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ABSTRACT
We report about the iCub, a humanoid robot for research in 
embodied cognition. At 104 cm tall, the iCub has the size of a 
three and half year old child. It will be able to crawl on all fours 
and sit up to manipulate objects. Its hands have been designed to 
support sophisticate manipulation skills. The iCub is distributed 
as Open Source following the GPL/FDL licenses. The entire 
design is available for download from the project homepage and 
repository (http://www.robotcub.org). In the following, we will 
concentrate on the description of the hardware and software 
systems. The scientific objectives of the project and its 
philosophical underpinning are described extensively elsewhere 
[1]. 

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – Commercial robots and 
applications, Kinematics and dynamics, Manipulators, Operator 
interfaces, Sensors. 

General Terms
Experimentation, Standardization. 

Keywords
Humanoid robotics, cognitive systems, open source, software 
modularity. 

1. INTRODUCTION
RobotCub is a collaborative project funded by the European 
Commission under the sixth framework programme (FP6) by Unit 

E5: Cognitive Systems, Interaction and Robotics. It has the two-
fold goal of: i) creating an open hardware/software humanoid 
robotic platform for research in embodied cognition, and ii) 
advancing our understanding of natural and artificial cognitive 
systems by exploiting this platform in the study of the 
development of cognitive capabilities. 
The RobotCub stance on cognition posits that manipulation plays 
a fundamental role in the development of cognitive capability [1-
4]. As many of these basic skills are not ready-made at birth, but 
developed during ontogenesis [5], RobotCub aims at testing and 
developing this paradigm through the creation of a child-like 
humanoid robot: the iCub. This “baby” robot will act in cognitive 
scenarios, performing tasks useful for learning while interacting 
with the environment and humans. The small (104cm tall), 
compact size (approximately 22kg and fitting within the volume 
of a child) and high number (53) of degrees of freedom combined 
with the Open Source approach distinguish RobotCub from other 
humanoid robotics projects developed worldwide. 
In this paper, we focus on the description of the iCub, both in 
terms of hardware and software. In particular, we will briefly 
discuss the rationale of the hardware design, the modularity and 
reuse of software components, and the consequences of the Open 
Source distribution policy. RobotCub has, in parallel, the goal of 
advancing the science and engineering of cognitive systems. This 
part of the research has been discussed elsewhere in greater detail 
[4, 6] and will not be reported here. 

The hardware of iCub has been specifically optimized and 
designed somewhat holistically: modularity in this case had to be 
traded for functionality and overall size. Software, on the other 
hand, has been designed with modularity and component reuse in 
mind [7]. Both the hardware and software of the iCub have been 
released under the GPL and FDL licenses. The mechanical 
drawings, the electronics, schematics and documentation are 
available from the RobotCub website. The iCub software is 
available as well from the same repository together with a basic 
dynamical simulator of the robot. 

Additional initiatives are aiming at promoting the iCub as the 
platform of choice for research in embodied cognition. Fifteen 
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robots are expected to be delivered by the end of the project (end 
of 2009) as part of RobotCub and of other EU funded projects. 

2. THE ICUB 
The iCub has been designed to allow manipulation and mobility. 
For this reason 30 degrees of freedom (DOF) have been allocated 
to the upper part of the body. The hands, in particular, have 9 
DOF each with three independent fingers and the fourth and fifth 
to be used for additional stability and support (only one DOF). 
They are tendon driven, with most of the motors located in the 
forearm. The legs have 6 DOF each and are strong enough to 
allow bipedal locomotion. 
From the sensory point of view, the iCub is equipped with digital 
cameras, gyroscopes and accelerometers, microphones, and
force/torque sensors. A distributed sensorized skin is under 
development using capacitive sensor technology. 
Each joint is instrumented with positional sensors, in most cases 
using absolute position encoders. A set of DSP-based control 
cards, designed to fit the iCub, take care of the low-level control 
loop in real-time. The DSPs talk to each other via CAN bus. Four 
CAN bus lines connect the various segments of the robot. 
All sensory and motor-state information is transferred to an 
embedded Pentium based PC104 card that handles acquisition and 
reformatting of the various data streams. Time consuming 
computation is typically carried out externally on a cluster of 
machines. The communication with the robot occurs via a Gbit 
Ethernet connection. 
The overall weight of the iCub is 22kg. The umbilical cord 
contains both an Ethernet cable and power to the robot. At this 
stage there is no plan for making the iCub fully autonomous in 
terms of power supply and computation (e.g. by including 
batteries and/or additional processing power on board). 
The mechanics and electronics were optimized for size, starting 
from an evaluation and estimation of torques in the most 
demanding situations (e.g. crawling). Motors and gears were 
appropriately sized according to the requirements of a set of 
typical tasks. The kinematics was also defined following similar 
criteria. The controllers were designed to fit the available space. 
Figure 5 shows the prototype of the iCub. 

