2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)

Beijing, China, November 6-9, 2018

User Feedback in Latent Space Robotic Skill Learning

Rok Pahi¢, Zvezdan Loncarevi¢, Ale§S Ude, Bojan Nemec and Andrej Gams

Abstract—In order to operate in everyday human envi-
ronment, humanoids robots will need to autonomously learn
and adapt their actions, using among other reinforcement
learning methods (RL). A common challenge in robotic RL
is also the generation of appropriate reward functions. A vast
body of literature investigates how active human feedback can
be introduced into an interactive learning loop, with recent
publications showing that user feedback can be used for the
RL reward. However, increased complexity of robotic skills in
everyday environment also increases their dimensionality, which
can practically prevent use of user feedback for the reward,
because too many trials are needed.

In the paper we present the results of using discretized, user-
assigned reward for RL of robotic throwing, with an emphasis
on learning in the feature space, i.e., latent space of a deep
autoencoder network. Statistical evaluation of a user study with
15 participants, who provided feedback for robotic throwing
experiments, show that for certain tasks, RL with discrete user
feedback can be effectively applied for robot learning.

I. INTRODUCTION

Autonomous operation and interaction of humanoid robots
in everyday human environment requires continuous learning
and adaptation of their actions and skills [1]. Learning
complete actions and/or skills from scratch is not feasible,
because the search space is simply too large [2]. Typically, an
initial motion is somehow provided, often through learning
by demonstration (LbD) [3]. This initial demonstration is
unlikely to be directly applicable for the current situation
of the external world, and is adapted [4]. Furthermore,
sometimes skill transfer from a human to a robot is pro-
hibitively hard, as the demonstrator may not be able to
effectively achieve the same action on the robot, either due
to different kinematic and dynamic properties of the robot
(correspondence problem [5]), or due to the nature of the
task itself.

One of the common methods for autonomous refinement
of skills is reinforcement learning (RL), which offers a
framework and a set of tools for the design of sophisticated
and hard-to-engineer behaviors [6]. RL is an area of machine
learning where an agent (software agent, or robot in the real-
world) tries to maximize the accumulated reward [6]. In an
episodic setting, the task is restarted after each episode.

However, the high number of degrees of freedom (DoFs)
of humanoid robots with continuous states and actions
increases the dimensionality beyond the range of practi-
cal use (curse of dimensionality) [7]. Through the use of

All authors are with the Humanoid and Cognitive Robotics Lab, Depart-
ment of Automatics, Biocybernetics and Robotics, JoZef Stefan Institute,
and with the Jozef Stefan International Postgraduate School, Jamova 39,
1000 Ljubljana, Slovenia, name . surname@ijs.si

978-1-5386-7282-2/18/$31.00 ©2018 IEEE

Fig. 1. The measurement of an action is different when using an on-board
sensors or an external measuring mechanism. Human feedback can only be
qualitative.

parametrized policies RL can be scaled into continuous ac-
tions in high dimensional spaces. Furthermore, the aforemen-
tioned introduction of prior knowledge through LbD reduces
the search space. Policy search, a subfield in reinforcement
learning, which focuses on finding good parameters for a
given policy parametrization [8], is particularly applicable in
such cases.

One of the challenges in RL is the design of an appropriate
reward function, which is in many cases far from trivial.
On the contrary, it is often a complex problem even for
domain experts [9]. Furthermore, acting in the real-world
and receiving feedback through sensors implies that the true-
state may not be completely observable and/or noise-free
[6]. Besides the robot’s on-board sensors, additional external
sensors are often applied.

These listed challenges are preventing practical use of
RL by non-experts in everyday, home environments, where
robotic assistants of the future are expected to operate.
However, it has been recently shown that a modern opti-
mization system can be intuitively used by non-experts in
such an environment [9]. The authors investigated whether a
non-modified optimization system, where the feedback and
reward function are replaced by naive user feedback through
a simple 1 — 5 user interface, can learn the ball-in-cup
game (Kendama). Despite using human-feedback, commonly
assumed noisy, unreliable, and not optimal for teaching [10],
Vollmer & Hemion [9] showed that the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) RL algorithm [11]
was successful in learning the ball-in-cup skill in most cases.

