
The iCub humanoid robot:
an open platform for research in embodied cognition

(Special Session on EU-projects)

Giorgio Metta
Giulio Sandini

Italian Institute of Technology and
University of Genoa

Via Morego, 30
16163 Genoa, Italy
+39 010 71781411

{giorgio.metta,
giulio.sandini}@iit.it

David Vernon
Khalifa University

P.O. Box 573
Sharjah

david@vernon.eu

Lorenzo Natale
Francesco Nori

Italian Institute of Technology
Via Morego, 30

16163, Genoa, Italy
+39 010 71781420

{lorenzo.natale,
francesco.nori}@iit.it

ABSTRACT
We report about the iCub, a humanoid robot for research in
embodied cognition. At 104 cm tall, the iCub has the size of a
three and half year old child. It will be able to crawl on all fours
and sit up to manipulate objects. Its hands have been designed to
support sophisticate manipulation skills. The iCub is distributed
as Open Source following the GPL/FDL licenses. The entire
design is available for download from the project homepage and
repository (http://www.robotcub.org). In the following, we will
concentrate on the description of the hardware and software
systems. The scientific objectives of the project and its
philosophical underpinning are described extensively elsewhere
[1].

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics – Commercial robots and
applications, Kinematics and dynamics, Manipulators, Operator
interfaces, Sensors.

General Terms
Experimentation, Standardization.

Keywords
Humanoid robotics, cognitive systems, open source, software
modularity.

1. INTRODUCTION
RobotCub is a collaborative project funded by the European
Commission under the sixth framework programme (FP6) by Unit

E5: Cognitive Systems, Interaction and Robotics. It has the two-
fold goal of: i) creating an open hardware/software humanoid
robotic platform for research in embodied cognition, and ii)
advancing our understanding of natural and artificial cognitive
systems by exploiting this platform in the study of the
development of cognitive capabilities.
The RobotCub stance on cognition posits that manipulation plays
a fundamental role in the development of cognitive capability [1-
4]. As many of these basic skills are not ready-made at birth, but
developed during ontogenesis [5], RobotCub aims at testing and
developing this paradigm through the creation of a child-like
humanoid robot: the iCub. This “baby” robot will act in cognitive
scenarios, performing tasks useful for learning while interacting
with the environment and humans. The small (104cm tall),
compact size (approximately 22kg and fitting within the volume
of a child) and high number (53) of degrees of freedom combined
with the Open Source approach distinguish RobotCub from other
humanoid robotics projects developed worldwide.
In this paper, we focus on the description of the iCub, both in
terms of hardware and software. In particular, we will briefly
discuss the rationale of the hardware design, the modularity and
reuse of software components, and the consequences of the Open
Source distribution policy. RobotCub has, in parallel, the goal of
advancing the science and engineering of cognitive systems. This
part of the research has been discussed elsewhere in greater detail
[4, 6] and will not be reported here.

The hardware of iCub has been specifically optimized and
designed somewhat holistically: modularity in this case had to be
traded for functionality and overall size. Software, on the other
hand, has been designed with modularity and component reuse in
mind [7]. Both the hardware and software of the iCub have been
released under the GPL and FDL licenses. The mechanical
drawings, the electronics, schematics and documentation are
available from the RobotCub website. The iCub software is
available as well from the same repository together with a basic
dynamical simulator of the robot.

Additional initiatives are aiming at promoting the iCub as the
platform of choice for research in embodied cognition. Fifteen

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

 PerMIS'08, August 19–21, 2008, Gaithersburg, MD, USA.
 Copyright 2008 ACM 978-1-60558-293-1/08/08…$10.00

50

robots are expected to be delivered by the end of the project (end
of 2009) as part of RobotCub and of other EU funded projects.