2.1 Mechanics
The kinematic specifications of the body of the iCub, the 
definition of the number of DOF, their actual locations as well 
as the actual size of the limbs and torso were based on 
ergonomic data and x-ray images. 
The possibility of achieving certain motor tasks is favored by a 
suitable kinematics and, in particular, this translates into the 
determination of the range of movement and the number of 
controllable joints (where clearly replicating the human body in 
detail is impossible with current technology). Kinematics is also 
influenced by the overall size of the robot which was imposed a
priori. The size is that of a 3.5 years old child (approximately 
100cm high). This size can be achieved with current technology. 
QRIO1 is an example of a robot of an even smaller size although 
with less degrees of freedom. In particular, our task 
specifications, especially manipulation, require at least the same 
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kinematics of QRIO with the addition of the hands and moving 
eyes. Also, we considered the workspace and dexterity of the 
arms and thus a three degree of freedom shoulder was included. 
This was elaborated into a proper list of joints, ranges, and 
sensory requirements at the joint level. 
Considering dynamics, the most demanding requirements
appear in the interaction with the environment. Impact forces, 
for instance, have to be considered for locomotion behaviors, 
but also and more importantly, developing cognitive behaviors 
such as manipulation might require exploring the environment 
erratically. As a consequence, it is likely that high impact forces 
need to be sustained by the robot mechanical structure. This 
requires strong joints, gearboxes, and more in general powerful 
actuators and appropriate elasticity (for absorbing impacts). In 
order to evaluate the range of the required forces and stiffness, 
various behaviors were simulated in a dynamical model of the 
robot. These simulations provided the initial data for the design 
of the robot. The simulations were run using Webots2 and were 
later cross-checked by traditional static analysis. 
At a more general level, we evaluated the available technology, 
compared to the experience within the project consortium and 
the targeted size of the robot: it was decided that electric motors 
were the most suitable technology for the iCub, given also that it 
had to be ready according to the very tight schedule of the 
overall project. Other technologies (e.g. hydraulic, pneumatic) 
were left for a “technology watch” activity and were not 
considered further for the design of the iCub. 
From the kinematic and dynamic analysis, the total number of 
degrees of freedom for the upper body was set to 38 (7 for each 
arm, 9 for each hand, and 6 for the head). For the legs the 
simulations indicated that for crawling, sitting and squatting a 5 
DOF leg is adequate. However, it was decided to incorporate an 
additional DOF at the ankle to support standing and walking. 
Therefore each leg has 6 DOF: these include 3 DOF at the hip, 1 
DOF at the knee and 2 DOF at the ankle (flexion/extension and 
abduction/adduction). The foot twist rotation was not 
implemented. Crawling simulation analysis also showed that for 
effective crawling a 2 DOF waist/torso is adequate. However, to 
support manipulation a 3 DOF waist was incorporated. A 3 DOF 
waist provides increased range and flexibility of motion for the 
upper body resulting in a larger workspace for manipulation 
(e.g. when sitting). 
The neck has a total of 3 DOF and provides full head 
movement. The eyes have further 3 DOF to support both 
tracking and vergence behaviors. 
The actuation solution adopted for the iCub is based on a 
combination of a harmonic drive reduction system (CSD series, 
100:1 ratio for all the major joints) and a brushless frameless 
motor (BLM) from the Kollmorgen frameless RBE series 
(Figure 1). The harmonic drive gears provide zero backlash, 
high reduction ratios on small space with low weight while the 
brushless motors exhibit the desired properties of robustness, 
high power density, and high torque and speed bandwidths 
(especially when compared with conventional DC brushed 
motors). The use of frameless motors permits integration of the 
motor and gears in an endoskeletal structure that minimizes size, 
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weight and dimensions. Smaller motors (brushed-DC type) were 
used for the hands and head joints. 

Figure 1: section of the standard brushless motor group of the 
iCub. Positioning of the motor and gears can be noted (as 
indicated). Figure from [8]. Note the compact assembly of the 
frameless motor and harmonic drive gear. 

An example on the use of this structure is depicted in Figure 2, 
which shows the shoulder of the iCub with details of the motor 
enclosure and tendon-driven pulley mechanisms. 