In this paper we took this as the motivation and tested
whether the same successful application of human feedback
can be achieved in the feature space of a task. This paper:

« investigates how well learning of robotic skills through

user feedback fares in reduced, latent space of autoen-
coders;

o investigates how this compares with learning in the
configuration space of the robot;

o discusses generality of using user reward functions.

Our research is based on a user study and statistical evalua-
tion of learning the skill of robotic throwing at a target using
the POWER [7] algorithm.

The rest of this paper is organized as follows. The next
Section provides a short overview of related work. Robotic
throwing use-case is presented in Section III. Section IV
gives the basics on used trajectory representation and intro-
duces deep autoencoder networks applied for dimensionality
reduction. Section V explains the used RL algorithms and
reward functions. Results of a user study are presented in
Section VI and discussed in Section VII.

II. RELATED WORK

This work falls into three topics of research: designing a
reward function for RL, interactive machine learning, and
RL in latent (feature) space.

Starting with the latter, our baseline for comparison of RL
is policy search on dynamic movement primitives (DMPs)
[12], using an expert-defined reward. Even learning of DMP
parameters in combination with tactile and visual feedback
might make the search space too large for practical applica-
tion [13], and RL in latent space of actuator redundancies and
leveraging autoencoder representations have been proposed
[14], [13]. Deep autoencoders and variational autoencoders
have also been used to train movement primitives in a low-
dimensional latent space [15], [16]. In this paper we run RL
in the latent space of a deep autoencoder network, which
greatly reduces the dimensionality. However, depending on
the size of the latent space, it can also reduce the accuracy
of the representation [16].

Regarding the reward function for RL, the reward design
process is far from trivial. In [6], RL is listed as highest in
both sequential complexity and reward structure complexity.
Methods of determining the reward function algorithmically
(learning the reward) have been proposed. This is called
Inverse Reinforcement Learning (IRL) [17], where given a
policy or history of behavior, one tries to find a reward
function that explains it. A huge body of work exists on the
topic of IRL, including algorithms that can learn disentangled
rewards that generalize effectively under variation in the
underlying domain [18]. Rewards are also often manually
tweaked in order to guide the learning system to quick
success. This is called reward shaping [19].

The literature is rich with examples of using human-
provided reward signals for RL. However, in many cases the
action space of the robot is comprised of known, discrete
actions [9]. For the continuous action space, where humans
have also been added to the loop in supervised learning set-
tings, e. g. for coaching [20], less examples exist. Preference-
based learning, where the human selects the preferred action
from two examples, has been proposed [21], [22]. Learning
a model of a reward, provided by a human, was also

previously discussed [23], and has been applied to RL tasks
in continuous space [24], [25].

Vollmer & Hemion [9] have applied user feedback to an
unmodified learning algorithm and conducted a user-study
to determine the strategy the users undertake. One of their
conclusions is that a simple, generic user-interface, used by
non-experts, can be applied instead of a complex reward
function and an elaborate feedback system. In this paper
we go beyond this by evaluating the effectiveness of using
discrete user feedback for reward in reduced, feature space
of robotic tasks.

IIT. USE-CASE: ROBOTIC THROWING

The use-case scenario is learning of accurate robotic
throwing of a ball into a basket using the POWER RL
algorithm. The learning only takes place in one direction,
1. €., in the distance of the throw. The orientation of the robot
is assumed correct. We used a Mitsubishi PA-10 robot for
the execution of the throw. Three degrees of freedom (DOF)
of the robot, which contribute to its motion in the sagital
plane, were used for the throwing. The experimental setup
is depicted in Fig. 2.

Throwing was chosen as a task that was previously already
considered in RL settings [26], and can thus provide a
benchmark for comparison between using an exact reward
and using a discretized user-feedback reward in the feature
space. Furthermore, throwing is a task that is relatively easy
for the users to estimate. In Section VII we discuss this aspect
of RL tasks with user-feedback.

