
Unsupervised Perceptual Rewards
for Imitation Learning

Pierre Sermanet∗ Kelvin Xu∗† Sergey Levine
sermanet,kelvinxx,slevine@google.com

Google Brain

Abstract—Reward function design and exploration time are
arguably the biggest obstacles to the deployment of reinforcement
learning (RL) agents in the real world. In many real-world tasks,
designing a reward function takes considerable hand engineering
and often requires additional and potentially visible sensors to
be installed just to measure whether the task has been executed
successfully. Furthermore, many interesting tasks consist of
multiple implicit intermediate steps that must be executed in
sequence. Even when the final outcome can be measured, it does
not necessarily provide feedback on these intermediate steps or
sub-goals. To address these issues, we propose leveraging the
abstraction power of intermediate visual representations learned
by deep models to quickly infer perceptual reward functions from
small numbers of demonstrations. We present a method that is
able to identify key intermediate steps of a task from only a
handful of demonstration sequences, and automatically identify
the most discriminative features for identifying these steps. This
method makes use of the features in a pre-trained deep model,
but does not require any explicit specification of sub-goals. The
resulting reward functions, which are dense and smooth, can then
be used by an RL agent to learn to perform the task in real-world
settings. To evaluate the learned reward functions, we present
qualitative results on two real-world tasks and a quantitative
evaluation against a human-designed reward function. We also
demonstrate that our method can be used to learn a complex
real-world door opening skill using a real robot, even when the
demonstration used for reward learning is provided by a human
using their own hand. To our knowledge, these are the first results
showing that complex robotic manipulation skills can be learned
directly and without supervised labels from a video of a human
performing the task. Supplementary material and dataset are
available at sermanet.github.io/rewards

I. INTRODUCTION

Social learning, such as imitation, plays a critical role in
allowing humans and animals to acquire complex skills in the
real world. Humans can use this weak form of supervision to
acquire behaviors from very small numbers of demonstrations,
in sharp contrast to deep reinforcement learning (RL) meth-
ods, which typically require extensive training data. In this
work, we make use of two ideas to develop a scalable and
efficient imitation learning method: first, imitation makes use
of extensive prior knowledge to quickly glean the “gist” of a
new task from even a small number of demonstrations; second,
imitation involves both observation and trial-and-error learning
(RL). Building on these ideas, we propose a reward learning
method for understanding the intent of a user demonstration
through the use of pre-trained visual features, which provide

∗ equal contribution
† Google Brain Residency program (g.co/brainresidency)

Fig. 1: Perceptual reward functions learned from unsupervised
observation of human demonstrations. For each video strip, we
show its corresponding learned reward function below with the range
[0, 4] on the vertical axis, where 4 corresponds to the maximum
reward for completing the demonstrated task. We show rewards
learned from human demonstrations for a pouring task (top) and
door opening task (middle) and use the door opening reward to
successfully train a robot to perform the task (bottom).

the “prior knowledge” for efficient imitation. Our algorithm
aims to discover not only the high-level goal of a task, but
also the implicit sub-goals and steps that comprise more
complex behaviors. Extracting such sub-goals can allow the
agent to make maximal use of information contained in a
demonstration. Once the reward function has been extracted,
the agent can use its own experience at the task to determine
the physical structure of the behavior, even when the reward is
provided by an agent with a substantially different embodiment
(e.g. a human providing a demonstration for a robot).

To our knowledge, our method is the first reward learning
technique that learns generalizable vision-based reward func-
tions for complex robotic manipulation skills from only a few
demonstrations provided directly by a human. Although prior
methods have demonstrated reward learning with vision for
real-world robotic tasks, they have either required kinesthetic
demonstrations with robot state for reward learning [12],
or else required low-dimensional state spaces and numerous
demonstrations [33]. The contributions of this paper are:

• A method for perceptual reward learning from only a few
demonstrations of real-world tasks. Reward functions
are dense and incremental, with automated unsupervised

ar
X

iv
:1

61
2.

06
69

9v
3

 [
cs

.C
V

]
 1

2
Ju

n
20

17

https://sermanet.github.io/rewards/
http://g.co/brainresidency

Few demonstrations

Unsupervised discovery of intermediate steps

Feature selection maximizing step discrimination across all videos

pretrained
deep model

(e.g. Inception)

general
high-level features

Demonstrator
(human or robot)

Real-time perceptual reward for multiple intermediate stepsREAL ROBOT

OFFLINE COMPUTATION

Learning agent
with Reinforcement Learning

Kinesthetic demonstration
(successful ~10% of the time)

PI2 approach from [Chebotar et al.]

Fig. 2: Method overview. Given a few demonstration videos of the same action, our method discovers intermediate steps, then trains a
classifier for each step on top of the mid and high-level representations of a pre-trained deep model (in this work, we use all activations
starting from the first “mixed” layer that follows the first 5 convolutional layers). The step classifiers are then combined to produce a single
reward function per step prior to learning. These intermediate rewards are combined into a single reward function. The reward function is
then used by a real robot to learn the perform the demonstrated task as shown in Sec. III-B.

discovery of intermediate steps.
• The first vision-based reward learning method that can

learn a complex robotic manipulation task from a few hu-
man demonstrations in real-world robotic experiments.

• A set of empirical experiments that show that the learned
visual representations inside a pre-trained deep model are
general enough to be directly used to represent goals and
sub-goals for manipulation skills in new scenes without
retraining.