2. THE ICUB
The iCub has been designed to allow manipulation and mobility.
For this reason 30 degrees of freedom (DOF) have been allocated
to the upper part of the body. The hands, in particular, have 9
DOF each with three independent fingers and the fourth and fifth
to be used for additional stability and support (only one DOF).
They are tendon driven, with most of the motors located in the
forearm. The legs have 6 DOF each and are strong enough to
allow bipedal locomotion.
From the sensory point of view, the iCub is equipped with digital
cameras, gyroscopes and accelerometers, microphones, and
force/torque sensors. A distributed sensorized skin is under
development using capacitive sensor technology.
Each joint is instrumented with positional sensors, in most cases
using absolute position encoders. A set of DSP-based control
cards, designed to fit the iCub, take care of the low-level control
loop in real-time. The DSPs talk to each other via CAN bus. Four
CAN bus lines connect the various segments of the robot.
All sensory and motor-state information is transferred to an
embedded Pentium based PC104 card that handles acquisition and
reformatting of the various data streams. Time consuming
computation is typically carried out externally on a cluster of
machines. The communication with the robot occurs via a Gbit
Ethernet connection.
The overall weight of the iCub is 22kg. The umbilical cord
contains both an Ethernet cable and power to the robot. At this
stage there is no plan for making the iCub fully autonomous in
terms of power supply and computation (e.g. by including
batteries and/or additional processing power on board).
The mechanics and electronics were optimized for size, starting
from an evaluation and estimation of torques in the most
demanding situations (e.g. crawling). Motors and gears were
appropriately sized according to the requirements of a set of
typical tasks. The kinematics was also defined following similar
criteria. The controllers were designed to fit the available space.
Figure 5 shows the prototype of the iCub.

2.1 Mechanics
The kinematic specifications of the body of the iCub, the
definition of the number of DOF, their actual locations as well
as the actual size of the limbs and torso were based on
ergonomic data and x-ray images.
The possibility of achieving certain motor tasks is favored by a
suitable kinematics and, in particular, this translates into the
determination of the range of movement and the number of
controllable joints (where clearly replicating the human body in
detail is impossible with current technology). Kinematics is also
influenced by the overall size of the robot which was imposed a
priori. The size is that of a 3.5 years old child (approximately
100cm high). This size can be achieved with current technology.
QRIO1 is an example of a robot of an even smaller size although
with less degrees of freedom. In particular, our task
specifications, especially manipulation, require at least the same

1 http://www.sony.net/Fun/design/history/product/2000/sdr-4x.html

kinematics of QRIO with the addition of the hands and moving
eyes. Also, we considered the workspace and dexterity of the
arms and thus a three degree of freedom shoulder was included.
This was elaborated into a proper list of joints, ranges, and
sensory requirements at the joint level.
Considering dynamics, the most demanding requirements
appear in the interaction with the environment. Impact forces,
for instance, have to be considered for locomotion behaviors,
but also and more importantly, developing cognitive behaviors
such as manipulation might require exploring the environment
erratically. As a consequence, it is likely that high impact forces
need to be sustained by the robot mechanical structure. This
requires strong joints, gearboxes, and more in general powerful
actuators and appropriate elasticity (for absorbing impacts). In
order to evaluate the range of the required forces and stiffness,
various behaviors were simulated in a dynamical model of the
robot. These simulations provided the initial data for the design
of the robot. The simulations were run using Webots2 and were
later cross-checked by traditional static analysis.
At a more general level, we evaluated the available technology,
compared to the experience within the project consortium and
the targeted size of the robot: it was decided that electric motors
were the most suitable technology for the iCub, given also that it
had to be ready according to the very tight schedule of the
overall project. Other technologies (e.g. hydraulic, pneumatic)
were left for a “technology watch” activity and were not
considered further for the design of the iCub.
From the kinematic and dynamic analysis, the total number of
degrees of freedom for the upper body was set to 38 (7 for each
arm, 9 for each hand, and 6 for the head). For the legs the
simulations indicated that for crawling, sitting and squatting a 5
DOF leg is adequate. However, it was decided to incorporate an
additional DOF at the ankle to support standing and walking.
Therefore each leg has 6 DOF: these include 3 DOF at the hip, 1
DOF at the knee and 2 DOF at the ankle (flexion/extension and
abduction/adduction). The foot twist rotation was not
implemented. Crawling simulation analysis also showed that for
effective crawling a 2 DOF waist/torso is adequate. However, to
support manipulation a 3 DOF waist was incorporated. A 3 DOF
waist provides increased range and flexibility of motion for the
upper body resulting in a larger workspace for manipulation
(e.g. when sitting).
The neck has a total of 3 DOF and provides full head
movement. The eyes have further 3 DOF to support both
tracking and vergence behaviors.
The actuation solution adopted for the iCub is based on a
combination of a harmonic drive reduction system (CSD series,
100:1 ratio for all the major joints) and a brushless frameless
motor (BLM) from the Kollmorgen frameless RBE series
(Figure 1). The harmonic drive gears provide zero backlash,
high reduction ratios on small space with low weight while the
brushless motors exhibit the desired properties of robustness,
high power density, and high torque and speed bandwidths
(especially when compared with conventional DC brushed
motors). The use of frameless motors permits integration of the
motor and gears in an endoskeletal structure that minimizes size,

