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Abstract— The ability to predict the future intended move-
ment is crucial for collaborative robots to anticipate the human
actions and for assistive technologies to alert if a particular
movement is non-ergonomic and potentially dangerous for
the human health. In this paper, we address the problem of
predicting the future human whole-body movements given early
observations. We propose to predict the continuation of the
high-dimensional trajectories mapped into a reduced latent
space, using autoencoders (AE). The prediction is based on a
probabilistic description of the movement primitives (ProMPs)
in the latent space, which notably reduces the computational
time for the prediction to occur, and hence enables to use
the method in real-time applications. We evaluate our method,
named AE-ProMPs, for predicting future movements belonging
to a dataset of 7 different actions performed by a human,
recorded by a wearable motion tracking suit.

I. INTRODUCTION

An important skill that allows humans to collaborate

efficiently is their ability to predict the future movement of

their partners [1]. This ability not only entails the “prediction

of intention”, often formalized as predicting the goal of an

action, but the “prediction of the future intended movement”,

that we recently formalized as predicting the future trajectory

given early observations of it [2].

The ability to predict the future intended movement is

also crucial for collaborative robots to anticipate the human

actions and for assistive technologies to alert if a particular

movement is non-ergonomic and potentially dangerous for

the human health [3]. To consequently act, this prediction

must be very fast from the few available observations, despite

the variability and high-dimensionality of the movements.

In our previous work, we used Probabilistic Movement

Primitives (ProMPs) to learn trajectory distributions of robotic

actions and to predict the future intended movement during

human-robot interaction. We showed that a robot can use an

initial portion of a trajectory, that we call “partial trajectory”,

to infer its continuation up to the goal [2]. The trajectories

were demonstrated to the robot using physical interaction,

visual cues or both [4]. These experiments concerned only

the robot’s arm movements, though combining kinematics

and dynamics signals.

In this paper, we are interested in predicting the future

outcome of human whole-body movements, given early

observations or partial trajectories, and fast enough for a

robot to plan a suitable assistive action if needed. Since
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Fig. 1: Concept of our work: the goal is to predict at time t

the future human whole-body movement (t+1, . . . , tf ) given

t partial observations of this movement. AE-ProMPs is used

to make this prediction.

we want to predict the future trajectories for all the human

segments performing the action, our prediction is performed

in a high dimensional space and our previous method [2] is

computationally inefficient (as we will show in Section V-A),

hence not suitable for our real-time application. To solve this

issue, we propose here to reduce the dimensionality of the

data space. The high-dimensional trajectories are mapped

into a low-dimensional latent space (LS). Then, the ProMPs

are learned directly in this LS, in which we also compute

the predicted future trajectories. The compression is done

using autoencoders (AE), which enable encoding the original

trajectories into the LS and decoding the predicted trajectories

from the LS to the original high-dimensional space. We call

this method AE-ProMPs.

We evaluate AE-ProMPs for predicting the future move-

ments of a human performing 7 different whole-body move-

ments, included in the dataset of [5], [6]. This scenario is

represented in Figure 1. The movements were recorded by

a wearable motion tracking suit (XSens MVN) [7], which

provides a kinematic reconstruction of the human posture.

AE-ProMPs is computationally efficient and suitable for

our application. We compare it with similar methods proposed

to encode whole-body movements in a latent space, namely

VAE-DMP [8] and VTSFE [5]. The first exploits variational

autoencoders (VAE) to compress the movement in a reduced

latent space, then forces the continuity of the latent space
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trajectories using Dynamic Motion Primitives (DMPs). The

second is an improvement of VAE-DMP, notably by removing

the dependence of the attractor in the DMP and by providing

a lower bound for the variational inference. While both these

methods are very interesting for their capacity to produce

a coherent latent space that preserves the continuity of the

trajectories, they are computationally expensive. Moreover, the

complexity induced by the dynamic forcing function can be

skipped in our case since we do not consider individual latent

space trajectories, as in [8], but learn probability distributions

over the latent space trajectories.

The paper is organized as follows. In Section II we report

on previous works using motion primitives and dimensionality

reduction techniques. Section III describes the elements of

our proposed method, ProMPs and AE, as well as VTSFE

that is combined with ProMP and compared to AE-ProMPs

in the experiments of Section IV. In Section V are discussed

the experimental results, where we show that AE-ProMP

is computationally more efficient than VTSFE-ProMP and

has a better reconstruction of the inferred trajectories from

the latent space to the original space. Section VI draws the

conclusions and outlines the future works towards the use of

AE-ProMP in an assistive robotics scenario.