A. Related Work

Our method can be viewed as an instance of learning from
demonstration (LfD), which has long been studied as a strategy
to overcome the challenging problem of learning robotic tasks
from scratch [7] (also see [3] for a survey). Previous work
in LfD has successfully replicated gestures [8] and dual-arm
manipulation [4] on real robotic systems. LfD can however

be challenging when the human demonstrator and robot do
not share the same “embodiment”. A mismatch between the
robot’s sensor/actions and the recorded demonstration can lead
to suboptimal behaviour. Previous work has addressed this
issue by either providing additional feedback [32], or alter-
natively providing demonstrations which only give a coarse
solutions which can be iteratively refined [24]. Our method
of using perceptual rewards can be seen as an attempt to
circumvent the need for shared embodiment in the general
problem of learning from humans. To accomplish this, we first
learn a visual reward from human demonstrations, and then
learn how to perform the task using the robot’s own experience
via reinforcement learning.

Our approach can be seen as an instance of the more
general inverse reinforcement learning framework [20]. Inverse
reinforcement learning can be performed with a variety of
algorithms, ranging from margin-based methods [2, 27] to

methods based on probabilistic models [25, 35]. Most similar
in spirit to our method is the recently proposed SWIRL algo-
rithm [1] and non-parametric reward segmentation approaches
[26, 19, 21], which like our method attempts to decompose
the task into sub-tasks to learn a sequence of local rewards.
These approaches differs in that they consider only problems
with low-dimensional state spaces while our method can be
applied to raw pixels. Our experimental evaluation shows that
our method can learn a complex real-world door opening skill
using visual rewards from a human demonstration.

We use visual features obtained from training a deep con-
volutional network on a standard image classification task to
represent our visual rewards. Deep learning has been used
in a range of applications within robotic perception and
learning [28, 23, 6]. In work that has specifically examined
the problem of learning reward functions from images, one
common approach to image-based reward functions has been
to directly specify a “target image” by showing the learner
the raw pixels of a successful task completion state, and
then using distance to that image (or its latent representation)
as a reward function [18, 12, 31]. However, this approach
has several shortcomings. First, the use of a target image
presupposes that the system can achieve a substantially similar
visual state, which precludes generalization to semantically
similar but visually distinct situations. Second, the use of a
target image does not provide the learner with information
about which facet of the image is more or less important
for task success, which might result in the learner excessively
emphasizing irrelevant factors of variation (such as the color
of a door due to light and shadow) at the expense of relevant
factors (such as whether or not the door is open or closed).

A few recently proposed IRL algorithms have sought to
combine IRL with vision and deep network representations
[14, 33]. However, scaling IRL to high-dimensional systems
and open-ended reward representations is very challenging.
The previous work closest to ours used images together with
robot state information (joint angles and end effector pose),
with demonstrations provided through kinesthetic teaching
[14]. The approach we propose in this work, which can be
interpreted as a simple and efficient approximation to IRL,
can use demonstrations that consist of videos of a human
performing the task using their own body, and can acquire
reward functions with intermediate sub-goals using just a few
examples. This kind of efficient vision-based reward learning
from videos of humans has not been demonstrated in prior IRL
work. The idea of perceptual reward functions using raw pixels
was also explored by [11] which, while sharing the same spirit
as this work, was limited to synthetic tasks and used single
images as perceptual goals rather than multiple demonstration
videos.

II. SIMPLE INVERSE REINFORCEMENT LEARNING WITH
VISUAL FEATURES

The key insight in our approach is that we can exploit
the semantically meaningful and powerful features in a pre-
trained deep neural network to infer task goals and sub-

goals using a very simple approximate inverse reinforcement
learning method. The pre-trained network effectively transfers
prior knowledge about the visual world to make imitation
learning fast and robust. Our approach can be interpreted
as a simple approximation to inverse reinforcement learning
under a particular choice of system dynamics, as discussed
in Section II-A. While this approximation is somewhat sim-
plistic, it affords an efficient and scalable learning rule that
minimizes overfitting even when trained on a small number
of demonstrations. As depicted in Fig. 2, our algorithm first
segments the demonstrations into segments based on percep-
tual similarity, as described in Section II-B. Intuitively, the
resulting segments correspond to sub-goals or steps of the
task. The segments can then be used as a supervision signal
for learning steps classifiers, described in Section II-C, which
produces a single perception reward function for each step of
the task. The combined reward function can then be used with
a reinforcement learning algorithm to learn the demonstrated
behavior. Although this method for extracting reward functions
is exceedingly simple, its power comes from the use of highly
general and robust pre-trained visual features, and our key
empirical result is that such features are sufficient to acquire
effective and generalizable reward functions for real-world
manipulation skills.

We use the Inception network [29] pre-trained for ImageNet
classification [10] to obtain the visual features for representing
the learned rewards. It is well known that visual features
in such networks are quite general and can be reused for
other visual tasks. However, it is less clear if sparse subsets
of such features can be used directly to represent goals and
sub-goals for real-world manipulation skills. Our experimental
evaluation suggests that indeed they can, and that the resulting
reward representations are robust and reliable enough for real-
world robotic learning without any finetuning of the features.
In this work, we use all activations starting from the first
“mixed” layer that follows the first 5 convolutional layers (this
layer’s activation map is of size 35x35x256 given a 299x299
input). While this paper focuses on visual perception, the
approach could be generalized to other modalities (e.g. audio
and tactile).

A. Inverse Reinforcement Learning with Time-Independent
Gaussian Models

In this work, we use a very simple approximation to the
MaxEnt IRL model [35], a popular probabilistic approach to
IRL. We will use st to denote the visual feature activations at
time t, which constitute the state, sit to denote the ith feature
at time t, and τ = {s1, . . . , sT } to denote a sequence or
trajectory of these activations in a video. In MaxEnt IRL, the
demonstrated trajectories τ are assumed to be drawn from a
Boltzmann distribution according to:

p(τ) = p(s1, . . . , sT) =
1

Z
exp

 T∑
t=1

R(st)

 , (1)

where R(st) is the unknown reward function. The principal
computational challenge in MaxEnt IRL is to approximate
Z, since the states at each time step are not independent,
but are constrained by the system dynamics. In deterministic
systems, where st+1 = f(st, at) for actions at and dynamics
f , the dynamics impose constraints on which trajectories τ are
feasible. In stochastic systems, where st+1 ∼ p(st+1|st, at),
we must also account for the dynamics distribution in Equa-
tion (1), as discussed by [35]. Prior work has addressed this
using dynamic programming to exactly compute Z in small,
discrete systems [35], or by using sampling to estimate Z
for large, continuous domains [16, 5, 14]. Since our state
representation corresponds to a large vector of visual fea-
tures, exact dynamic programming is infeasible. Sample-based
approximation requires running a large number of trials to
estimate Z and, as shown in recent work [13], corresponds
to a variant of generative adversarial networks (GANs), with
all of the accompanying stability and optimization challenges.
Furthermore, the corresponding model for the reward function
is complex, making it prone to overfitting when only a small
number of demonstrations is available.