Throwing can also be relatively accurately mathematically
modeled. We exploited this to conduct a statistical compari-
son between using an exact reward, and a discretized reward.

IV. TRAJECTORY REPRESENTATION

In this paper we apply policy search with different reward
functions in two spaces: in the configuration space of the
robot and in the latent space of a deep autoencoder network.

A. Configuration Space

To encode the trajectories of motion in the configuration
space of the robot (joint trajectories) for an efficient policy

792

Fig. 2. Experimental setup for evaluation of RL with user-feedback in the
real world. Initial posture (left), ball in-flight (center), landing spot (right).
Final configuration of the robot is shown in the right-two frames.

search, we use the well-known DMP framework. We refer
the reader to [12] for details on DMPs. For completeness we
provide a short recap for 1 DOF in Appendix A.

The weight vector w of a DMP defines the shape of the
encoded trajectory. RL is applied for modifying (optimizing,
learning) the weights from the initial demonstration, so that
the reward is maximized. However, the goal g and starting
position yg can also be learned. In this paper we learn DMP
parameters that describe the trajectories of 3 active DOFs of
the robot

0
0;

67, 07.,01]"
1", i=1,2,3.

()
[W?,givyo,i

We used N = 20 weights per DOF, which makes the learning
space of 8 66 dimensional.

B. Latent Space

To reduce the dimensionality of the learning problem
from 66 we used autoencoders. An antoencoder is a neural
network used for unsupervised encoding of data, typically
applied for dimensionality reduction [15]. It is comprised
of two parts: an encoder and a decoder network. Using the
encoder network part, where the number of neurons in the
hidden layers is less than that of the input layer, forces the
data through a bottleneck (latent space), where the most
relevant features are extracted. We designed the autoencoder
with a 3-dimensional' latent space

0' = [61.65.65]". ©))

The decoder network part reconstructs the feature repre-
sentation so that the output data 6’ matches the input data
6. We used (1) as the input data, which also defines the
input and output layer sizes to 66. The autoencoder was
comprised of 6 hidden layers with 25, 18, 3, 8, 19, and
24 neurons. Activation function for each hidden layer is
y = tanh(W67 + b), with * = {W, b} the autoencoder
parameters and 67 the input into the neurons. Note that the
input is different for each layer, because it is the output of
the previous layer. The activation function of the output layer
was linear. After the training we split the autoencoder in
the encoder and the decoder parts. The encoder maps input
into the latent space @' = g(6) and the decoder maps from
latent space to the output 8’ = h(6"), i.e., again into DMP
parameters that describe the robot joint trajectories.

Training of the parameters of the autoencoder (6*) is
described by

I NG
* in— @ g'(@
0 argmin — Zl Le"w,e'") (3)

1=

I : ;
. - (z) (’L)
arg min i:E 1 L(6™, h(g(6"))), “)

'Optimization of the autoencoder showed that using more than 3 latent
space variables resulted in some of them being constant, while using less
reduced autoencoder performance. See also the next subsection.

793

encoder

\
Vi
input DMP %'&§\
parameters

Fig. 3. Tllustration of an autoencoder structure with six hidden layers. Note
that the number of neurons per layer in the used autoencoder is too high
for an effective illustration. The depicted number of neurons per layer does
not match the number we used (66 for input and output layers, 25, 18, 3,
8, 19, 24 for hidden layers).

where L is Euclidian distance between the input and output
vectors and n is the number of samples. Figure 3 shows an
illustration of such autoencoder architecture.

1) Database for training: Database of trajectories for
training the autoencoder, i. e., of DMP parameters describing
throwing trajectories, was generated in simulation, where we
neglected air drag and modeled ball release position when
the robot starts to decelerate. In the generation process we
first defined the throwing target for each example, that is, the
desired range, height and hitting angle of the throw. These
three parameters define the ball trajectory. Consequently, the
size of the autoencoder latent space layer is intuitively three.
We then searched for the points on this trajectory that can
be reached with the desired robot end-effector position and
velocity. We optimized the ball release position to have the
minimal weighted norm of the joint velocity vector. Finally,
we produced minimal-jerk trajectories bounded so that the
desired end-effector position had 0 initial and final velocities,
and a maximal velocity at the desired time.