Figure 2: the shoulder of the iCub. Left: CAD schematics. 
Right: the implementation. Note the three DOF of the 
shoulder with intersecting axes of rotation and the placement 
of the actuators in the chest as indicated. 1.75mm steel cables 
join the movement of the motors with the pulleys actuating 
the joints. 

Certain features of the iCub are unique. Tendon driven joints are 
the norm both for the hand and the shoulder, but also in the 
waist and ankle. This reduces the size of the robot but 
introduces elasticity that has to be considered in designing 
control strategies where high forces might be generated.
The hand, for example, is fully tendon-driven. Seven motors are 
placed remotely in the forearm and all tendons are routed 
through the wrist mechanism (a 2 DOF differential joint). The 
thumb, index, and middle finger are driven by a looped tendon 
in the proximal joint. Motion of the fingers is driven by tendons 

routed via idle pulleys on the shafts of the connecting joints. 
The flexing of the fingers is directly controlled by the tendons 
while the extension is based on a spring return mechanism. This 
arrangement saves one cable per finger. The last two fingers are 
coupled together and pulled by a single motor which flexes 6 
joints simultaneously. Two more motors, mounted directly 
inside the hand, are used for adduction/abduction movements of 
the thumb and all fingers except the middle one which is fixed 
with respect to the palm. In summary, eight DOF out of a total 
of nine are allocated to the first three fingers, allowing 
considerable dexterity. The last two fingers provide additional 
support to grasping. 
Joint angles are sensed using a custom designed Hall-effect-
magnet pair. In addition room for the electronics and tactile 
sensors has been planned. The tactile sensors are under 
development [9]. 

Figure 3: the hand of the iCub, showing the routing of the 
tendons through the wrist and some of the DOF before full 
assembly is completed (the palm is missing). Tendons are 
made of Teflon-coated cables sliding inside Teflon coated 
flexible steel tubes. 

The overall size of the palm has been restricted to 50mm in 
length; it is 34mm wide at the wrist and 60mm at the fingers. 
The hand is only 25mm thick. 

2.2 Electronics
The generation of motor control signals and sensory data 
acquisition is fully embedded into the iCub electronics. Further 
control layers are implemented externally. The interface 
between the iCub and the outside world occurs through a Gbit 
Ethernet cable. The robot contains motor amplifiers, a set of 
DSP controllers, a PC104-based CPU, and analog to digital 
conversion cards. 
The low-level controller cards are of two types for the brushless 
and the brushed-DC motors respectively. They are based on the 
same DSP (Freescale 56F807). The controller of the brushless 
motors is made of two parts (logic and power) and can deliver a 
current of 6A continuous (20A peak) at 48V. All supply 
voltages are generated internally. The CAN bus is employed to 
communicate with the PC104 CPU. Logic and power are 
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58x42mm each and can control up to two motors. The power 
stage mounts also a metal heatsink that is then connected to the 
external shell of the robot for dissipation. 
Similarly the controller of the brushed-DC motors is made of 
two parts. One card acts as power supply; the other contains the 
CPU and amplifiers to control up to four motors. In this case the 
maximum continuous current is limited to 1A at 12V. 

Figure 4: the brushless motor control logic and power 
amplifier of the iCub. Transistors and heatsinks are not 
shown. The size of the two PCBs is 58x42mm. 

More development is in progress to interface tactile and 
force/torque sensors as discussed in [8]. 

2.3 Sensors
Given the size of the iCub, sensors were evaluated for 
performance but also weight and interface standards. The 
following table contains the list of available sensors and their 
status of maturity (i.e. integration into the robot hardware): 

Component Model/type Notes 

Cameras PointGrey 
Dragonfly 
2 640x480 
30fps

Firewire cameras, support 
also higher resolution 

Microphones MICRO 
POM-
2746L

Condenser electrect type 

Inertial
sensors

XSense
MTx

3 gyroscopes, 3 linear 
accelerometers, compass 

Force/torque
sensors

Custom Mechanically compatible with 
the ATI Mini-45 

Position
sensors

AS5045 12bit, absolute magnetic 
encoder

Position
sensors

Faulhaber Integrated position sensing for 
DC motors 

Position
sensors

Honeywell 
SS495A

Finger position sensing 

Tactile
sensors

Custom Based on the AD7147, 
capacitive sensing 

All sensors are fully integrated apart from the force/torque 
sensor whose control electronics is still under development and 
the skin whose entire technology is under testing. More 
information can be found in [8, 9]. 

