Lecture Notes in Artificial Intelligence vol. 1545). New
York: Springer, pp. 29–45.

Kappen H (2005) Path integrals and symmetry breaking for opti-
mal control theory. Journal of Statistical Mechanics: Theory
and Experiment 21: P11011.

Katz D, Pyuro Y and Brock O (2008) Learning to manipu-
late articulated objects in unstructured environments using a
grounded relational representation. In: Robotics: Science and
Systems (RSS).

Kawato M (1990) Feedback-error-learning neural network for
supervised motor learning. Advanced Neural Computers 6(3):
365–372.

Kearns M and Singh SP (2002) Near-optimal reinforcement
learning in polynomial time. Machine Learning 49(2–3): 209–
232.

Keeney R and Raiffa H (1976) Decisions with multiple objectives:
Preferences and value tradeoffs. New York: Wiley.

Kimura H, Yamashita T and Kobayashi S (2001) Reinforcement
learning of walking behavior for a four-legged robot. In: IEEE
Conference on Decision and Control (CDC).

Kirchner F (1997) Q-learning of complex behaviours on a
six-legged walking machine. In: EUROMICRO Workshop on
Advanced Mobile Robots.

Kirk DE (1970) Optimal control theory. Englewood Cliffs, NJ:
Prentice-Hall.

Ko J, Klein DJ, Fox D and Hähnel D (2007) Gaussian processes
and reinforcement learning for identification and control of
an autonomous blimp. In: IEEE International Conference on
Robotics and Automation (ICRA).

Kober J, Mohler B and Peters J (2008) Learning perceptual cou-
pling for motor primitives. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS).

Kober J, Oztop E and Peters J (2010) Reinforcement learning
to adjust robot movements to new situations. In: Robotics:
Science and Systems (RSS).

Kober J and Peters J (2009) Policy search for motor primitives
in robotics. In: Advances in Neural Information Processing
Systems (NIPS).

Kober J and Peters J (2010) Policy search for motor primitives in
robotics. Machine Learning 84(1–2): 171–203.

Kohl N and Stone P (2004) Policy gradient reinforcement learn-
ing for fast quadrupedal locomotion. In: IEEE International
Conference on Robotics and Automation (ICRA).

Kollar T and Roy N (2008) Trajectory optimization using rein-
forcement learning for map exploration. The International
Journal of Robotics Research 27(2): 175–197.

Kolter JZ, Abbeel P and Ng AY (2007) Hierarchical appren-
ticeship learning with application to quadruped locomo-
tion. In: Advances in Neural Information Processing Systems
(NIPS).

Kolter JZ, Coates A, Ng AY, Gu Y and DuHadway C (2008)
Space-indexed dynamic programming: Learning to follow tra-
jectories. In: International Conference on Machine Learning
(ICML).

Kolter JZ and Ng AY (2009a) Policy search via the signed
derivative. In: Robotics: Science and Systems (RSS).

Kolter JZ and Ng AY (2009b) Regularization and feature selection
in least-squares temporal difference learning. In: International
Conference on Machine Learning (ICML).

Kolter JZ, Plagemann C, Jackson DT, Ng AY and Thrun S (2010)
A probabilistic approach to mixed open-loop and closed-loop
control, with application to extreme autonomous driving. In:
IEEE International Conference on Robotics and Automation
(ICRA).

Konidaris GD, Kuindersma S, Grupen R and Barto AG (2011a)
Autonomous skill acquisition on a mobile manipulator. In:
AAAI Conference on Artificial Intelligence (AAAI).

Konidaris GD, Kuindersma S, Grupen R and Barto AG (2012)
Robot learning from demonstration by constructing skill
trees. The International Journal of Robotics Research 31(3):
360–375.

Konidaris GD, Osentoski S and Thomas P (2011b) Value func-
tion approximation in reinforcement learning using the Fourier
basis. In: AAAI Conference on Artificial Intelligence (AAAI).