We generated the database for a target grid in the range
from 2 to 4 meters and the height from O to 2 meters. For
each point we generated trajectories of the same duration, but
with maximal velocity at 5 different times. In the process
of generation we discarded all trajectories and targets that
required joint positions or velocities outside of robot limits.
This way we got 2400 trajectories examples. We used 70%
of the database for training 15% for validation and 15%
for testing. Figure 4 shows the trained latent space of the
autoencoder.

V. LEARNING ALGORITHM & REWARDS
A. PoWER

Policy Learning by Weighting Exploration with the Re-
turns (POWER) [7] is an Expectation-Maximization (EM)
based RL algorithm that can be combined with importance
sampling to better exploit previous experience. It uses a
parametrized policy and tries to maximize the expected
return of trials. In this paper we use POWER because it
is robust with respect to reward functions [7]. It also uses
only the terminal reward, and no intermediate rewards, which
makes it easier for users to assign it. For completeness,
PoWER is explained in Appendix B.

Fig. 4. Latent space of the DMP-parameters autoencoder shows clustering
of the training data-base. Each of the five clusters, four on the right and
one on the left, represents a different ball-release time. The cluster on the
left corresponds to training trajectories that make a slight movement in the
opposite direction before stopping.

In the 66-dimensional configuration space we learn param-
eters 0,11 using (14) — (16). In latent space we use (14) —
(16) to learn 6!, 1 1- However, the learning space in this case is
only 3 dimensional. The values of parameters in latent space
0, define the DMP parameters, and therefore the shape of
the trajectory on the robot, trough the decoder network

l
0;+1 = h(6;,11)-
B. Reward functions and applying them

®)

Three distinct reward functions were used for the given
use-case: exact reward, calculated from an exact measure-
ment using an external measuring system; unsigned reward,
assigned as 1-5; and what we called signed reward?, where
over- and under throw were rewarded differently.

Exact (-.) reward was assigned to the throw k by an
algorithm through

Rye=Lg— |Lqg— Lg|, (6)

where L, is the distance to the basket and Ly is length of
k-th trial (throw). Lj, can be easily determined in simulation.
In the real-world we used an external vision system, similar
as in [26], for detecting Lj, while Ly was input manually.
Importance sampler, defined in (15), sorts the trials with
respect to the reward in a descending manner, and takes [= 3
best trials to update the policy.

Unsigned (-,,) reward uses a five-star scale to assign the
reward. Therefore, RL does not know in which direction to
change the throw. 5-stars was assigned to a hit, while the rest
were assigned descending with the distance to the target,

Ry, €11,2,3,4,5]". (7)

Importance sampler randomly takes three from the trials with
the highest rewards.

Signed (-5) reward distinguishes between long and short
throws. The user reward is in this case

Ry, s € [very long, long, hit, short, very short]”. (8)

2PoWER only uses positive reward, the sign was only used in the
importance sampler.

794

For POWER, this translates to

Ry €[1,2,3,2,1]". 9)

Because POWER only takes positive reward, it can’t distin-
guish between short and long throws. However, one can use
the sign in the importance sampler. Signs [+ + / - -] were
given to each of the awards in (9), respectively (long throws
got negative signs), and saved. The importance sampler ranks
the trials so that two with different signs are ranked the same
and used for the policy update (I = 2). If more trials have
the same reward, random trials with the highest reward are
chosen (one for each sign).

Augmenting the reward with knowledge on where the
reward is the highest, and therefore incorporating the sign
of the reward, has been applied to RL with the ARCHER al-
gorithm [27]. In this paper, however, we use original POWER
formulation from [7], but take the sign into consideration in
the importance sampler.