II. RELATED WORKS

The key elements in our framework are probabilistic

movement primitives, which capture the information about

the current trajectory and predict its future, and autoencoders,

which reduce the dimensionality of our whole-body trajec-

tories into a latent space. In the following, we outline the

related works in these two domains.

A. Learning Movement Primitives

Complex trajectories and activities can be modeled and

recognized with different approaches, such as recurrent neural

networks [9] or Hidden Markov Models (HMM) [10]. Here,

we are more interested in parametric techniques that represent

trajectories as movement primitives. A classic method, called

Dynamic Movement Primitives (DMPs) [11][12], models

trajectories using an attractor point at the end (i.e., the goal

in a reaching primitive), and a forcing function to capture

the shape of the trajectory, i.e., its evolution in time. An

improvement of DMPs, called Probabilistic Dynamic Move-

ment Primitives [13] allows learning movement distributions

rather than individual trajectories. This is a desirable feature

to encapsulate the human movements variability and improve

the inference of the future trajectories. A limitation of these

methods, for our application, is their dependency on the

attractor point. While it can be available for goal-directed

movements, it is not necessarily the case for generic human

movements such as walking or carrying an object.

In [14], Paraschos et al. proposed the Probabilistic Move-

ment Primitives method (ProMPs - detailed in Section III-A),

which captures the probability distribution of demonstrated

trajectories over time, with several features such as co-

activation, coupling and temporal scaling. In [15], Maeda

et al. showed that ProMPs are more efficient than DMPs

for prediction, while [16][17] showed that ProMPs are better

for generalizing trajectories into primitives. In our previous

work [2], [4], we used ProMPs to infer the future intended

trajectories during human-robot interaction, using haptic

signals and gaze cues: we were able to predict the future

trajectories despite variations in the demonstrated trajectories

and their duration, and considerable noise. However, we

addressed simple movements with a small dimension (e.g.,

6), whereas here we need to infer the future of whole-

body movements with a bigger dimension (e.g., 69 and

more)1. For such bigger dimensions, classical ProMPs are

computationally inefficient (c.f. Section V-A). Scaling up to

higher dimension while being computationally efficient is

possible with ProMPs by optimizing the matrix computation

and setting a fixed number of observations for prediction,

which permit to pre-compute the gain matrix that does not

depend on the observations. However, in our application the

number of observations shall remain variable, and whatever

optimization we do, the computation time will still increase

with the input dimension. For this reason, dimensionality

reduction techniques are an appealing alternative.

B. Dimensionality reduction in a latent space

Dimensionality reduction is a critical process in machine

learning and data processing, as it requires extracting from the

data a reduced set of principal features that describe a process.

The most common method for dimensionality reduction is

the Principal Component Analysis [18]. Autoencoders (AEs)

are another classical method for reducing the dimensionality

of data. They are neural networks that learn to encode data

in a latent space of a lower dimension than the original

input space, through the minimization of a loss function that

measures the distance between the original data and the data

reconstructed from this latent space. A recent variant of AEs is

Variational autoencoders (VAEs) [19], which is a combination

of an autoencoder with variational inference [20]. Variational

inference is an approach that approximates a probability

density function through parameter optimization of a known

probability density function (e.g., Gaussian distribution). Both

methods are excellent functional approximators and have been

used for dimensionality reduction of complex functions in

unsupervised way [21], [22].

In [23], Colomé et al. presented a method that reduces

the dimensionality of the ProMPs, called DR-ProMP, to find

low-dimensional walking policies for the Nao robot. They

used probabilistic dimensionality reduction techniques on

a set of trajectory demonstrations to extract the unknown

synergies between the dimensions, producing a new ProMP

expression in which a coordination matrix maps the lower-

dimensional latent virtual joint space into the real-dimensional

robot joint space. The latent space dimension was manually

tuned (usually 4-5); the maximum size of the original space

was 15, which makes the compression ratio not interesting

for our application.