When faced with a difficult learning problem in extremely
low-data regimes, a standard solution is to resort to simple,
biased models, so as to minimize overfitting. We adopt pre-
cisely this approach in our work: instead of approximating the
complex posterior distribution over trajectories under nonlinear
dynamics, we use a simple biased model that affords efficient
learning and minimizes overfitting. Specifically, we assume
that all trajectories are dynamically feasible, and that the distri-
bution over each activation at each time step is independent of
all other activations and all other time steps. This corresponds
to the IRL equivalent of a naı̈ve Bayes model: in the same
way that naı̈ve Bayes uses an independence assumption to
mitigate overfitting in high-dimensional feature spaces, we
use independence between both time steps and features to
learn from very small numbers of demonstrations. Under
this assumption, the probability of a trajectory τ factorizes
according to

p(τ) =

T∏
t=1

N∏
i=1

p(sit) =

T∏
t=1

N∏
i=1

1

Zit
exp

(
Ri(sit)

)
,

which corresponds to a reward function of the form Rt(st) =∑N
i=1Ri(sit). We can then simply choose a form for Ri(sit)

that can be normalized analytically, such as one which is
quadratic in sit which yields a Gaussian distribution. While
this approximation is quite drastic, it yields an exceedingly
simple learning rule: in the most basic version, we have only
to fit the mean and variance of each feature distribution, and
then use the log of the resulting Gaussian as the reward.

B. Discovery of Intermediate Steps

The simple IRL model in the previous section can be used
to acquire a single quadratic reward function in terms of the
visual features st. However, for complex multi-stage tasks,
this model can be too coarse, making task learning slow and

Algorithm 1 Recursive similarity maximization, where
AverageStd() is a function that computes the average
standard deviation over a set of frames or over a set of
values, Join() is a function that joins values or lists together
into a single list, n is the number of splits desired and
min size is the minimum size of a split.

function SPLIT(video, start, end, n,min size, prev std = [])
if n = 1 then return [], [AVERAGESTD(video[start : end])]
end if
min std← None
min std list← []
min split← []
for i← start+min size to end− ((n− 1) ∗min size)) do
std1← [AVERAGESTD(video[start : i])]
splits2, std2← SPLIT(video, i, end, n− 1, min size,

std1 + prev std)
avg std← AVERAGESTD(JOIN(prev std, std1, std2))
if min std = None or avg std < min std then
min std← avg std
min std list← JOIN(std1, std2)
min split← JOIN(i, splits2)

end if
end for
return min split,min std list

end function

difficult. We therefore instead fit multiple quadratic reward
functions, with one reward function per intermediate step or
goal. These steps are discovered automatically in the first
stage of our method, which is performed independently on
each demonstration. If multiple demonstrations are available,
they are pooled together in the feature selection step discussed
in the next section, and could in principle be combined
at the segmentation stage as well, though we found this
to be unnecessary in our prototype. The intermediate steps
model extends the simple independent Gaussian model in the
previous section by assuming that

p(τ) =

T∏
t=1

N∏
i=1

1

Zit
exp

(
Rigt(sit)

)
,

where gt is the index of the goal or step corresponding to time
step t. Learning then corresponds to identifying the boundaries
of the steps in the demonstration, and fitting independent
Gaussian feature distributions at each step. Note that this
corresponds exactly to segmenting the demonstration such that
the variance of each feature within each segment is minimized.

In this work, we employ a simple recursive video segmen-
tation algorithm as described in Algorithm 1. Intuitively, this
method breaks down a sequence in a way that each frame in a
segment is abstractly similar to each other frame in that seg-
ment. The number of segments is treated like a hyperparameter
in this approach. There exists a body of unsupervised video
segmentation methods [34, 17] which would likely enable a
less constrained set of demonstrations to be used. While this
is an important avenue of future work, we show that our
simple approach is sufficient to demonstrate the efficacy of our
method on a realistic set of demonstrations. We also investigate
how to reduce the search space of similar feature patterns

across videos in section II-C. This would render discovery of
video alignments tractable for an optimization method such as
the one used in [15] for video co-localization.

The complexity of Algorithm 1 is O(nm) where n is the
number of frames in a sequence and m the number of splits.
We also experiment with a greedy binary version of this
algorithm (Algorithm 2 detailed in Appendix A): first split the
entire sequence in two, then recursively split each new segment
in two. While not exactly minimizing the variance across all
segments, it is significantly more efficient (O(n2 logm)) and
yields qualitatively sensible results.

C. Steps Classification
In this section we explore learning a steps classifier on top

of the pre-trained deep model using a regular linear classifier
and a custom feature selection classifier.

One could consider a naive Bayes classifier here, however
we show in Fig. 3 that it overfits badly when using all features.
Other options are to select a small set of features, or use an
alternative classification approach. We first discuss a feature
selection approach that is efficient and simple. Then we discuss
the alternative logistic regression approach which is simple but
less principled. As our experimental results in Table II show,
the performance slightly exceeds the selection method, though
requires using all of the features.