VI. USER STUDY & RESULTS
A. User Study

We performed a randomized cross-over study that com-
pared the effectiveness of RL with user-feedback, using the
signed and unsigned rewards.

10 adults, 7 males and 3 females, volunteered for the study.
They were informed of the procedure and free informed
consent was obtained from all. They had various experience
with robotics, ranging from no experience to PhD in robotics.

In the experiment, the participant were asked to give
rewards to throws (trials) using a simple GUI with 5 buttons,
each corresponding to a reward. The assigned reward was
used to update the throwing policy. The participants were
asked to make the robot hit the target by assigning the
reward to throws. No other instructions were given to the
participants, and they had no prior knowledge on the under-
lying learning algorithms. They were only told that once the
highest reward was given, this will stop the learning, and that
they have as many attempts as needed. Every participant first
saw the same initial throw to 3.1 m. Every participant had to
make the robot hit the targets twice, at 2.7 m and at 3.5 m,
both in latent and in configuration spaces.

Besides the user study, we also conducted 75 simulated
learning experiments with modeled human-assigned reward,
marked in the figures with computer. The same initial and
target conditions applied. Modeling of human-assigned re-
wards is described in Appendix C. The goal of the simulated
learning study was to see if human intelligence behind the
reward has an effect on the outcome.

B. Results

Figure 5 show the convergence of throwing over the
iterations. Average error, given as the distance between the
target (basket) and the landing spot of the thrown ball, is
shown. The results show that all approaches, i.e., in latent
and in configuration space, and with human-assigned reward
and simulated human-assigned reward converge. Using exact
reward, shown in human experiments for comparison, is not

Latent space (computer)

Configuration space (computer)

error (%)

20

40

iterations

60 20 40

iterations

60

Latent space (human) Configuration space (human)

error (%)

20 40

iterations

60 80

20

40

iterations

60 80

Fig. 5. Average error of throwing in each iteration, for four different
experiments, each with three different rewards. RL in latent space is shown
in the left plots, and in configuration space in the right plots. The top line
shows the average results of the simulated study (computer), and the bottom
line the results of the user study (human). Exact results for human-study
are depicted for comparison. In all the plots, the exact reward is marked
with the red line, the unsigned reward with the green line and the signed
reward with the blue line. Shaded areas show the exponential distribution.

Latent space (computer) Configuration space (computer)

0.8

0.6

20 40

iterations

60 20 40

iterations

60

Latent space (human)

Configuration space (human)

0.8

0.6

20 40

iterations

80 20 40

iterations

60 80

Fig. 6. Average reward of throwing in each iteration, for four different
experiments, each with three different rewards. Shaded areas show Beta
distribution, applicable for datasets in the interval [0, 1]. See caption of Fig.
5 for other details of plots.

evidently faster in all cases. Configuration space RL was on
average slower than latent space RL, no matter the reward.
Configuration space (computer) with either exact, signed
or unsigned reward was the slowest. Figure 6 shows the
average normalized reward assigned to the iterations. The
same relations as in Fig. 5 can be observed.

Different average rate of convergence for different cases
is shown in Fig. 7, where the average number of throws
until the first hit and standard deviation are depicted. We
investigated the effects of the learning space (latent, con-
figuration) and reward (exact, signed, unsigned) using two-
way repeated measures ANOVA with independent variables
[learning-space(2) x reward(3)] (computer) and [learning-
space(2) x reward(2)] (human). The differences between dif-
ferent pairs were tested with posthoc t-tests with Bonferroni
correction. The level of statistical significance used was .05
for all statistical tests.

For computer simulated study, using exact reward is sta-

795

Average first hit (computer)
T

60

iterations

exact unsigned signed

Average first hit(human)
T

—

40

iterations

20

0 L
exact

unsigned signed

Fig. 7. Average required number of throws until the first hit. Top plot:
simulated study (computer). Vertical lines depict statistically significant
difference between experiments. Bottom plot: human-assigned reward (hu-
man).