2 http://www.cyberbotics.com/products/webots/webots5.pdf

51

weight and dimensions. Smaller motors (brushed-DC type) were
used for the hands and head joints.

Figure 1: section of the standard brushless motor group of the
iCub. Positioning of the motor and gears can be noted (as
indicated). Figure from [8]. Note the compact assembly of the
frameless motor and harmonic drive gear.

An example on the use of this structure is depicted in Figure 2,
which shows the shoulder of the iCub with details of the motor
enclosure and tendon-driven pulley mechanisms.

Figure 2: the shoulder of the iCub. Left: CAD schematics.
Right: the implementation. Note the three DOF of the
shoulder with intersecting axes of rotation and the placement
of the actuators in the chest as indicated. 1.75mm steel cables
join the movement of the motors with the pulleys actuating
the joints.

Certain features of the iCub are unique. Tendon driven joints are
the norm both for the hand and the shoulder, but also in the
waist and ankle. This reduces the size of the robot but
introduces elasticity that has to be considered in designing
control strategies where high forces might be generated.
The hand, for example, is fully tendon-driven. Seven motors are
placed remotely in the forearm and all tendons are routed
through the wrist mechanism (a 2 DOF differential joint). The
thumb, index, and middle finger are driven by a looped tendon
in the proximal joint. Motion of the fingers is driven by tendons

routed via idle pulleys on the shafts of the connecting joints.
The flexing of the fingers is directly controlled by the tendons
while the extension is based on a spring return mechanism. This
arrangement saves one cable per finger. The last two fingers are
coupled together and pulled by a single motor which flexes 6
joints simultaneously. Two more motors, mounted directly
inside the hand, are used for adduction/abduction movements of
the thumb and all fingers except the middle one which is fixed
with respect to the palm. In summary, eight DOF out of a total
of nine are allocated to the first three fingers, allowing
considerable dexterity. The last two fingers provide additional
support to grasping.
Joint angles are sensed using a custom designed Hall-effect-
magnet pair. In addition room for the electronics and tactile
sensors has been planned. The tactile sensors are under
development [9].

Figure 3: the hand of the iCub, showing the routing of the
tendons through the wrist and some of the DOF before full
assembly is completed (the palm is missing). Tendons are
made of Teflon-coated cables sliding inside Teflon coated
flexible steel tubes.

The overall size of the palm has been restricted to 50mm in
length; it is 34mm wide at the wrist and 60mm at the fingers.
The hand is only 25mm thick.

2.2 Electronics
The generation of motor control signals and sensory data
acquisition is fully embedded into the iCub electronics. Further
control layers are implemented externally. The interface
between the iCub and the outside world occurs through a Gbit
Ethernet cable. The robot contains motor amplifiers, a set of
DSP controllers, a PC104-based CPU, and analog to digital
conversion cards.
The low-level controller cards are of two types for the brushless
and the brushed-DC motors respectively. They are based on the
same DSP (Freescale 56F807). The controller of the brushless
motors is made of two parts (logic and power) and can deliver a
current of 6A continuous (20A peak) at 48V. All supply
voltages are generated internally. The CAN bus is employed to
communicate with the PC104 CPU. Logic and power are

52

58x42mm each and can control up to two motors. The power
stage mounts also a metal heatsink that is then connected to the
external shell of the robot for dissipation.
Similarly the controller of the brushed-DC motors is made of
two parts. One card acts as power supply; the other contains the
CPU and amplifiers to control up to four motors. In this case the
maximum continuous current is limited to 1A at 12V.

Figure 4: the brushless motor control logic and power
amplifier of the iCub. Transistors and heatsinks are not
shown. The size of the two PCBs is 58x42mm.