Intent understanding requires identifying highly discrimi-
native features of a specific goal while remaining invariant
to unrelated variation (e.g. lighting, color, viewpoint). The
relevant discriminative features may be very diverse and more
or less abstract, which motivates our intuition to tap into the
activations of deep models at different depths. Deep models
cover a large set of representations that can be useful, from
spatially dense and simple features in the lower layers (e.g.
large collection of detected edges) to gradually more spatially
sparse and abstract features (e.g. few object classes).

102 103 104 105 106

features

0
10
20
30
40
50
60
70
80

Av
er

ag
e

st
ep

s
ac

cu
ra

cy
 (%

)

Fig. 3: Feature selection classification accuracy on the pouring
validation set for 2-steps classification. By varying the number of
features n selected, we show that the method yields good results in
the region n = [32, 64], but collapses to 0% accuracy starting at
n = 8192.

Within this high-dimensional representation, we hypothesize
that there exists a subset of mid to high-level features that can

readily and compactly discriminate previously unseen inputs.
We investigate that hypothesis using a simple feature selection
method described in Appendix C. The existence of a small
subset of discriminative features can be useful for reducing
overfitting in low data regimes, but more importantly can allow
drastic reduction of the search space for the unsupervised steps
discovery. Indeed since each frame is described by millions of
features, finding patterns of feature correlations across videos
leads to a combinatorial explosion. However, the problem may
become tractable if there exists a low-dimensional subset of
features that leads to reasonably accurate steps classification.
We test and discuss that hypothesis in Section III-A2.

We also train a simple linear layer which takes as input the
same mid to high level activations used for steps discovery
and outputs a score for each step. This linear layer is trained
using logistic regression and the underlying deep model is
not fine-tuned. Despite the large input (1,453,824 units) and
the low data regime (11 to 19 videos of 30 to 50 frames
each), we show that this model does not severely overfit to
the training data and perform slightly better than the feature
selection method as described in Section III-A2.

D. Using Perceptual Rewards for Robotic Learning

In order to use our learned perceptual reward functions
in a complete skill learning system, we must also choose a
reinforcement learning algorithm and a policy representation.
While in principle any reinforcement learning algorithm could
be suitable for this task, we chose a method that is efficient for
evaluation on real-world robotic systems in order to validate
our approach. The method we use is based on the PI2 rein-
forcement learning algorithm [30]. Our implementation, which
is discussed in more detail in Appendix D, uses a relatively
simple linear-Gaussian parameterization of the policy, which
corresponds to a sequence of open-loop torque commands with
fixed linear feedback to correct for perturbations. This method
also requires initialization from example demonstrations to
learn complex manipulation tasks efficiently. A more complex
neural network policy could also be used [9], and more
sophisticated RL algorithms could also learn skills without
demonstration initialization. However, since the main purpose
of this component is to validate the learned reward functions,
we used this simple approach to test our rewards quickly and
efficiently.

III. EXPERIMENTS

In this section, we discuss our empirical evaluation, starting
with an analysis of the learned reward functions in terms of
both qualitative reward structure and quantitative segmentation
accuracy. We then present results for a real-world validation
of our method on robotic door opening.

A. Perceptual Rewards Evaluation

We report results on two demonstrated tasks: door opening
and liquid pouring. We collected about a dozen training videos
for each task using a smart phone. As an example, Fig. 4 shows
the entire training set used for the pouring task.

Fig. 4: Entire training set for the pouring task (11 demonstrations).

1) Qualitative Analysis: While a door opening sensor can
be engineered using sensors hidden in the door, measuring
pouring or container tilting would be quite complicated, would
visually alter the scene, and is unrealistic for learning in the
wild. Visual reward functions are therefore an excellent choice
for complex physical phenomena such as liquid pouring. In
Fig. 5, we present the combined reward functions for test
videos on the pouring task, and Fig. 11 shows the intermediate
rewards for each sub-goal. We plot the predicted reward func-
tions for both successful and failed task executions in Fig. 12.
We observe that for “missed” executions where the task is
only partially performed, the intermediate steps are correctly
classified. Fig. 10 details qualitative results of unsupervised
step segmentation for the door opening and pouring tasks. For
the door task, the 2-segments splits are often quite in line
with what one can expect, while a 3-segments split is less
accurate. We also observe that the method is robust to the
presence or absence of the handle on the door, as well as its
opening direction. We find that for the pouring task, the 4-
segments split often yields the most sensible break down. It
is interesting to note that the 2-segment split usually occurs
when the glass is about half full.

Failure Cases
The intermediate reward function for the door opening task

which corresponds to a human hand manipulating the door
handle seems rather noisy or wrong in Fig. 11b, 11c and
11e (”action1” on the y-axis of the plots).The reward function
in Fig. 12f remains flat while liquid is being poured into the
glass. The liquid being somewhat transparent, we suspect that
it looks too similar to the transparent glass for the function to
fire.

2) Quantitative Analysis: We evaluate the quantitative ac-
curacy of the unsupervised steps discovery in Table I (see
Table III for more details), while Table II presents quantitative
generalization results for the learned reward on a test video of
each task. For each video, ground truth intermediate steps were
provided by human supervision for the purpose of evaluation.
While this ground truth is subjective, since each task can
be broken down in multiple ways, it is consistent for the
simple tasks in our experiments. We use the Jaccard similarity
measure (intersection over union) to indicate how much a

detected step overlaps with its corresponding ground truth.