Worst case of the first hit (computer)
T

150 ,

atent
configuration

100

iterations

exact unsigned signed

<0 Worst case of the first hit(human)
T T

I 1atent

” 60 configuration T
2

z A0 q
2

20 1 B

0
unsigned signed

Fig. 8. Maximal number of needed iterations until first hit for computer

(top) and human (bottom) datasets.

tistically significantly different when applied in latent space
or configuration space. Using either of the other two rewards
is not statistically significantly different between the learning
spaces. Also of note is that in latent space using unsigned
reward takes statistically significantly longer than using the
exact reward.

Results of the user study (human) show statistically signifi-
cant difference between using unsigned reward in latent and
configuration spaces, and statistically significant difference
between using signed and unsigned reward in the configura-
tion space.

Faster learning of humans as compared to simulated
humans is evident from comparing the top and the bottom
plots of Fig. 8, which shows the worst case scenarios. The
simulated study (computer) needed more iterations. Further-
more, worst case in the configuration space was always worse
than in the latent space.

VII. DISCUSSION

We have shown that user-assigned reward for POWER
algorithm was good enough for the throwing error to con-
verge practically to zero, i.e., to hit the basket; and we have

shown that it can be applied in the feature space and in the
configuration space.

The results of the simulated user-study have shown that
learning in feature space, i.e., in the latent space of autoen-
coder, is statistically significantly faster that in the config-
uration space. This is far from surprising, as the number
of parameters of learning is much smaller. Why this is
not generally applicable is the consequence of the required
amount of data needed to train the autoencoder. In our
simulated database, which we could also use for the real
robot, there were 2400 examples. While the task of throwing
allows rather accurate and easy modeling, this is not true in
general. Therefore, it might be easier to train the system
in the configuration space for a small number of examples,
and then use generalization for the initial learning, as was
proposed in, e.g., [26]. All successful throws could, over a
longer period of time, make up an appropriate database for
training of the autoencoder.

As for using a different kind of rewards, user-study showed
statistically significant difference between using signed and
unsigned rewards in configuration space. One should note
that the way we set-up the rewards, the unsigned reward
has 5 different levels, while the signed reward only has 3,
and therefore carries less information. The inclusion of sign,
which is quite intuitive in the case where the highest reward
can be easily determined, is obviously enough for humans to
accelerate learning. The simple models of the reward, used in
the simulated study, were not sufficient to accelerate learning.

Human intelligence is thus obviously a factor in learning.
However, in the throwing use-case, the reward was easy
to assign. When the reward is not as straightforward and
a person cannot easily tell whether it is higher or lower,
user-assigned reward might not work. In Fig. 9 we show the
results of toy RL example of trajectory fitting, where the
exact error is the difference of surfaces under the desired
and the learned trajectories. With user feedback, where the
reward is discrete, trajectory fitting is not very accurate
even when the initial approximation is at .75 of the desired
trajectory. Using also intermediate reward would probably
help, but this opens up a lot of new problems, for example,
how does one assign intermediate reward.

For real autonomous RL of robots, without user feedback,
assigning of rewards remains an open issue. Simple replace-
ment of the rewards with 1 — 5 stars is not possible, because
that implies a transformation from a quantitative information
(exact reward) to a qualitative reward. In other words, it
means that the reward itself needs to be assigned, which
closes the circle on itself.

VIII. CONCLUSIONS

In general, and as expected, results show that learning
in latent space is faster. Using the knowledge of expected
highest award through adding the sign to the reward and
using this information in the importance sampler was shown
to work, but statistically significant difference between such
and usnigned rewards was only shown in configuration space.

796

0.4
”0.2
0

——human - started with 75%

= human - started with 0%
exact
0 Il Il Il
0 50 100 150 200
iterations
Fig. 9. Trajectory fitting results when using exact, or human-assigned

rewards, for 1 user. Top: desired trajectory (black dashed), fitting results
using exact reward (red), fitting result using human assigned reward with
0 initial trajectory (green), and with .75 of desired trajectory for the initial
trajectory (blue).