1In this paper our data size is 69, since we only consider the kinematics
of the human skeleton model, but the size could grow considerably if we
were considering also joint torques and wrenches.
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Fig. 2: Concept of our proposed method to predict future trajectories. We encode high-dimensional postures (with AEs) or

postural trajectories (with VTSFE) into a low-dimensional latent space (in the figure, 2-dimensional with z0 and z1). From

several low-dimensional encoded trajectories the ProMPs learn a trajectory distribution for each action. This prior information

is used to predict the future trajectory (in red) given some initial observations (in black).

While AEs and VAEs can be used to learn the whole-body

human posture, they cannot be used to represent whole-body

trajectories over time in a smooth and coherent manner (i.e.,

without jolts) since there is no postural time-dependence. This

issue was well explained by Chen et al. in [8], which proposed

to force the temporal dependency by learning DMPs in the

latent space. Their method, called VAE-DMP, uses Deep Vari-

ational Bayes Filters (DVBF) [24], where Bayesian filtering

is applied on latent variables with temporal dependencies,

with a recurrent deep neural network composed of chained

VAEs An improvement of VAE-DMP, called Variational

Time Series Feature Extractor (VTSFE), was proposed by

Chaveroche et al. in [5] to encode features of the time

series for both classification and prediction purposes. These

methods are interesting for mapping trajectories from high to

low dimensional spaces, however they are computationally

expensive.

In this paper, we propose two methods that combine the

prediction capabilities of ProMPs with the dimensionality

reduction of AEs and VTSFE: we call them respectively AE-

ProMPs and VTSFE-ProMPs. These two methods follow two

different ideas: in AE-ProMPs the AE compresses postures

while in VTSFE-ProMPs the VTSFE compresses the whole

trajectory directly; in both cases ProMPs infer the future

trajectory in the latent space. We will show that to predict

the future trajectories given early observations AE-ProMPs

is faster and more performing. The next section details the

methods.

III. METHODS

In the following, we present in detail AE-ProMPs and

VTSFE-ProMPs. We first present ProMPs and how they are

used to do inference, then introduce AEs and VTSFE. For the

sake of clarity, we sketch in Figure 3 the differences between

the two methods applied to our problem of encoding human

postures/trajectories in a latent space.

A. Probabilistic Movement Primitives (ProMPs)

A ProMP is a Bayesian parametric model:

ξ(t) = Φtω + ǫξ (1)

where:

• ξ(t) ∈ R
N is the vector containing all the variables to

be learned at time t.

• the matrix Φt corresponds to the M Radial Basis

Functions (RBFs) evaluated at time t, with Φt =
[ψ1(t), ψ2(t), . . . ., ψM (t)];

• ω ∈ R
M is a time-independent parameter vector that

weighs the Φ matrix;

• ǫξ ∼ N (0, β) is the trajectory noise variable.

During the learning phase, the weights ω are learned from a

set of trajectory demonstrations {Ξ1, . . . ,Ξn1
}, where the i-

th trajectory is Ξi = {ξ(1), . . . , ξ(tfi)}. The weights encode

the probability distribution over the trajectories.

Given a set of different demonstrations for NA different

actions, NA ProMPs are learned. They are used as prior

knowledge to estimate from partial observations Ξo =
[Ξ1 . . .Ξno

]⊤ what is the current action k̂ ∈ [1 : NA] (i.e.,

the most likely ProMP from the ones learned) and to predict

its future trajectory, as done in [2][4].

Once the current k̂-th ProMP is identified, the recognized
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Fig. 3: Relation between AEs and VTSFE for encoding

trajectories in a low-dimensional latent-space.

distribution (called “prior”) can be updated by:






µ̂ω
k̂

= µω
k̂
+K(Ξo − Φ[1:no]µω

k̂
)

Σ̂ω
k̂

= Σω
k̂
−K(Φ[1:no]Σω

k̂
)

K = Σω
k̂
Φ⊤

[1:no]
(Σξo +Φ[1:no]Σω

k̂
Φ⊤

[1:no]
)−1

(2)

Finally, the inferred trajectory is given by:

∀t ∈ [1 : tf ], ξ̂(t) = Φt µ̂ω
k̂

with the duration of the trajectory tf , which corresponds

to the number of frames used to represent the trajectories.

The movement continuation can be predicted by identifying

the most-likely “future” trajectory X̂ = [X̂no+1 . . . X̂tf ]
⊤, as

explained in [2], [14].