Kroemer O, Detry R, Piater J and Peters J (2009) Active learning
using mean shift optimization for robot grasping. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Kroemer O, Detry R, Piater J and Peters J (2010) Combin-
ing active learning and reactive control for robot grasping.
Robotics and Autonomous Systems 58(9): 1105–1116.

Kuhn HW and Tucker AW (1950) Nonlinear programming. In:
Berkeley Symposium on Mathematical Statistics and Probabil-
ity.

Kuindersma S, Grupen R and Barto AG (2011) Learning dynamic
arm motions for postural recovery. In: IEEE-RAS International
Conference on Humanoid Robots (HUMANOIDS).

Kwok C and Fox D (2004) Reinforcement learning for sensing
strategies. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS).

1272 The International Journal of Robotics Research 32(11)

Langford J and Zadrozny B (2005) Relating reinforcement learn-
ing performance to classification performance. In: 22nd Inter-
national Conference on Machine Learning (ICML).

Latzke T, Behnke S and Bennewitz M (2007) Imitative rein-
forcement learning for soccer playing robots. In: RoboCup
2006: Robot Soccer World Cup X. Berlin: Springer-Verlag, pp.
47–58.

Laud AD (2004) Theory and Application of Reward Shaping in
Reinforcement Learning. Ph.D. thesis, University of Illinois at
Urbana-Champaign.

Lewis ME and Puterman ML (2001) Bias optimality. In: The
Handbook of Markov Decision Processes: Methods and Appli-
cations. Dordrecht: Kluwer, pp. 89–111.

Lin HI and Lai CC (2012) Learning collision-free reaching skill
from primitives. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Lizotte D, Wang T, Bowling M and Schuurmans D (2007) Auto-
matic gait optimization with Gaussian process regression.
In: International Joint Conference on Artifical Intelligence
(IJCAI).

Mahadevan S and Connell J (1992) Automatic programming of
behavior-based robots using reinforcement learning. Artificial
Intelligence 55(2–3): 311–365.

Martínez-Marín T and Duckett T (2005) Fast reinforcement learn-
ing for vision-guided mobile robots. In: IEEE International
Conference on Robotics and Automation (ICRA).

Matarić MJ (1994) Reward functions for accelerated learning. In:
International Conference on Machine Learning (ICML).

Matarić MJ (1997) Reinforcement learning in the multi-robot
domain. Autonomous Robots 4: 73–83.

Michels J, Saxena A and Ng AY (2005) High speed obstacle
avoidance using monocular vision and reinforcement learning.
In: International Conference on Machine Learning (ICML).

Mitsunaga N, Smith C, Kanda T, Ishiguro H and Hagita N
(2005) Robot behavior adaptation for human-robot interaction
based on policy gradient reinforcement learning. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Miyamoto H, Schaal S, Gandolfo F, et al. (1996) A Kendama
learning robot based on bi-directional theory. Neural Networks
9(8): 1281–1302.

Moldovan TM and Abbeel P (2012) Safe exploration in markov
decision processes. In: 29th International Conference on
Machine Learning (ICML), pp. 1711–1718.

Moore AW and Atkeson CG (1993) Prioritized sweeping: Rein-
forcement learning with less data and less time. Machine
Learning 13(1): 103–130.

Morimoto J and Doya K (2001) Acquisition of stand-up behav-
ior by a real robot using hierarchical reinforcement learning.
Robotics and Autonomous Systems 36(1): 37–51.

Muelling K, Kober J, Kroemer O and Peters J (2012) Learning to
select and generalize striking movements in robot table tennis.
The International Journal of Robotics Research .

Nakanishi J, Cory R, Mistry M, Peters J and Schaal S (2008)
Operational space control: A theoretical and emprical com-
parison. The International Journal of Robotics Research 27:
737–757.

Nemec B, Tamošiūnaitė M, Wörgötter F and Ude A (2009)
Task adaptation through exploration and action sequencing.
In: IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS).