More development is in progress to interface tactile and
force/torque sensors as discussed in [8].

2.3 Sensors
Given the size of the iCub, sensors were evaluated for
performance but also weight and interface standards. The
following table contains the list of available sensors and their
status of maturity (i.e. integration into the robot hardware):

Component Model/type Notes

Cameras PointGrey
Dragonfly
2 640x480
30fps

Firewire cameras, support
also higher resolution

Microphones MICRO
POM-
2746L

Condenser electrect type

Inertial
sensors

XSense
MTx

3 gyroscopes, 3 linear
accelerometers, compass

Force/torque
sensors

Custom Mechanically compatible with
the ATI Mini-45

Position
sensors

AS5045 12bit, absolute magnetic
encoder

Position
sensors

Faulhaber Integrated position sensing for
DC motors

Position
sensors

Honeywell
SS495A

Finger position sensing

Tactile
sensors

Custom Based on the AD7147,
capacitive sensing

All sensors are fully integrated apart from the force/torque
sensor whose control electronics is still under development and
the skin whose entire technology is under testing. More
information can be found in [8, 9].

3. SOFTWARE
The iCub software was developed on top of Yarp [7]. RobotCub
supported a major overhaul of the Yarp libraries to adapt to a
more demanding collaborative environment. Better engineered
software and interface definitions are now available in Yarp.
Yarp is a set of libraries that support modularity by abstracting
two common difficulties in robotics: namely, modularity in
algorithms and in interfacing with the hardware. Robotics is
perhaps one of the most demanding application environments
for software recycling where hardware changes often, different
specialized OSs are typically encountered in a context with a
strong demand for efficiency. The Yarp libraries assume that an
appropriate real-time layer is in charge of the low-level control
of the robot and instead takes care of defining a soft real-time
communication layer and hardware interface that is suited for
cluster computation.
Yarp takes care also of providing independence from the
operating system and the development environment. The main
tools in this respect are ACE [10] and CMake3. The former is an
OS-independent communication library that hides the quirks of
interprocess communication across different OSs. CMake is a
cross-platform make-like description language and tool to
generate appropriate platform specific project files.
Yarp abstractions are defined in terms of protocols. The main
Yarp protocol addresses inter-process communication issues.
The abstraction is implemented by the port C++ class. Ports
follow the observer pattern by decoupling producers and
consumers. They can deliver messages of any size, across a
network using a number of underlying protocols (including
shared memory when possible). In doing so, ports decouple as
much as possible (as function of a certain number of user-
defined parameters) the behavior of the two sides of the
communication channels. Ports can be commanded at run time
to connect and disconnect.
The second abstraction of Yarp is about hardware devices. The
Yarp approach is to define interfaces for classes of devices to
wrap native code APIs (often provided by the hardware
manufactures). Change in hardware will likely require only a
change in the API calls (and linking against the appropriate
library). This easily encapsulates hardware dependencies but
leaves dependencies in the source code. The latter can be
removed by providing a “factory” for creating objects at run
time (on demand).
The combination of the port and device abstractions leads to
remotable device drivers which can be accesses across a
network: e.g. a grabber can send images to a multitude of
listeners for parallel processing.
Overall, Yarp’s philosophy is to be lightweight and to be
“gentle” with existing approaches and libraries. This naturally
excludes hard real-time issues that have to be necessarily
addressed elsewhere, likely at the OS level.

3 http://www.cmake.org

53

Figure 5: the complete iCub prototype.

3.1 Yarp example
For the purposes of YARP, communication takes place through
connections between named entities called ports. These form a
directed graph, the YARP Network, where ports are the nodes,
and connections are the edges. Each port is assigned a unique
name, such as “/icub/camera/right”. Every port is registered by
name with a “name server”. The goal is to ensure that if you
know the name of a port, that is all you need in order to be able
to communicate with it from any machine. The YARP name
server converts from symbolic names to all the details necessary
to make a connection with a specific resource. The YARP name
server is designed to be easily used by clients who are not
themselves using the YARP libraries or executables.
The purpose of ports is to move data from one thread to another
(or several others) across process and machine boundaries. The
flow of data can be manipulated and monitored externally (e.g.
from the command-line) at run-time. It can also be accessed
without using the YARP libraries or executables, since the
relevant protocols are documented.
A port can send data to any number of other ports. A port can
receive data from any number of other ports. Connections
between ports can be freely added or removed, and may use
different underlying transports. The use of several different
transports and protocols allows us to exploit their best
characteristics. TCP is reliable; it can be used to guarantee the
reception of a message. UDP can be faster than TCP, but
without guarantees. Multicast is efficient for distributing the
same information to large numbers of targets. Shared memory
can be employed for local connections.
Figure 6 shows a very simple network of ports for a visual
tracking application. Machine 1, in this example, grabs images
which are sent to another application (the tracker proper). The