B. Dimension compression using an autoencoder

In their simplest form, AEs are multilayer perceptrons in

which the output layer, of the same dimension as the input

layer, is trained to reconstruct the input [25]. Their structure is

often symmetrical and split between the encoder and decoder

parts. On the one hand, the encoder transforms the input

xt of dimension N , in our case the whole-body kinematic

information, into a value zt in the latent space of dimension

R. On the other hand, the decoder transforms the latent space

back into the reconstructed kinematic space. Each of the

encoder and decoder usually includes a number of hidden

layers and non-linear activation functions in order to build a

non-linear compressed latent space.

C. Dimension compression using Variational Time Series

Feature extractors (VTSFE)

As introduced in Section II, VTSFE [5] is an improvement

of VAE-DMP [8]. Both methods construct a function to simply

project the input vector x in the latent space independently

from time, like AEs or VAEs do. However, they differ in the

way that function is learned and therefore construct different

latent spaces.

First, VTSFE has a more accurate model to represent

the noise of the trajectory inference (e.g. the distribution

representing inference errors), since inference errors are the

difference between what the transition model predicts (through

all its variables) and the real trajectory. It has a simpler

transition model, representing better the trajectories since their

acceleration is only constrained in latent space, i.e. the space

of z, and not in the space of its arbitrarily defined derivative

ż. It also does not require to know the final trajectory

position/goal, which is better since the constraint does not

rely on a changing and arbitrarily defined position in latent

space. Moreover, the inferred trajectories are further improved

through the design of a loss term on the “inferred dynamics

f”, which makes the final optimization closer to the actual

theoretical optimization pointed by Variational Inference. The

“Inferred dynamics f” is the sequence of forcing terms ft
in the latent space (i.e. a force applied at time t in latent

space that influences the encoded trajectories). These forcing

terms are inferred from multiple trajectory demonstrations for

each movement type and only used during the latent space

learning process. Thus, they force the encoded trajectories to

follow the same dynamics than the demonstrations.

More details about this method can be found in [5]. The

most visible difference between VTSFE and VAE-DMP is the

noise inference: with VTSFE, the encoder tries to optimize

its parameters φ to infer ǫt not only with xt+1 and zt, but

also with all other variables used in the transition model.

Therefore, it sets the known distribution as a Gaussian one

for the inference of ǫt as follows: qφ(ǫt|ft, xt+1, zt, zt−1) =
N (µǫ,t, σ

2
ǫ,tI).

The other difference is that the transition model of VTSFE

does not use the classical DMP model but a simple discretized

acceleration model with an extra forcing term ft+ ǫt instead:

zt+1 = (ft + ǫt)dt
2 + 2zt − zt−1 = g(zt, zt−1, ft, ǫt)

This transition model does not need zT nor żt nor the DMP

parameters α and β that needs to be optimized, for exemple

with grid search.

D. Inference on a compressed representation of trajectories

using AE-ProMPs or VTSFE-ProMPs

We propose to use ProMPs to represent the movement

primitives encoded in a low-dimensional latent space, encoded

by either AE or VTSFE: the two methods are then called

AE-ProMPs and VTSFE-ProMPs. The concept is shown in

Figure 2 and 4. For both cases, there is a preliminary learning

phase, offline, before the online prediction phase.

First, we train the AE or the VTSFE to compress the

original data into the latent space. For the AE, we encode

the individual postures (dimension N ) into a R-dimensional

latent space, with R ≪ N . For the VTSFE, we encode

the entire posture trajectories (dimension N , for each frame

t = 1, . . . , tf ) into a cascade of tf VAE, with R ≪ N

and tf the number of frames used to represent a movement.

The decoded trajectories are xrec(t) = dec(enc(x(t)) =
x(t)+ ǫv(t), ∀t ∈ [1 : tf ], with ǫv(t) the reconstruction error.

Then, we learn the NA ProMPs associated to the NA actions,

using the sets of demonstrated trajectories compressed in the

latent space: ξ(t) = [z1(t), . . . , zR(t)]
⊤ = Φtω + ǫξ

Once the ProMPs are learned, we can use them to predict

the future trajectories given partial observations. This phase
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the latent space.