TABLE I: Unsupervised steps discovery accuracy (Jaccard overlap
on training sets) versus the ordered random steps baseline.

dataset method 2 steps 3 steps
(training) average average

door ordered random steps 52.5% 55.4%
unsupervised steps 76.1% 66.9%

pouring ordered random steps 65.9% 52.9%
unsupervised steps 91.6% 58.8%

In Table I, we compare our method against a random
baseline. Because we assume the same step order in all demon-
strations, we also order the random steps in time to provide
a fair baseline. Note that the random baseline performs fairly
well because the steps are distributed somewhat uniformly in
time. Should the steps be much less temporally uniform, the
random baseline would be expected to perform very poorly,
while our method should maintain similar performance. We
compare splitting between 2 and 3 steps and find that, for both
tasks, 2 steps are easier to discover, probably because these
tasks exhibit one strong visual change each while the other
steps are more subtle. Note that our unsupervised segmentation
only works when full sequences are available while our learned
reward functions can be used in real-time without accessing
future frames. Hence in these experiments we evaluate the un-
supervised segmentation on the training set only and evaluate
the reward functions on the test set.
TABLE II: Reward functions accuracy by steps (Jaccard overlap
on test sets).

dataset classification 2 steps 3 steps
(testing) method average average

door random baseline 33.6%± 1.6 25.5%± 1.6
feature selection 72.4%± 0.0 52.9%± 0.0
linear classifier 75.0%± 5.5 53.6%± 4.7

pouring random baseline 31.1%± 3.4 25.1%± 0.1
feature selection 65.4%± 0.0 40.0%± 0.0
linear classifier 69.2%± 2.0 49.6%± 8.0

In Table II, we evaluate the reward functions individually
for each step on the test set. For that purpose, we binarize
the reward function using a threshold of 0.5. The random
baseline simply outputs true or false at each timestep. We
observe that the learned feature selection and linear classifier
functions outperform the baseline by about a factor of 2. It
is not clear exactly what the minimum level of accuracy is
required to successfully learn to perform these tasks, but we
show in section III-B2 that the reward accuracy on the door
task is sufficient to reach 100% success rate with a real robot.
Individual steps accuracy details can be found in Table IV.

Surprisingly, the linear classifier performs well and does not
appear to overfit on our relatively small training set. Although
the feature selection algorithm is rather close to the linear
classifier compared to the baseline, using feature selection to
avoid overfitting is not necessary. However the idea that a
small subset of features (32 in this case) can lead to reasonable

(a)

(b)

(c)

Fig. 5: Examples of ”pouring” reward functions. We show here a few successful examples, see Fig. 12 for results on the entire test set.
In Fig. 5a we observe a continuous and incremental reward as the task progresses and saturating as it is completed. Fig. 5b increases as
the bottle appears but successfully detects that the task is not completed, while in Fig. 5c it successfully detects that the action is already
completed from the start.

classification accuracy is verified and an important piece of
information for drastically reducing the search space for future
work in unsupervised steps discovery. Additionally, we show
in Fig. 3 that the feature selection approach works well when
the number of features n is in the region [32, 64] but collapses
to 0% accuracy when n > 8192.

B. Real-World Robotic Door Opening

In this section, we aim to answer the question of whether
our previously visualized reward function can be used to learn
a real-world robotic motion skill. We experiment on a door
opening skill, where we adapt a demonstrated door opening to
a novel configuration, such as different position or orientation
of the door. Following the experimental protocol in prior
work [9], we adapt an imperfect kinesthetic demonstration
which we ensure succeeds occasionally (about 10% of the
time). These demonstrations consist only of robot poses, and
do not include images. We then use a variety of different
video demonstrations, which contain images but not robot
poses, to learn the reward function. These videos include
demonstrations with other doors, and even demonstrations
provided by a human using their own body, rather than through
kinesthetic teaching with the robot. Across all experiments, we
use a total of 11 videos. We provide videos of experiments in
1.

Figure 6 shows the experimental setup. We use a 7-DoF
robotic arm with a two-finger gripper, and a camera placed
above the shoulder, which provides monocular RGB images.
For our baseline PI2 policy, we closely follow the setup of [9]
which uses an IMU sensor in the door handle to provide both
a cost and feedback as part of the state of the controller. In
contrast, in our approach we remove this sensor both from the
state representation provided to PI2 and in our reward replace
the target IMU state with the output of a deep neural network.

1) Data: We experiment with a range of different demon-
strations from which we derive our reward function, varying
both the source demo (human vs robotic), the number of

1sermanet.github.io/rewards

Fig. 6: Robot arm setup. Note that our method does not make use
of the sensor on the back handle of the door, but it is used in our
comparison to train a baseline method with the ground truth reward.

subgoals we extract, and the appearance of the door. We
record monocular RGB images on a camera placed above the
shoulder of the arm. The door is cropped from the images,
and then the resulting image is re-sized such that the shortest
side is 299 dimensional with preserved aspect ratio. The input
into our convolutional feature extractor [29] is the 299x299
center crop.

2) Qualitative Analysis: We evaluate our reward functions
qualitatively by plotting our perceptual reward functions below
the demonstrations with a variety of door types and demon-
strators (e.g robot or human). As can be seen in Fig. 7
and in real experiments Fig. 8, we show that the reward
functions are useful to a robotic arm while only showing
human demonstrations as depicted in Fig. 13. Moreover we
exhibit robustness variations in appearance.

3) Quantitative Analysis: In comparing the success rate
of visual reward versus a baseline PI2 method that use s
the ground truth reward function obtained by instrumenting
the door with an IMU. We run PI2 for 11 iterations with
10 sampled trajectories at each iteration. As can be seen in
Fig. 8, we obtain similar convergence speeds to our baseline

https://sermanet.github.io/rewards/

(a)

(b)

(c)

(d)

(e)

Fig. 7: Rewards from human demonstration only. Here we show the rewards produced when trained on humans only (see Fig. 13). In
7a, we show the reward on a human test video. In 7b, we show what the reward produces when the human hands misses opening the door.
In 7c, we show the reward successfully saturates when the robot opens the door even though it has not seen a robot arm before. Similarly
in 7d and 7e we show it still works with some amount of variation of the door which was not seen during training (white door and black
handle, blue door, rotations of the door).