3. SOFTWARE
The iCub software was developed on top of Yarp [7]. RobotCub 
supported a major overhaul of the Yarp libraries to adapt to a 
more demanding collaborative environment. Better engineered 
software and interface definitions are now available in Yarp. 
Yarp is a set of libraries that support modularity by abstracting 
two common difficulties in robotics: namely, modularity in 
algorithms and in interfacing with the hardware. Robotics is 
perhaps one of the most demanding application environments 
for software recycling where hardware changes often, different 
specialized OSs are typically encountered in a context with a 
strong demand for efficiency. The Yarp libraries assume that an 
appropriate real-time layer is in charge of the low-level control 
of the robot and instead takes care of defining a soft real-time 
communication layer and hardware interface that is suited for 
cluster computation. 
Yarp takes care also of providing independence from the 
operating system and the development environment. The main 
tools in this respect are ACE [10] and CMake3. The former is an 
OS-independent communication library that hides the quirks of 
interprocess communication across different OSs. CMake is a 
cross-platform make-like description language and tool to 
generate appropriate platform specific project files. 
Yarp abstractions are defined in terms of protocols. The main 
Yarp protocol addresses inter-process communication issues. 
The abstraction is implemented by the port C++ class. Ports
follow the observer pattern by decoupling producers and 
consumers. They can deliver messages of any size, across a 
network using a number of underlying protocols (including 
shared memory when possible). In doing so, ports decouple as 
much as possible (as function of a certain number of user-
defined parameters) the behavior of the two sides of the 
communication channels. Ports can be commanded at run time 
to connect and disconnect. 
The second abstraction of Yarp is about hardware devices. The 
Yarp approach is to define interfaces for classes of devices to 
wrap native code APIs (often provided by the hardware 
manufactures). Change in hardware will likely require only a 
change in the API calls (and linking against the appropriate 
library). This easily encapsulates hardware dependencies but 
leaves dependencies in the source code. The latter can be 
removed by providing a “factory” for creating objects at run 
time (on demand). 
The combination of the port and device abstractions leads to 
remotable device drivers which can be accesses across a 
network: e.g. a grabber can send images to a multitude of 
listeners for parallel processing. 
Overall, Yarp’s philosophy is to be lightweight and to be 
“gentle” with existing approaches and libraries. This naturally 
excludes hard real-time issues that have to be necessarily 
addressed elsewhere, likely at the OS level. 
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Figure 5: the complete iCub prototype. 

3.1 Yarp example 
For the purposes of YARP, communication takes place through 
connections between named entities called ports. These form a 
directed graph, the YARP Network, where ports are the nodes, 
and connections are the edges. Each port is assigned a unique 
name, such as “/icub/camera/right”. Every port is registered by 
name with a “name server”. The goal is to ensure that if you 
know the name of a port, that is all you need in order to be able 
to communicate with it from any machine. The YARP name 
server converts from symbolic names to all the details necessary 
to make a connection with a specific resource. The YARP name 
server is designed to be easily used by clients who are not 
themselves using the YARP libraries or executables. 
The purpose of ports is to move data from one thread to another 
(or several others) across process and machine boundaries. The 
flow of data can be manipulated and monitored externally (e.g. 
from the command-line) at run-time. It can also be accessed 
without using the YARP libraries or executables, since the 
relevant protocols are documented. 
A port can send data to any number of other ports. A port can 
receive data from any number of other ports. Connections 
between ports can be freely added or removed, and may use 
different underlying transports. The use of several different 
transports and protocols allows us to exploit their best 
characteristics. TCP is reliable; it can be used to guarantee the 
reception of a message. UDP can be faster than TCP, but 
without guarantees. Multicast is efficient for distributing the 
same information to large numbers of targets. Shared memory 
can be employed for local connections. 
Figure 6 shows a very simple network of ports for a visual 
tracking application. Machine 1, in this example, grabs images 
which are sent to another application (the tracker proper). The 

output of the tracker consists of two parts: the image coordinates 
of the tracked object and an image with a graphic overlay 
showing how good the tracker is doing. The output is sent to a 
control process on another machine (Machine 2) and for 
visualization to yet another machine. Different protocols can be 
used for reasons of efficiency. 

Figure 6: example of a YARP network for a simple visual 
control loop. 