Fig. 5: The 7 actions of the dataset of [6], with the kinematic

estimation of the human posture by Xsens MVN Studio.

can be performed online. During the “recognition step”,

observations of a movement initiated by the user are retrieved

(first image of the “recognition part”). In the prediction

phase, we record early observations of the human movement,

and encode them in the pre-trained latent space: ξo =
[zo1(t), . . . , z

o
R(t)]

⊤, ∀t ∈ [1 : no]. Then, using the ProMPs

inference [2], we compute the continuation of this compressed-

partial trajectory: Ξ̂ = [ξ̂no+1 . . . ξ̂tf ]
⊤. Finally, the AE or

VTSFE decoding is performed to obtain the prediction of the

future whole-body movement: dec(Ξ̂) = [x̂no+1 . . . x̂tf ]
⊤.

IV. EXPERIMENTS

The goal of the experiments is to compare three different

methods (ProMPs, AE-ProMPs and VTSFE-ProMPs) when

applied to predict the future human movement given early

observations. We use the actions dataset from [6], consisting

of ten movement demonstrations for seven different actions

(see Figure 5): bending forward, bending strongly forward,

lifting a box, kicking, opening a window, walking and

standing. The trajectories were recorded with the XSens MVN

suit, which tracks the human motion with a 23DOF skeleton

model. From these recordings, using XSens MVN Studio, we

retrieve the 3D Cartesian positions of the human segments.

Thus, the posture of the human operator is represented by

3 × 23 = 69 Cartesian position variables. Each trajectory

demonstration has been re-sampled to last seventy frames

(tf = 70), to enable the comparison with VTSFE that needs

a fixed duration trajectory, as explained in [5].

A. ProMPs-only

We compute the ProMPs of the 7 different actions without

dimensionality reduction. The objective of this experiment is

to show the accuracy of the prediction when using ProMPs,

but also the main limitation of the computation time when

the input dimension grows.

In this experiment, the vector ξ(t) ∈ R
69 of Eq.1 contains

all the segment positions that represent the whole-body

movement of the human: ξ(t) = [a1,1(t), ..., a23,3(t)]
⊤, with

ai,j the ith segment position with coordinate j ∈ {x, y, z}.

The ProMP model contains 10 basis functions to represent

trajectories. We compute the full covariance matrix, coupling

all the joints to record redundancy of information between

the joints.

B. AE-ProMPs

We use AEs to compress the 69-dimensional original

posture data into a low-dimensional latent space, where

we learn the ProMPs to make our predictions. In this

experiment, ProMPs are learned from the encoded postures

(i.e., from the latent space of the AEs), with for example

ξ(t) = [z1(t), z2(t)]
⊤ when R = 2.

To compress the original data in the latent space, we use

a simple AE composed of different layers. An input layer

with N units x = {x1, . . . , x69} for the entire posture values

(i.e., 69 units). A compressed-layer (latent space) with a

variable number R (e.g, 10 units) of units z = {z1, . . . , zR}.

An output layer with the decoded posture that has the same

dimension N of the input layer (i.e., 69 units). We call these

units xrec = {x1,rec, . . . , x69,rec}. Finally, two hidden layers,

one between the input and the compressed layers and the

other between the compressed and the output layers (e.g.,

500 units). We call these layers hj with j ∈ [1, . . . , R] and

its i − th unit: hjxi
. The weights of this neural networks

are initialized using the Xavier initialization [26], where

weights are scaled by a uniform distribution. For the activation

function of all units, we choose the “leaky ReLU” [27]: it is

similar to “ReLU” (rectified linear unit), but the function is

not zero for negative values, it has a small negative slope (i.e.,

f(x) = 1x<0αx+ 1x>=0x, with α = 0.5 in our case). We

choose this function after having compared its performance

with the sigmoid and ReLu activation functions. Finally, the

neural networks are learned by using the least mean square

error between x and xrec as loss function, and ADAM as

gradient descent optimizer [28].

After having modeled this neural network, the AE was

trained using 2
3 of all postures of the 70 trajectory demon-

strations, that is 30916 postures. Then, the AE was tested

using the last 1
3 postures.

Then, the ProMPs are learned, from 69 encoded trajectory

demonstrations. The learning steps are done 35 times since

we tested 5 samples from each of the 7 actions using the

leave-one-out cross-validation.