0 2 4 6 8 10
Iteration number

0

20

40

60

80

100

Su
cc

es
s

ra
te

 fo
r 1

0
ro

llo
ut

s
(%

)

Method
Baseline PI-Squared
Our method (2 sub-goals, robot demo.)
Our method (5 sub-goals, robot demo.)
Our method (4 sub-goals, human demo. only)

Fig. 8: Door opening success rate at each iteration of learning
on the real robot. The PI2 baseline method uses a ground truth
reward function obtained by instrumenting the door. Note that rewards
learned by our method, even from videos of humans or different
doors, learn comparably or faster when compared to the ground truth
reward.

model, with our method also able to open the door consistently.
Since our local policy is able to obtain high reward candidate
trajectories, this is strong evidence that a perceptual reward
could be used to train a global policy in same manner as [9].

IV. CONCLUSION

In this paper, we present a method for automatically
identifying important intermediate goal given a few visual
demonstrations of a task. By leveraging the general features
learned from pre-trained deep models, we propose a method
for rapidly learning an incremental reward function from
human demonstrations which we successfully demonstrate on
a real robotic learning task.

We show that pre-trained models are general enough to be
used without retraining. We also show there exists a small
subset of pre-trained features that are highly discriminative
even for previously unseen scenes and which can be used
to reduce the search space for future work in unsupervised
subgoal discovery.

In this work, we studied imitation in a setting where the
viewpoint of the robot/demonstrator is fixed. An interesting
avenue of future work would be to analyze the impact of
changes in viewpoint. The ability to learn from a learn from
broad diverse sets of experience also ties into the goal of
lifelong robotic learning. Continuous learning using unsuper-
vised rewards promises to substantially increase the variety
and diversity of experiences, resulting in more robust and
general robotic skills.

Acknowledgments: We thank Vincent Vanhoucke for help-
ful discussions and feedback, Mrinal Kalakrishnan and Ali
Yahya for indispensable guidance throughout this project and
Yevgen Chebotar for his PI2 implementation. We also thank
the anonymous reviewers for their feedback and constructive
comments.

REFERENCES

[1] Swirl: A sequential windowed inverse reinforcement learning
algorithm for robot tasks with delayed rewards.

[2] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via
inverse reinforcement learning. ICML, 2004.

[3] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett
Browning. A survey of robot learning from demonstration.
Robotics and Autonomous Systems, 2009.

[4] Tamim Asfour, Pedram Azad, Florian Gyarfas, and Rüdiger
Dillmann. Imitation learning of dual-arm manipulation tasks in
humanoid robots. International Journal of Humanoid Robotics,
2008.

[5] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative
entropy inverse reinforcement learning. AISTATS, 2011.

[6] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning rigid
body motion using deep neural networks. ICRA, 2017.

[7] Sylvain Calinon. Robot programming by demonstration. In
Springer Handbook of Robotics, pages 1371–1394. Springer,
2008.

[8] Sylvain Calinon and Aude Billard. Incremental learning of
gestures by imitation in a humanoid robot. 2007.

[9] Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li,
Stefan Schaal, and Sergey Levine. Path integral guided policy
search. ICRA, 2017.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. CVPR,
2009.

[11] Ashley Edwards, Charles Isbell, and Atsuo Takanishi. Percep-
tual reward functions. arXiv preprint arXiv:1608.03824, 2016.

[12] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey
Levine, and Pieter Abbeel. Deep spatial autoencoders for
visuomotor learning. arXiv preprint arXiv:1509.06113, 2015.

[13] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey
Levine. A connection between generative adversarial networks,
inverse reinforcement learning, and energy-based models. arXiv
preprint arXiv:1611.03852, 2016.

[14] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost
learning: Deep inverse optimal control via policy optimization.
ICML, 2016.

[15] A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video
co-localization with frank-wolfe algorithm. ECCV, 2014.

[16] Mrinal Kalakrishnan, Evangelos Theodorou, and Stefan Schaal.
Inverse reinforcement learning with pi 2. 2010.

[17] Oliver Kroemer, Herke Van Hoof, Gerhard Neumann, and Jan
Peters. Learning to predict phases of manipulation tasks as
hidden states. Robotics and Automation (ICRA), 2014 IEEE
International Conference on, 2014.

[18] Sascha Lange, Martin Riedmiller, and Arne Voigtländer. Au-
tonomous reinforcement learning on raw visual input data in a
real world application. IJCNN, 2012.

[19] Bernard Michini, Mark Cutler, and Jonathan P How. Scalable
reward learning from demonstration. ICRA, 2013.

[20] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. ICML, 2000.

[21] Scott Niekum, Sarah Osentoski, George Konidaris, Sachin
Chitta, Bhaskara Marthi, and Andrew G Barto. Learning
grounded finite-state representations from unstructured demon-
strations. The International Journal of Robotics Research,
2015.

[22] Jan Peters, Katharina Mülling, and Yasemin Altün. Relative
entropy policy search. AAAI, 2010.

[23] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours. ICRA,
2016.

[24] Urbain Prieur, Véronique Perdereau, and Alexandre Bernardino.
Modeling and planning high-level in-hand manipulation actions

from human knowledge and active learning from demonstration.
IROS, 2012.

[25] Deepak Ramachandran and Eyal Amir. Bayesian inverse rein-
forcement learning. Urbana, 51(61801):1–4, 2007.

[26] Pravesh Ranchod, Benjamin Rosman, and George Konidaris.
Nonparametric bayesian reward segmentation for skill discovery
using inverse reinforcement learning. IROS, 2015.

[27] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich.
Maximum margin planning. ICML, 2006.

[28] Jaeyong Sung, Seok Hyun Jin, and Ashutosh Saxena. Robo-
barista: Object part based transfer of manipulation trajecto-
ries from crowd-sourcing in 3d pointclouds. arXiv preprint
arXiv:1504.03071, 2015.