Nemec B, Zorko M and Zlajpah L (2010) Learning of a ball in a
cup playing robot. In: International Workshop on Robotics in
Alpe-Adria-Danube Region (RAAD).

Ng AY, Coates A, Diel M, et al. (2004a) Autonomous inverted
helicopter flight via reinforcement learning. In: International
Symposium on Experimental Robotics (ISER).

Ng AY, Harada D and Russell SJ (1999) Policy invariance under
reward transformations: Theory and application to reward
shaping. In: International Conference on Machine Learning
(ICML).

Ng AY, Kim HJ, Jordan MI and Sastry S (2004b) Autonomous
helicopter flight via reinforcement learning. In: Advances in
Neural Information Processing Systems (NIPS).

Norrlöf M (2002) An adaptive iterative learning control algorithm
with experiments on an industrial robot. IEEE Transactions on
Robotics 18(2): 245–251.

Oßwald S, Hornung A and Bennewitz M (2010) Learning reliable
and efficient navigation with a humanoid. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA).

Paletta L, Fritz G, Kintzler F, Irran J and Dorffner G (2007)
Perception and developmental learning of affordances in
autonomous robots. In: Hertzberg J, Beetz M and Englert R
(eds.) KI 2007: Advances in Artificial Intelligence (Lecture
Notes in Computer Science, vol. 4667). Berlin: Springer, pp.
235–250.

Park DH, Hoffmann H, Pastor P and Schaal S (2008) Move-
ment reproduction and obstacle avoidance with dynamic move-
ment primitives and potential fields. In: IEEE International
Conference on Humanoid Robots (HUMANOIDS).

Pastor P, Kalakrishnan M, Chitta S, Theodorou E and Schaal S
(2011) Skill learning and task outcome prediction for manip-
ulation. In: IEEE International Conference on Robotics and
Automation (ICRA).

Pendrith M (1999) Reinforcement learning in situated agents:
Some theoretical problems and practical solutions. In: Euro-
pean Workshop on Learning Robots (EWRL).

Peng J and Williams RJ (1996) Incremental multi-step Q-learning.
Machine Learning 22(1): 283–290.

Perkins TJ and Barto AG (2002) Lyapunov design for safe rein-
forcement learning. Journal of Machine Learning Research 3:
803–832.

Peters J, Muelling K and Altun Y (2010a) Relative entropy pol-
icy search. In: National Conference on Artificial Intelligence
(AAAI).

Peters J, Muelling K, Kober J, Nguyen-Tuong D and Kroe-
mer O (2010b) Towards motor skill learning for robotics. In:
International Symposium on Robotics Research (ISRR).

Peters J and Schaal S (2008a) Learning to control in operational
space. The International Journal of Robotics Research 27(2):
197–212.

Peters J and Schaal S (2008b) Natural actor–critic. Neurocomput-
ing 71(7–9): 1180–1190.

Peters J and Schaal S (2008c) Reinforcement learning of
motor skills with policy gradients. Neural Networks 21(4):
682–697.

Peters J, Vijayakumar S and Schaal S (2004) Linear quadratic reg-
ulation as benchmark for policy gradient methods. Technical
report, University of Southern California.

Piater JH, Jodogne S, Detry R, et al. (2011) Learning visual rep-
resentations for perception–action systems. The International
Journal of Robotics Research 30(3): 294–307.

Kober et al. 1273

Platt R, Grupen RA and Fagg AH (2006) Improving grasp skills
using schema structured learning. In: International Conference
on Development and Learning.

Powell WB (2012) AI, OR and control theory: a Rosetta Stone for
stochastic optimization. Technical report, Princeton University.

Puterman ML (1994) Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York:
Wiley-Interscience.

Randløv J and Alstrøm P (1998) Learning to drive a bicycle
using reinforcement learning and shaping. In: International
Conference on Machine Learning (ICML), pp. 463–471.

Rasmussen C and Williams C (2006) Gaussian Processes
for Machine Learning (Adaptive Computation And Machine
Learning). Cambridge, MA: MIT Press.