output of the tracker consists of two parts: the image coordinates
of the tracked object and an image with a graphic overlay
showing how good the tracker is doing. The output is sent to a
control process on another machine (Machine 2) and for
visualization to yet another machine. Different protocols can be
used for reasons of efficiency.

Figure 6: example of a YARP network for a simple visual
control loop.

4. OPEN SOURCE ROBOTICS
RobotCub is Open Source both for software and hardware. While
the phrase “Open Source software – OSS” is clear, “Open Source
hardware” might sound strange, but in fact it is a plain transfer of
the open source philosophy to the entire design of the RobotCub
platform. The design of the robot started from the preparation of
specifications (e.g. estimation of torque, speed, etc.), a typical 3D
CAD modeling, and eventually in the preparation of the executive
files which are used to fabricate parts and for assembly. Without
good documentation it is very complicated to build and assemble
a full robot. This means that documentation (as for software) is
particularly important.
The CAD files, in some sense, can be seen as the source code,
since they are the “preferred form of the work for making
modifications to it”, in the language of the GPL. They get
“compiled” into 2D drawings which represent the executive
drawings that can be used by any professional and reasonably
well-equipped machine shop either to program CNC machines or
to manually prepare the mechanical parts. This compilation
process is not fully automated and requires substantial human
intervention. There is a clear dependency of the 2D drawings on
the original 3D CAD model. To enable the same type of virtuous
development cycle as occurs in open source software, the 3D
CAD is required, since changes happen in 3D first and get
propagated to 2D later. In addition, assembly diagrams, part lists,
and all the material produced during the design stage should be
included to guarantee that the same information is available to
new developers.
One difference between software and the hardware design is that
there are currently no effective formats for interchange of 3D
models. Proprietary systems such as SolidWorks and Pro/E can
import and export a range of formats, but going from one to
another is lossy, destroying the information needed for production

54

and leaving just the basic geometrical shape. So in practice,
designs are tied to tools produced by a particular vendor, and
interoperability between hardware design tools is limited. In
RobotCub we were forced to choose a specific set of tools for
mechanical and electronic CAD and future upgrades will have to
strictly adhere to these standards. Due to the absence of open
source professional design tools, RobotCub uses proprietary
products. This is an unfortunate situation, but there is no practical
alternative at the moment. The “C++” and “gcc” of CAD do not
exist yet.
As a practical matter, the simple duplication of RobotCub parts
does not require the use of any of these tools since we provide all
executive drawings and production files (e.g. Gerber files for the
PCBs). For modification, the design tools are somewhat
expensive (although educational discounts or educational releases
exist). Free of charge viewers are currently available for all file
types in question.
For RobotCub, we decided to license all the CAD sources under
the GPL which seems appropriate given their nature. Associated
documentation will be licensed under the FDL. These will be
made available through the usual source code distribution
channels (e.g. repositories, websites).

5. CONCLUSION
The design process of RobotCub has been a distributed effort as
for many open source projects. Various groups developed various
subcomponents and contributed in different ways to the design of
the robot including mechanics, electronics, sensors, etc. In
particular, a whole design cycle was carried out for the subparts
(e.g. head, hand, legs) and the prototypes that have been built and
debugged. The final CAD and 2D drawings were discussed and
then moved to the integration stage. Clearly, communication was
crucial at the initial design stage to guarantee a uniform design
and a global optimization.
The distributed design broke down at the integration stage where
the industrial partner (Telerobot Srl. – Genoa) stepped in to carry
out integration, verification and consistency checks. The design
and fabrication of the control electronics was also subcontracted
to a specialized company. It is important to stress the
collaboration with industry for a project of this size and with these
goals and requirements. For many reasons building a complete
platform involves techniques and management that is better
executed following industrial standards. One example that applies
to RobotCub is the standardization of the documentation.
A further strategy used in RobotCub is that of building early.
Each subsystem was built and copied as soon as possible. In
several cases debugging happened either because the copies of the
robot did not work as expected or because easy-to-fix problems
were spotted. Sometimes the documentation had to be improved.
Unfortunately, this strategy was applied less extensively to some
of the subparts which are or were still under design and
debugging. The design stage will be completed with the
realization of the fifteen copies of the iCub.
This will further test the documentation and in general the
reliability of the overall platform including software, debugging
tools, electronics, etc. The first release of the iCub will be
consolidated after this final fabrication stage.