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. CVPR, 2016.

[30] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A
generalized path integral control approach to reinforcement
learning. 2010.

[31] Manuel Watter, Jost Springenberg, Joschka Boedecker, and
Martin Riedmiller. Embed to control: A locally linear latent
dynamics model for control from raw images. NIPS, 2015.

[32] Sebastian Wrede, Christian Emmerich, Ricarda Grünberg, Arne
Nordmann, Agnes Swadzba, and Jochen Steil. A user study on
kinesthetic teaching of redundant robots in task and configura-
tion space. Journal of Human-Robot Interaction, 2013.

[33] Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner.
Watch This: Scalable Cost-Function Learning for Path Planning
in Urban Environments .

[34] Jinhui Yuan, Huiyi Wang, Lan Xiao, Wujie Zheng, Jianmin Li,
Fuzong Lin, and Bo Zhang. A formal study of shot boundary
detection. IEEE transactions on circuits and systems for video
technology, 2007.

[35] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and
Anind K Dey. Maximum entropy inverse reinforcement learn-
ing. AAAI, 2008.

APPENDIX

A. Binary Segmentation Algorithm

Algorithm 2 Greedy and binary algorithm similar to and
utilizing Algorithm 1, where AverageStd() is a function
that computes the average standard deviation over a set of
frames or over a set of values, Join() is a function that joins
values or lists together into a single list, n is the number of
splits desired and min size is the minimum size of a split.

function BINARYSPLIT(video, start, end, n, min size,
prev std = [])

if n = 1 then return [], []
end if
splits0, std0← SPLIT(video, start, end, 2,min size)
if n = 2 then return splits0, std0
end if
splits1, std1← BINARYSPLIT(video, start, splits0[0],

CEIL(n/2), min size)
splits2, std2← BINARYSPLIT(video, splits0[0]+1, end,

FLOOR(n/2), min size)
all splits = []
all std = []
if splits1 6= [] then

JOIN(all splits, splits1)
JOIN(all std, std1)

else
JOIN(all std, std0[0])

end if
if splits0 6= [] then

JOIN(all splits, splits0[0])
end if
if splits2 6= [] then

JOIN(all splits, splits2)
JOIN(all std, std2)

else
JOIN(all std, std0[1])

end if
return all splits, all std

end function

B. Combining Intermediate Rewards
From the two previous sections, we obtain one reward function per

intermediate step discovered by the unsupervised algorithm. These
need to be combined so that the RL algorithm uses a single reward
function which partially rewards intermediate steps but emphasizes
later rewards. The initial step is ignored as it is assumed to be the
initial starting state in the demonstrations. We opt for the maximum
range of each reward to be twice the maximum range of its preceding
reward, summing them as follow:

R(a) =

n∑
i=2

Ri(a) ∗ 2(i−1) (2)

where n is the number of intermediate rewards detected and a an
activations vector. An example of this combination is shown in Fig. 9.

C. Feature Selection Algorithm
Here we describe the feature selection algorithm we use to

investigate the presence of a small subset of discriminative features in
mid to high level layers of a pre-trained deep network. To select the
most discriminative features, we use a simple scoring heuristic. Each
feature i is first normalized by subtracting the mean and dividing
by the standard deviation of all training sequences. We then rank

them for each sub-goal according to their distance zi to the average
statistics of the sets of positive and negative frames for a given goal:

zi = α
∣∣∣µ+

i − µ
−
i

∣∣∣− (σ+
i + σ−

i), (3)

where µ+
i and σ+

i are the mean and standard deviation of all
“positive” frames and the µ−

i and σ−
i of all “negative” frames (the

frames that do not contain the sub-goal). Only the top-M features
are retained to form the reward function Rg() for the sub-goal g,
which is given by the log-probability of an independent Gaussian
distribution over the relevant features:

Rg(st) =
1

n

M∑
j

(sijt − µ
+
ijt

)2

σ+
ijt

2 , (4)

where ij indexes the top-M selected features. We empirically choose
α = 5.0 and M = 32 for our subsequent experiments. At test time,
we do not know when the system transitions from one goal to another,
so instead of time-indexing the goals, we instead combine all of the
goals into a single time-invariant reward function, where later steps
yield higher reward than earlier steps, as described in Appendix B.

D. PI2 Reinforcement Learning Algorithm
We chose the PI2 reinforcement learning algorithm [30] for our

experiments, with the particular implementation of the method based
on a recently proposed deep reinforcement learning variant [9]. Since
our aim is mainly to validate that our learned reward functions
capture the goals of the task well enough for learning, we employ
a relatively simple linear-Gaussian parameterization of the policy,
which corresponds to a sequence of open-loop torque commands
with fixed linear feedback to correct for perturbations, as in the work
of [9]. This policy has the form π(ut|xt) = N (Ktxt + kt,Σt),
where Kt is a fixed stabilizing feedback matrix, and kt is a learned
control. In this case, the state xt corresponds to the joint angles
and angular velocities of a robot, and ut corresponds to the joint
torques. Since the reward function is evaluated from camera images,
we assume that the image is a (potentially stochastic) consequence
of the robot’s state, so that we can evaluate the state reward r(xt)
by taking the image It observed at time t, and computing the
corresponding activations at. Overloading the notation, we can write
at = f(It(xt)), where f is the network we use for visual features.
Then, we have r(xt) = R(f(It(xt))).