Ratliff N, Bagnell JA and Srinivasa S (2007) Imitation learning
for locomotion and manipulation. In: IEEE-RAS International
Conference on Humanoid Robots (HUMANOIDS).

Ratliff N, Bradley D, Bagnell JA and Chestnutt J (2006a) Boost-
ing structured prediction for imitation learning. In: Advances
in Neural Information Processing Systems (NIPS).

Ratliff ND, Bagnell JA and Zinkevich MA (2006b) Maximum
margin planning. In: International Conference on Machine
Learning (ICML).

Riedmiller M, Gabel T, Hafner R and Lange S (2009) Rein-
forcement learning for robot soccer. Autonomous Robots 27(1):
55–73.

Rivlin TJ (1969) An Introduction to the Approximation of Func-
tions. New York: Dover Publications.

Roberts JW, Manchester I and Tedrake R (2011) Feedback con-
troller parameterizations for reinforcement learning. In: IEEE
Symposium on Adaptive Dynamic Programming and Reinforce-
ment Learning (ADPRL).

Roberts JW, Moret L, Zhang J and Tedrake R (2010) Motor
learning at intermediate Reynolds number: experiments with
policy gradient on the flapping flight of a rigid wing. In: From
Motor to Interaction Learning in Robots (Studies in Com-
putational Intelligence, vol. 264). New York: Springer, pp.
293–309.

Rosenstein MT and Barto AG (2004) Reinforcement learning
with supervision by a stable controller. In: American Control
Conference.

Ross S and Bagnell JA (2012) Agnostic system identification for
model-based reinforcement learning. In: International Confer-
ence on Machine Learning (ICML).

Ross S, Gordon G and Bagnell JA (2011a) A reduction of imi-
tation learning and structured prediction to no-regret online
learning. In: International Conference on Artifical Intelligence
and Statistics (AISTATS).

Ross S, Munoz D, Hebert M and AndrewBagnell J (2011b) Learn-
ing message-passing inference machines for structured predic-
tion. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Rottmann A, Plagemann C, Hilgers P and Burgard W (2007)
Autonomous blimp control using model-free reinforcement
learning in a continuous state and action space. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS).

Rubinstein RY and Kroese DP (2004) The Cross Entropy Method:
A Unified Approach To Combinatorial Optimization, Monte-
carlo Simulation (Information Science and Statistics). New
York: Springer-Verlag.

Rückstieß T, Felder M and Schmidhuber J (2008) State-dependent
exploration for policy gradient methods. In: European Confer-
ence on Machine Learning (ECML).

Russell S (1998) Learning agents for uncertain environments
(extended abstract). In: Conference on Computational Learn-
ing Theory (COLT).

Rust J (1997) Using randomization to break the curse of dimen-
sionality. Econometrica 65(3): 487–516.

Sato M, Nakamura Y and Ishii S (2002) Reinforcement learning
for biped locomotion. In: International Conference on Artificial
Neural Networks.

Schaal S (1996) Learning from demonstration. In: Advances in
Neural Information Processing Systems (NIPS).

Schaal S (1999) Is imitation learning the route to humanoid
robots? Trends in Cognitive Sciences 3(6): 233–242.

Schaal S (2009) The SL Simulation and Real-time Control Soft-
ware Package. Technical report, University of Southern Cali-
fornia.

Schaal S and Atkeson CG (1994) Robot juggling: An implemen-
tation of memory-based learning. Control Systems Magazine
14(1): 57–71.

Schaal S, Atkeson CG and Vijayakumar S (2002) Scalable tech-
niques from nonparameteric statistics for real-time robot learn-
ing. Applied Intelligence 17(1): 49–60.

Schaal S, Mohajerian P and Ijspeert AJ (2007) Dynamics sys-
tems vs. optimal control – A unifying view. Progress in Brain
Research 165(1): 425–445.