C. VTSFE-ProMPs

We use VTSFE to encode the entire postural trajectory

(69-dimensions × 70 frames = 4830) in a dynamically

consistent latent space, where we learn the ProMPs to make

our predictions. In this experiment, different latent space

dimensions R are tested, for example ξ(t) = [z1(t), z2(t)]
⊤

when R = 2. The objective of this experiment is to verify

whether encoding the entire trajectory instead of instant
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Fig. 6: ProMPs-only - (a) some frames representing the real

trajectories (black) and their inference (red) after observing

5% of the whole trajectory (3 frames). Bottom: Computation

time according to the latent space dimension used to represent

trajectory. The trajectories are represented by 70 frames.

postures improves not only the latent space (we already know

this from [8] and [5]) but the inference.

V. RESULTS AND DISCUSSION

We are interested into evaluating the performance of the

three methods from the point of views of computation time,

complexity, inference and prediction capabilities. All results

and their representations with boxplots are done using the

leave-one-out cross-validation and the 70-frames trajectories

in off-line trials. To test the performance of the proposed

methods, we use three different distance metrics:

1) ErrAE or autoencoding error, evaluates the autoencoding

performance. It is the average distance between the recon-

structed trajectory xrec (i.e., the autoencoded trajectory) and

the real one x: ErrAE = 1
tfN

∑tf
i=1

∑N

j=1 |xj,rec(i)−xj(i)|
2) ErrI or Inference error, evaluates the inference perfor-

mance. It is the average distance between the reconstructed

trajectory xrec and the reconstruction of the infered one x̂:

ErrI = 1
tfN

∑tf
i=1

∑N

j=1 |xj,rec(i)− x̂j(i)|
3) ErrAE+I or global error, evaluates the overall method,

so the global performance in encoding and inference. It is

the average distance between the real trajectory x and the

infered one x̂: ErrAE+I = 1
tfN

∑tf
i=1

∑N

j=1 |x̂j(i)− xj(i)|

A. Future movement prediction using ProMPs only

Figure 6a represents the inference of the ProMPs in the

original data space (N = 69) after observing 5% of a

trajectory (3 frames). The frames were taken from the video

attachment at a representative moment of the movements.

Even if this method is performing in representing trajectories

[17], [15], its computation time for prediction increases

quadratically with the number of data represented by the

ProMPs [23]. In this case, prediction is done on a 69-

dimensional vector: Figure 6b represents the average time to

compute movement distributions on all the demonstrations,

and Figure 6c the average time to infer the movement

continuation. The computation time is simply too long for

our targeted application, where we need to predict the future

human trajectory in few ms. This issue motivates our approach

to reduce the dimensionality of the problem.

B. Future movement prediction using AE-ProMPs

Figure 7a shows the prediction of human trajectories

encoded in a 5-dimensional latent space. Again, the frames

were taken at representative moments of the movement, from

the video attachment. Figure 7b shows an extract from the

latent space trajectories for z1: the few irregularities in the

trajectories do not negatively affect the ProMPs, therefore

not causing problems in the prediction phase.

Figure 8 shows the accuracy of AE-ProMPs with respect

to the latent space dimension and the percentage of partial

observations used for the inference. In the top row, the

boxplots compare the distance errors from the entire original

trajectory after reconstruction (label “AE only”) and the

infered trajectory after reconstruction, when the prediction

is done on 60% of partial observations. In Figure 8a, the

distance error decreases with the latent space dimension,

and the plots suggest that a latent space dimension of 5

is a good compromise to get a good inference without a

long computation time. In Figure 8b, the distance error is

computed within the latent space, between the compressed

real trajectory and the inferred one. In contrast to the previous

graph, the distance error increases with the latent space

dimension. Indeed, the smaller the latent space dimension

is, the less the compressed-trajectory contains information

and thus, the smaller the error is. But when the latent

space is smaller, the compressed-trajectory contains less

information about the real trajectory: so when the trajectory is

decompressed, the inference gives poorer results (Figure 8a).

The bottom row shows the accuracy of the method for this

latent space dimension (R = 5). The error induced by the

encoding ErrAE is relatively small, the global error at the

end is affected by the inference error ErrI , which decreases,

as expected, with the more observations available for the

inference. One can remark that after 60% of observations,

the method can infer the future whole-body trajectory with a

distance error around 1cm, which is a very good performance

for our targeted application.