The PI2 algorithm is an episodic policy improvement algorithm
that uses the reward r(xt) to iteratively improve the policy. The
trust-region variant of PI2 that we use [9], which is also similar
to the REPS algorithm [22], updates the policy at iteration n by
sampling from the time-varying linear-Gaussian policy π(ut|xt) to
obtain samples {(x(i)

t ,u
(i)
t)}, and updating the controls kt at each

time step according to

kt ←

∑
i

u
(i)
t exp

βt T∑
t′=t

r(x
(i)

t′)


 /
∑

i

exp

βt T∑
t′=t

r(x
(i)

t′)


 ,

where the temperature βt is chosen to bound the KL-divergence
between the new policy π(ut|xt) and the previous policy π̄(ut|xt),
such that DKL(π(ut|xt)‖π̄(ut|xt)) ≤ ε for a step size epsilon.
Further details and a complete derivation are provided in prior work
[30, 22, 9].

The PI2 algorithm is a local policy search method that performs
best when provided with demonstrations to bootstrap the policy.
In our experiments, we use this method together with our learned
reward functions to learn a door opening skill with a real physical
robot, as discussed in Section III-B. Demonstration are provided with
kinesthetic teaching, which results in a sequence of reference steps
x̂t, and initial controls kt are given by kt = −Ktx̂t, such that
the mean of the initial controller is Kt(xt − x̂t), corresponding to

TABLE III: Per-step details of unsupervised steps discovery accuracy (Jaccard overlap on training sets) versus the ordered random steps
baseline.

dataset method 2 steps 3 steps
(training) step 1 step 2 average step 1 step 2 step 3 average

door ordered random steps 59.4% 45.6% 52.5% 48.0% 58.1% 60.1% 55.4%
unsupervised steps 84.0% 68.1% 76.1% 57.6% 75.1% 68.1% 66.9%

pouring ordered random steps 65.2% 66.6% 65.9% 46.2% 46.3% 66.3% 52.9%
unsupervised steps 92.3% 90.5% 91.6% 79.7% 48.0% 48.6% 58.8%

Fig. 9: Combining intermediate rewards into a single reward function. From top to bottom, we show the combined reward function
(with range [0,2]) followed by the reward function of each individual steps (with range [0,1]). The first step reward corresponds to the initial
resting state of the demonstration and is ignored in the reward function. The second step corresponds to the pouring action and the third
step corresponds to the glass full of liquid.

TABLE IV: Reward functions accuracy by steps (Jaccard overlap on test sets).

dataset method steps
(testing) step 1 step 2 step 3 average

door random baseline 40.8%± 1.0 26.3%± 4.1 - 33.6%± 1.6
2-steps feature selection 85.1%± 0.0 59.7%± 0.0 - 72.4%± 0.0

linear classifier 79.7%± 6.0 70.4%± 5.0 - 75.0%± 5.5
door random baseline 20.8%± 1.1 31.8%± 1.6 23.8%± 2.3 25.5%± 1.6

3-steps feature selection 56.9%± 0.0 47.7%± 0.0 54.1%± 0.0 52.9%± 0.0
linear classifier 46%6.9± 47.5%± 4.2 67.2%± 3.3 53.6%± 4.7

pouring random baseline 39.2%± 2.9 22.9%± 3.9 - 31.1%± 3.4
2-steps feature selection 76.2%± 0.0 54.6%± 0.0 - 65.4%± 0.0

linear classifier 78.2%± 2.4 60.2%± 1.7 - 69.2%± 2.0
pouring random baseline 22.5%± 0.6 38.8%± 0.8 13.9%± 0.1 25.1%± 0.1
3-steps feature selection 32.9%± 0.0 55.2%± 0.0 32.2%± 0.0 40.0%± 0.0

linear classifier 72.5%± 10.5 37.2%± 11.0 39.1%± 6.8 49.6%± 8.0

a trajectory-following initialization. This initial controller is rarely
successful consistently, but the occasional successes it achieves
provide a learning signal to the algorithm. The use of demonstrations
enables PI2 to be used to quickly and efficiently learn complex robotic
manipulation skills.

Although this particular RL algorithm requires demonstrations to
begin learning, it can still provide a useful starting point for real-
world learning with a real robotic system. As shown by previous
work[9], the initial set of demonstrations can be expanded into a
generalizable policy by iteratively “growing” the effective region
where the policy succeeds. For example, if the robot is provided
with a demonstration of opening a door in one position, additional
learning can expand the policy to succeed in nearby positions, and
the application of a suitable curriculum can grow the region of door
poses in which the policy succeeds progressively. However, as with
all RL algorithms, this process requires knowledge of the reward
function. Using the method described in this paper, we can learn
such a reward function from either the initial demonstrations or even
from other demonstration videos provided by a human. Armed with
this learned reward function, the robot could continue to improve its

policy through real-world experience, iteratively increasing its region
of competence through lifelong learning.

Fig. 10: Qualitative examples of unsupervised discovery of steps for door and pouring tasks in training videos. For each video, we
show the detected splits when splitting in 2, 3 or 4 segments. Each segment is delimited by a different value on the vertical axis of the
curves.

(a)

(b)

(c)

(d)

(e)

Fig. 11: Qualitative examples of reward functions for the door task in testing videos. These plots show the individual sub-goal rewards
for either 2 or 3 goals splits. The ”open” or ”closed” door reward functions are firing quite reliably in all plots, the ”hand on handle” step
however can be a weaker and noisier signal as seen in 11b and 11c, or incorrect as shown in 11e. 11d demonstrates how a ”missed” action
is correctly recognized.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 12: Entire testing set of ”pouring” reward functions. This testing set is designed to be more challenging than the training set by
including ambiguous cases such as pouring into an already full glass (12i and 12j) or pouring with a closed bottle (12g and 12h). Despite
the ambiguous inputs, the reward functions do produce reasonably low or high reward based on how full the glass is. 12a, 12b, 12b and
12d are not strictly monotonically increasing but do overall demonstrate a reasonable progression as the pouring is executed to a saturated
maximum reward when the glass is full. 12e also correctly trends upwards but starts with a high reward with an empty glass. 12f is a failure
case where the somewhat transparent liquid is not detected.

Fig. 13: Entire training set of human demonstrations.