Schneider JG (1996) Exploiting model uncertainty estimates for
safe dynamic control learning. In: Advances in Neural Infor-
mation Processing Systems (NIPS).

Schwartz A (1993) A reinforcement learning method for maxi-
mizing undiscounted rewards. In: International Conference on
Machine Learning (ICML).

Silver D, Bagnell JA and Stentz A (2008) High performance out-
door navigation from overhead data using imitation learning.
In: Robotics: Science and Systems (RSS).

Silver D, Bagnell JA and Stentz A (2010) Learning from demon-
stration for autonomous navigation in complex unstructured
terrain. The International Journal of Robotics Research 29(12):
1565–1592.

Smart WD and Kaelbling LP (1998) A framework for rein-
forcement learning on real robots. In: National Conference
on Artificial Intelligence/Innovative Applications of Artificial
Intelligence (AAAI/IAAI).

Smart WD and Kaelbling LP (2002) Effective reinforcement
learning for mobile robots. In: IEEE International Conference
on Robotics and Automation (ICRA).

Soni V and Singh SP (2006) Reinforcement learning of hierarchi-
cal skills on the Sony AIBO robot. In: International Conference
on Development and Learning (ICDL).

Sorg J, Singh SP and Lewis RL (2010) Reward design via online
gradient ascent. In: Advances in Neural Information Processing
Systems (NIPS).

Spall JC (2003) Introduction to Stochastic Search and Optimiza-
tion (1st edn). New York: Wiley.

Strens M and Moore A (2001) Direct policy search using paired
statistical tests. In: International Conference on Machine
Learning (ICML).

Stulp F and Sigaud O (2012) Path integral policy improvement
with covariance matrix adaptation. In: International Confer-
ence on Machine Learning (ICML).

1274 The International Journal of Robotics Research 32(11)

Stulp F, Theodorou E, Kalakrishnan M, Pastor P, Righetti L
and Schaal S (2011) Learning motion primitive goals for
robust manipulation. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Sutton RS (1990) Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming.
In: International Machine Learning Conference (ICML).

Sutton RS and Barto AG (1998) Reinforcement Learning. Boston,
MA: MIT Press.

Sutton RS, Barto AG and Williams RJ (1991) Reinforcement
learning is direct adaptive optimal control. In: American Con-
trol Conference.

Sutton RS, Koop A and Silver D (2007) On the role of track-
ing in stationary environments. In: International Conference on
Machine Learning (ICML).

Sutton RS, McAllester D, Singh SP and Mansour Y (1999) Pol-
icy gradient methods for reinforcement learning with function
approximation. In: Advances in Neural Information Processing
Systems (NIPS).

Svinin MM, Yamada K and Ueda K (2001) Emergent synthesis of
motion patterns for locomotion robots. Artificial Intelligence in
Engineering 15(4): 353–363.

Tadepalli P and Ok D (1994) H-learning: A Reinforcement Learn-
ing Method to Optimize Undiscounted Average Reward. Tech-
nical Report 94-30-1, Department of Computer Science, Ore-
gon State University.

Tamei T and Shibata T (2009) Policy gradient learning of coop-
erative interaction with a robot using user’s biological signals.
In: International Conference on Neural Information Processing
(ICONIP).

Tamošiūnaitė M, Nemec B, Ude A and Wörgötter F (2011) Learn-
ing to pour with a robot arm combining goal and shape learning
for dynamic movement primitives. Robotics and Autonomous
Systems 59: 910–922.

Tedrake R (2004) Stochastic policy gradient reinforcement learn-
ing on a simple 3D biped. In: International Conference on
Intelligent Robots and Systems (IROS).

Tedrake R, Manchester IR, Tobenkin MM and Roberts JW (2010)
LQR-trees: Feedback motion planning via sums of squares ver-
ification. The International Journal of Robotics Research 29:
1038–1052.

Tedrake R, Zhang TW and Seung HS (2005) Learning to walk
in 20 minutes. In: Yale Workshop on Adaptive and Learning
Systems.