Results of this user study show that future humanoid robot
household assistant will be able to utilize RL with human
assigned reward in configuration space and also in feature
space, if an appropriate database for the creation of such
space will be available. However, a simple and intuitive
reward system is only applicable to tasks where the reward
is straightforward to the user.

Acknowledgement: This work has received funding from
the GOSTOP programme C3330-16-529000 co-financed by
Slovenia and EU under ERDF and by the Slovenian Research
Agency grant J2-7360, "Learning and autonomous adaptation
of dual arm assembly and service tasks”.

REFERENCES

[1] J. Peters, J. Kober, K. Muelling, O. Kroemer, and G. Neumann,
“Towards robot skill learning: From simple skills to table tennis,” in
European Conference on Machine Learning (ECML), 2013.

S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233-242, 1999.

M. Hersch, F. Guenter, S. Calinon, and A. Billard, “Dynamical system
modulation for robot learning via kinesthetic demonstrations,” IEEE
Transactions on Robotics, vol. 24, no. 6, pp. 1463-1467, 2008.

B. Nemec, R. Vuga, and A. Ude, “Efficient sensorimotor learning
from multiple demonstrations,” Advanced Robotics, vol. 27, no. 13,
pp. 1023-1031, 2013.

A. Alissandrakis, C. L. Nehaniv, and K. Dautenhahn, “Solving the
correspondence problem between dissimilarly embodied robotic arms
using the alice imitation mechanism,” in Second International Sympo-
sium on Imitation in Animals & Artifacts (AISB), 2003.

J. Kober, D. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” International Journal of Robotics Research,
no. 11, pp. 1238-1274, 2013.

J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, no. 1-2, pp. 171-203, 2011.

M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, pp. 388—
403, 2013.

A.-L. Vollmer and N. J. Hemion, “A user study on robot skill learning
without a cost function: Optimization of dynamic movement primitives
via naive user feedback,” Front. in Rob. and Al, vol. 5, p. 77, 2018.

P. Weng, R. Busa-Fekete, and E. Hiillermeier, “Interactive g-learning
with ordinal rewards and unreliable tutor,” in European Conference
on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECMLPKDD), 2013.

F. Stulp and O. Sigaud, “Robot Skill Learning: From Reinforcement
Learning to Evolution Strategies,” Paladyn, Journal of Behavioral
Robotics, vol. 4, no. 1, pp. 49-61, 2013.

[6]

[7]
[8]

[9]

[10]

(1]

[12] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328-373, 2013.
K. S. Luck, G. Neumann, E. Berger, J. Peters, and H. B. Amor, “Latent
space policy search for robotics,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1434-1440, Sept 2014.

H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters, “Stable
reinforcement learning with autoencoders for tactile and visual data,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 3928-3934, Oct 2016.

N. Chen, J. Bayer, S. Urban, and P. van der Smagt, “Efficient
movement representation by embedding dynamic movement primitives
in deep autoencoders,” in IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), pp. 434-440, Nov 2015.

N. Chen, M. Karl, and P. van der Smagt, “Dynamic movement
primitives in latent space of time-dependent variational autoencoders,”
in IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), pp. 629-636, Nov 2016.

A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement
learning,” in Proceedings of the Seventeenth International Conference
on Machine Learning, pp. 663—-670, 2000.

S. L. Justin Fu, Katie Luo, “Learning robust rewards with adversarial
inverse reinforcement learning,” arXiv:1710.11248, 2017.

A. D. Laud, Theory and Application of Reward Shaping in Rein-
forcement Learning. PhD thesis, University of Illinois at Urbana-
Champaign, 2004.

A. Gams, T. Petric, M. Do, B. Nemec, J. Morimoto, T. Asfour,
and A. Ude, “Adaptation and coaching of periodic motion primitives
through physical and visual interaction,” Robotics and Autonomous
Systems, vol. 75, pp. 340 — 351, 2016.

P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,”
arXiv preprint arXiv:1706.03741, 2017.

D. Sadigh, A. Dragan, S. Sastry, and S. Seshia, “Active preference-
based learning of reward functions,” in Proceedings of Robotics:
Science and Systems, 2017.