C. Future movement prediction using VTSFE-ProMPs

Figure 9a shows the prediction of human trajectories

encoded in a 5-dimensional latent space. The bottom of

Figure 9 shows the accuracy of VTSFE-ProMPs according

to the number of observations, for different latent spaces

dimensions. Figure 9c shows that the reconstruction is not

performing: whatever the latent space dimension, ErrAE is

almost constant, the global error ErrAE+I as well, which

suggests that the inference error ErrI is significantly smaller

than the encoding error ErrAE and does not influence the
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Fig. 7: AE-ProMPs: experiment with a 5-D latent space.

overall performance of the method. Figure 9b compares

the inference error ErrI for two latent space dimensions

(2 and 5): overall ErrI decreases with the more available

observations in both dimensions, as expected. However,

this error is 1 to 2 orders of magnitude smaller than the

encoding error, so its contribution does not impact the overall

performance of the method.

In [5], Chaveroche et al. explain that VTSFE gives better

encoding than VAE-DMP but a poorer decoding due to the

variational inference during its learning, which forces the

decoded data not to vary much. This is consistent with our

observations (see the video attachment) where VTSFE has

problems in encoding movements with big variations of the

segments positions (or the joints), such as the knees and feet

in kicking and walking. The encoded trajectories are more

conservative around the average posture. In AE-ProMPs we

do not have this problem, because the AE learns to encode

instantaneous postures without forcing a continuity over the

postural trajectories: therefore, it is capable of encoding also

more extreme postures, and reconstruct trajectories with high

variations in the segments and joints positions.

D. Accuracy vs computation time

Table I provides a comparison between the three methods

in terms of accuracy and computation time necessary for the

prediction of the future whole-body movement.

Inference from Accuracy Computation
20% observation prediction [m] time [s]

ProMPs mean 0.0145 2.5378
(69 dimensions) var 1.0038e-04 0.0357

VTSFE-ProMPs mean 0.04219 0.0565
(L.S.= 5) var 0.002 0.0024

AE-ProMPs mean 0.02793 0.0516
(L.S.= 5) var 0.003 0.0028

D
is

ta
n
c
e
 [

m
]

60%
Observed data

AE only
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(right).
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]

Observed data [%]
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Fig. 8: AE-ProMPs - Accuracy according to the latent space

dimension (top) and the percentage of observations (bottom).

TABLE I: Mean and variance of the distance error between

the ground truth trajectories and the inferred ones, and of

the inference computation times for both ProMP et VTSFE-

ProMPs methods.

Even if this prediction is done only from 20% of partial

observations of the whole trajectory, we can see that the

computation time of ProMPs is a lot longer than the two other

methods. VTSFE-ProMPs is the less accurate, for the reasons

we already explained. Thus, for our targeted application, the

best method is AE-ProMPs, which outperforms ProMPs for

the computation time and VTSFE-ProMPs for the inference

and reconstruction ability.

E. VIDEO

The video attachment shows the predicted future move-

ments after 30− 60% of observations, for the three methods

(ProMPs-only, AE-ProMPs, VTSFE-ProMPs).

VI. CONCLUSION

In this paper we propose a new method for high-

dimensional movement prediction, called AE-ProMP. This

method combines the dimensionality reduction of an AEs with

the prediction capabilities of the ProMP method. The AEs is

used to compress the postures into a low-dimensional latent

space. The ProMP method is used to infer the continuation

of movement given some early postures, by learning the

trajectory distributions in the latent space. Our results show

that AE-ProMPs allows to predict accurately whole-body

movements encoded in a low-dimensional (e.g., 5D) latent

space, with a reduced computation time. However, we can
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Fig. 9: VTSFE-ProMPs - Inference of future postures

after 60% of observations, for 7 actions. Top: reconstructed

trajectory inference (red); reconstructed observed trajectory

(dashed purple); and the real trajectory (purple). Bottom:

Accuracy of the method.

assume that the larger the input dimension, the less accurate

the prediction is. Thus, to go further in our study, we should

quantify the decrease in prediction accuracy, according to

the input dimension for a same latent space dimension. We

compared our proposed method with a simple prediction using

ProMPs alone and with a combination of VTSFE and ProMPs,

where the encoding is about the whole trajectory rather than

the single posture. In the first case, ProMPs alone are too

computationally slow for our targeted real-time applications.

In the second case, despite the better dynamically consistent

latent space, VTSFE requires more training resources to

perform. In the future, we plan to improve AE-ProMPs by

predicting trajectories of different durations, as we did in

[2], and improving the accuracy of the encoding-decoding by

automatically setting the latent space dimension and testing

different variants of AEs.
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