Tesch M, Schneider JG and Choset H (2011) Using response
surfaces and expected improvement to optimize snake robot
gait parameters. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

Theodorou EA, Buchli J and Schaal S (2010) Reinforcement
learning of motor skills in high dimensions: A path integral
approach. In: IEEE International Conference on Robotics and
Automation (ICRA).

Thrun S (1995) An approach to learning mobile robot navigation.
Robotics and Autonomous Systems 15: 301–319.

Tokic M, Ertel W and Fessler J (2009) The crawler, a class
room demonstrator for reinforcement learning. In: Interna-
tional Florida Artificial Intelligence Research Society Confer-
ence (FLAIRS).

Toussaint M, Storkey A and Harmeling S (2010) Expectation–
maximization methods for solving (PO)MDPs and optimal
control problems. In: Inference and Learning in Dynamic
Models. Cambridge: Cambridge University Press.

Touzet C (1997) Neural reinforcement learning for behaviour syn-
thesis. Robotics and Autonomous Systems, Special Issue on
Learning Robot: The New Wave 22(3–4): 251–281.

Tsitsiklis JN and Van Roy B (1997) An analysis of temporal-
difference learning with function approximation. IEEE Trans-
actions on Automatic Control 42(5): 674–690.

Uchibe E, Asada M and Hosoda K (1998) Cooperative behav-
ior acquisition in multi mobile robots environment by rein-
forcement learning based on state vector estimation. In: IEEE
International Conference on Robotics and Automation (ICRA).

van den Berg J, Miller S, Duckworth D, et al. (2010) Superhu-
man performance of surgical tasks by robots using iterative
learning from human-guided demonstrations. In: International
Conference on Robotics and Automation (ICRA).

Vlassis N, Toussaint M, Kontes G and Piperidis S (2009) Learn-
ing model-free robot control by a Monte Carlo EM algorithm.
Autonomous Robots 27(2): 123–130.

Wang B, Li J and Liu H (2006) A heuristic reinforcement learn-
ing for robot approaching objects. In: IEEE Conference on
Robotics, Automation and Mechatronics.

Whitman EC and Atkeson CG (2010) Control of instanta-
neously coupled systems applied to humanoid walking. In:
IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS).

Wikipedia (2013) Fosbury Flop. http://en.wikipedia.org/wiki/
Fosbury_Flop.

Willgoss RA and Iqbal J (1999) Reinforcement learning of behav-
iors in mobile robots using noisy infrared sensing. In: Aus-
tralian Conference on Robotics and Automation.

Williams RJ (1992) Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning 8: 229–256.

Yamaguchi J and Takanishi A (1997) Development of a biped
walking robot having antagonistic driven joints using nonlin-
ear spring mechanism. In: IEEE International Conference on
Robotics and Automation (ICRA).

Yasuda T and Ohkura K (2008) A reinforcement learning tech-
nique with an adaptive action generator for a multi-robot sys-
tem. In: International Conference on Simulation of Adaptive
Behavior (SAB).

Youssef SM (2005) Neuro-based learning of mobile robots with
evolutionary path planning. In: ICGST International Con-
ference on Automation, Robotics and Autonomous Systems
(ARAS).

Zhou K and Doyle JC (1997) Essentials of Robust Control.
Englewood Cliffs, NJ: Prentice-Hall.

Ziebart BD, Maas A, Bagnell JA and Dey AK (2008) Maximum
entropy inverse reinforcement learning. In: AAAI Conference
on Artificial Intelligence (AAAI).

Zucker M and Bagnell JA (2012) Reinforcement planning: RL
for optimal planners. In: IEEE International Conference on
Robotics and Automation (ICRA).

http://en.wikipedia.org/wiki/Fosbury_Flop

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /Freestylescript
 /FreestyleScript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
 /TimesNewRomanPS
 /TimesNewRomanPS-Bold
 /TimesNewRomanPS-BoldItalic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-Italic
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