W. B. Knox and P. Stone, “Interactively shaping agents via human
reinforcement: The tamer framework,” in Proceedings of the Fifth
International Conference on Knowledge Capture, K-CAP *09, (New
York, NY, USA), pp. 9-16, ACM, 2009.

N. A. Vien and W. Ertel, “Reinforcement learning combined with
human feedback in continuous state and action spaces,” in IEEE Int.
Conf. on Develop. and Learn. and Epigen. Rob. (ICDL), pp. 1-6, 2012.
R. Akrour, M. Schoenauer, M. Sebag, and J.-C. Souplet, “Program-
ming by Feedback,” in International Conference on Machine Learning,
no. 32 in JMLR Proceedings, (Beijing, China), pp. 1503-1511, 2014.
B. Nemec, R. Vuga, and A. Ude, “Exploiting previous experience
to constrain robot sensorimotor learning,” in //th IEEE-RAS Interna-
tional Conference on Humanoid Robots, pp. 727-732, Oct 2011.

P. Kormushev, S. Calinon, R. Saegusa, and G. Metta, “Learning the
skill of archery by a humanoid robot icub,” in /0th IEEE-RAS Int.
Conf. on Humanoid Robots, pp. 417-423, Dec 2010.

[13]

[14]
[15]
[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]
[25]
[26]

[27]

APPENDIX

A. Dynamic Movement Primitives
A second order differential equation with a nonlinear part
f(z) defines a DMP [12],

2= a.(B.(g —y) —) + f(), (10)

where the output of the DMP is y. 7 is the time constant
a, and (., are damping constants (8, = «,/4), = is
the phase variable. The nonlinear term f(x) contains free
parameters that enable the robot to follow any smooth point-
to-point trajectory from the initial position yg to the final
configuration g,

N .
f(l‘) _ Zi:l ,(/}(x)wll_

= (11)
S i)

)

797

i(x) = exp (—%{Sz(x—ci)g). (12)

Here ¢; are the centers of N radial basis functions v;(x) and
2%2 their widths. The phase is governed by

T = exp (_azt/T)a (13)

where «,, is a positive constant and x starts from 1.

B. PoWER

In POWER, policy parameters 6,, at current iteration n are
updated to new parameters using [7]

<(0k - 07L)Rk>w(7k)
(R,

where k denotes the number of the trial, and R, the reward

of that trial. Importance sampling, denoted by <~>w(Tk),

minimizes the number of required trials (rollouts). It is
defined by

9n+1 =0, + (14)

)

(0L, T))y(ry) = Z F(0inqy; Tin))- (15)
=1

Here m is a predefined number specifying how many trials

the importance sampler uses, and in(l) is a function that

returns the index of the [—th best trial 7 in the list of all

trials. 0y, is selected using stochastic exploration policy

0; =0 + ¢, (16)

where ¢; is Gaussian zero noise. Variance of the noise (o2)
needs to be set. Higher o2 leads to faster, and lower o2 to
more precise convergence.

C. Simulated Human Rewards

We modeled the human reward with a simple discretization
of the exact reward. We empirically defined the regions of
the same, discrete reward.

Unsigned reward for the algorithm (-,) was defined

5 if 0.00 m <|Lg— Lg| <0.10 m

4 if 010 m < |Lg— Li| <0.35 m
Riwa=1< 3 if035m<|Lg—Lg <0.60m (17)

2 if 0.60 m < |Lg — Lg| < 1.00 m

1 else.

We added random uncertainty in the range of 0.05 m
to simulate noisy human feedback. Signed reward for the
algorithm was set to

(—)1 if —0.70m<Lyg— Ly

()2 if —0.70m < Lg— Ly < —0.10 m
Risa=24 ()3 if —010m<Ly—L;<010m

(+)2 if010m < Lg— L <0.70 m

(+) 1 else,

(18)
which is similar to (17). Again, the regions were set empir-
ically. Only positive rewards were used for POWER and the
signs were stored and used for the importance sample.