4. OPEN SOURCE ROBOTICS 
RobotCub is Open Source both for software and hardware. While 
the phrase “Open Source software – OSS” is clear, “Open Source 
hardware” might sound strange, but in fact it is a plain transfer of 
the open source philosophy to the entire design of the RobotCub 
platform. The design of the robot started from the preparation of 
specifications (e.g. estimation of torque, speed, etc.), a typical 3D 
CAD modeling, and eventually in the preparation of the executive 
files which are used to fabricate parts and for assembly. Without 
good documentation it is very complicated to build and assemble 
a full robot. This means that documentation (as for software) is 
particularly important. 
The CAD files, in some sense, can be seen as the source code, 
since they are the “preferred form of the work for making 
modifications to it”, in the language of the GPL. They get 
“compiled” into 2D drawings which represent the executive 
drawings that can be used by any professional and reasonably 
well-equipped machine shop either to program CNC machines or 
to manually prepare the mechanical parts. This compilation 
process is not fully automated and requires substantial human 
intervention. There is a clear dependency of the 2D drawings on 
the original 3D CAD model. To enable the same type of virtuous 
development cycle as occurs in open source software, the 3D 
CAD is required, since changes happen in 3D first and get 
propagated to 2D later. In addition, assembly diagrams, part lists, 
and all the material produced during the design stage should be 
included to guarantee that the same information is available to 
new developers. 
One difference between software and the hardware design is that 
there are currently no effective formats for interchange of 3D 
models. Proprietary systems such as SolidWorks and Pro/E can 
import and export a range of formats, but going from one to 
another is lossy, destroying the information needed for production 
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and leaving just the basic geometrical shape. So in practice, 
designs are tied to tools produced by a particular vendor, and 
interoperability between hardware design tools is limited. In 
RobotCub we were forced to choose a specific set of tools for 
mechanical and electronic CAD and future upgrades will have to 
strictly adhere to these standards. Due to the absence of open 
source professional design tools, RobotCub uses proprietary 
products. This is an unfortunate situation, but there is no practical 
alternative at the moment. The “C++” and “gcc” of CAD do not 
exist yet. 
As a practical matter, the simple duplication of RobotCub parts 
does not require the use of any of these tools since we provide all 
executive drawings and production files (e.g. Gerber files for the 
PCBs). For modification, the design tools are somewhat 
expensive (although educational discounts or educational releases 
exist). Free of charge viewers are currently available for all file 
types in question. 
For RobotCub, we decided to license all the CAD sources under 
the GPL which seems appropriate given their nature. Associated 
documentation will be licensed under the FDL. These will be 
made available through the usual source code distribution 
channels (e.g. repositories, websites). 

5. CONCLUSION
The design process of RobotCub has been a distributed effort as 
for many open source projects. Various groups developed various 
subcomponents and contributed in different ways to the design of 
the robot including mechanics, electronics, sensors, etc. In 
particular, a whole design cycle was carried out for the subparts 
(e.g. head, hand, legs) and the prototypes that have been built and 
debugged. The final CAD and 2D drawings were discussed and 
then moved to the integration stage. Clearly, communication was 
crucial at the initial design stage to guarantee a uniform design 
and a global optimization. 
The distributed design broke down at the integration stage where 
the industrial partner (Telerobot Srl. – Genoa) stepped in to carry 
out integration, verification and consistency checks. The design 
and fabrication of the control electronics was also subcontracted 
to a specialized company. It is important to stress the 
collaboration with industry for a project of this size and with these 
goals and requirements. For many reasons building a complete 
platform involves techniques and management that is better 
executed following industrial standards. One example that applies 
to RobotCub is the standardization of the documentation. 
A further strategy used in RobotCub is that of building early. 
Each subsystem was built and copied as soon as possible. In 
several cases debugging happened either because the copies of the 
robot did not work as expected or because easy-to-fix problems 
were spotted. Sometimes the documentation had to be improved. 
Unfortunately, this strategy was applied less extensively to some 
of the subparts which are or were still under design and 
debugging. The design stage will be completed with the 
realization of the fifteen copies of the iCub. 
This will further test the documentation and in general the 
reliability of the overall platform including software, debugging 
tools, electronics, etc. The first release of the iCub will be 
consolidated after this final fabrication stage. 

The actual design of the robot had to incorporate manipulation by 
providing sophisticated hands, a flexible oculomotor system, and 
a reasonable bimanual workspace. On top of this, the robot has to 
support global body movements such as crawling, sitting, etc. 
These many constraints were considered in preparing the 
specifications of the robot and later on during the whole design 
process.
Both the iCub design and its software architecture are distributed 
as Open Source. This is not enough to guarantee success. 
Additional initiatives are required. RobotCub is giving away six 
copies of the iCub to the winners of an Open Call for proposals to 
use the iCub (recently concluded). In addition a structure called 
the Research and Training Site (RTS) has being created to support 
visiting researchers to work on the iCub prototypes in Genoa. 
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