The actual design of the robot had to incorporate manipulation by
providing sophisticated hands, a flexible oculomotor system, and
a reasonable bimanual workspace. On top of this, the robot has to
support global body movements such as crawling, sitting, etc.
These many constraints were considered in preparing the
specifications of the robot and later on during the whole design
process.
Both the iCub design and its software architecture are distributed
as Open Source. This is not enough to guarantee success.
Additional initiatives are required. RobotCub is giving away six
copies of the iCub to the winners of an Open Call for proposals to
use the iCub (recently concluded). In addition a structure called
the Research and Training Site (RTS) has being created to support
visiting researchers to work on the iCub prototypes in Genoa.

6. ACKNOWLEDGMENTS
The authors would like to thank the RobotCub Consortium. The
authors were supported by European Union grant RobotCub (IST-
2004-004370) and by euCognition (FP6 Project 26408). Paul
Fitzpatrick is gratefully acknowledged for the continuous support
to Yarp.

7. REFERENCES
[1] L. Fadiga, L. Craighero, and E. Olivier, "Human motor

cortex excitability during the perception of others'
action," Current Biology, vol. 14 pp. 331-333, 2005.

[2] L. Fadiga, L. Craighero, G. Buccino, and G. Rizzolatti,
"Speech listening specifically modulates the excitability
of tongue muscles: a TMS study," European Journal of
Neuroscience, vol. 15, pp. 399-402, 2002.

[3] G. Rizzolatti and L. Fadiga, "Grasping objects and
grasping action meanings: the dual role of monkey
rostroventral premotor cortex (area F5)," in Sensory
Guidance of Movement, Novartis Foundation
Symposium, G. R. Bock and J. A. Goode, Eds.
Chichester: John Wiley and Sons, 1998, pp. 81-103.

[4] D. Vernon, G. Metta, and G. Sandini, "A Survey of
Cognition and Cognitive Architectures: Implications for
the Autonomous Development of Mental Capabilities in
Computational Systems," IEEE Transactions on
Evolutionary Computation, special issue on AMD , vol.
11, 2007.

[5] C. von Hofsten, "On the development of perception and
action," in Handbook of Developmental Psychology , J.
Valsiner and K. J. Connolly, Eds. London: Sage, 2003,
pp. 114-140.

[6] G. Sandini, G. Metta, and D. Vernon, "RobotCub: An
Open Framework for Research in Embodied
Cognition," presented at IEEE-RAS/RJS International
Conference on Humanoid Robotics, Santa Monica, CA,
2004.

[7] P. Fitzpatrick, G. Metta, and L. Natale, "Towards Long-
Lived Robot Genes," Journal of Robotics and
Autonomous Systems, Special Issue on Humanoid
Technologies, vol. 56, 2008.

[8] N. G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R.
Beira, F. Becchi, L. Righetti, J. Santos-Victor, A. J.
Ijspeert, M. C. Carrozza, and D. G. Caldwell, "iCub –
The Design and Realization of an Open Humanoid

55

Platform for Cognitive and Neuroscience Research,"
Advanced Robotics, vol. 21, 2007.

[9] M. Maggiali, G. Cannata, P. Maiolino, G. Metta, M.
Randazzo, and G. Sandini, "Embedded Distributed
Capacitive Tactile Sensor," presented at The 11th

Mechatronics Forum Biennial International Conference
2008, University of Limerick, Ireland, 2008.

[10] S. D. Huston, J. C. E. Johnson, and U. Syyid, The ACE
Programmer's Guide: Addison-Wesley, 2003.

56

