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Abstract—For daily assistive robots working in home envi-
ronment, it is important to use geometry-free representation for
navigation which can deal with dynamic environmental changes.
In this paper we propose semantic map based navigation
which consists of 1) generating deep learning enabled semantic
map from annotated world and 2) object based navigation
using learned semantic map representation. One point of our
proposed framework is to let robots autonomously generate
a dataset for deep learning method and transfer existing
geometric map based task execution system to semantic map
based one which is invariant to changes of object location. Since
deep learning for object segmentation technique enables end-
to-end learning of object features, it is not necessary to design
segmentation and labeling methods for each objects manually.
We confirmed the effectiveness of our approach by performing
task in dynamic environment and adaptability for two type of
robots with experiments.

I. INTRODUCTION

Daily assistive robots are expected to perform a wide range
of tasks including object manipulation and navigation. To
manipulate objects, robots have to know not only geometric
models for the target objects but also locations to approach
them enough close in order to register with high accuracy.

Recent progress of SLAM (Simultaneous Localization and
Mapping) technology enables to let robot agents navigate
around home environment through building geometric map
from odometry. Representation of geometric maps generated
with SLAM depends on kinds of sensors on robots and
navigation with them works well on static environment. On
dynamic environment it would be efficient for navigation
to build maps where rather consist of relationship among
objects than grid based representation, though segmentation
and recognition of each objects greatly depended on hard-
coded object recognition methods.

In this paper, we are introducing a solution for the problem
by integrating deep learning architecture. With deep learn-
ing object segmentation which enables end-to-end learning
without designing object specific feature descriptor, we can
generate semantic maps with which robots can identify target
objects and navigate robots to them.

Deep learning based methods require obtaining enormous
annotated image sensor data in a real environment as input
data. To avoid annotating all objects in images by manual,
we instead use annotated world representation that robot
have used for map-based navigation and autonomously create
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Fig. 1: Overview of transformable task executive system
The robots use semantic map for navigation based on deep learning enabled
object segmentation and labeling learnt from local dataset autonomously
generated during task performance.

annotated image dataset for learning from it. This turns a
supervised learning problem into a self-supervised one, as all
dataset are annotated by robots themselves. The difference
between well annotated dataset used in the field of image
recognition and dataset generated from real robot sensor
data is that they are always subject to noise from sensor
device and environment. This difference affects performance
of object segmentation significantly, so our goal is to clarify
the method to acquire dataset of good quality for learning
from noisy data.

We also propose a method to transform task from existing
geometric map based task executive system into semantic
map based navigation. One benefit of this approach is that
the robot agents can acquire feature of objects for navigation
end-to-end from generated dataset, so we no more need to
formulate any hypothesis for identifying objects.

Through experiments, we confirmed that robots with our
proposed method can deal with daily assistive tasks even in
dynamic environment. Also we confirmed that our frame-
work is independent to specific robots by applying to a
different humanoid robot.

Our contribution is summarized as follows:

1) Autonomous generation of dataset for deep learning
object segmentation from image sensor data in de-
ployed environment

2) Robots can perform tasks in dynamic environment
where location of entities is transformable by building
semantic map from geometric map
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3) Semantic map is also invariant to robot, therefore task
can be described and performed not by specific robot.

An overview of our proposed framework is shown in Fig.1.

First, we divide our entire framework into two major
components, dataset generation from annotated world rep-
resentation and sensor data during early task performance
(Section III), and applying obtained dataset for object based
navigation (Section IV). Then we evaluate our framework
by conducting three experiments (Section V). Finally, we
conclude by discussing the result of the experiments and
future work (Section VI).

II. RELATED WORK

Integrated robot systems for performing robot tasks in
home environment have been researched [1], [2], and we
have also conducted researches about integrated robot system
which can deal with daily assistive task sequences including
complex procedure dependent on environment [3].

With these frameworks robots use geometric map where
objects manipulated by robots are placed in a globally static
map called “annotated world”, and localization of robot pose
with SLAM technology.

There are various methods that have been proposed to
represent mapping of environment for navigation. Mapping
with raw spartial data by Fox et al. [4] performed high
precision of self localization, though this approach does
not concern spartial relationship of objects and significantly
depends on a characteristic of sensor devices.

Kuipers showed more abstracted representation of spartial
mapping [5], where environment is represented as topologi-
cal map derived from the theory on mapping and symboliza-
tion by human. [6] also showed that symbolic representation
of map has high intuitiveness performing various type of
tasks with “spot”, which is meaningful location for manipula-
tion. Mapping with symbolic representation can be compact
and robust for a kind of dynamic change of environment,
though the problem is the method of symbol extraction from
raw sensor data is heuristic or fully hard-coded.

Our proposed approach integrates semantic maps with
existing geometric object maps (“annotated world”) by con-
tinuously updating object locations from data of early task
performance.

This requires to segment and label objects to estimate
object locations for continuous update of semantic map.
Object segmentation has been researched for a long time
in the field of both robotics and vision processing.

There are many methods about object segmentation which
have been proposed before. Radhakrishna et al. proposed
SLIC superpixels [7] to segment image regions and create
object contours as clustered segmented superpixels by k-
means. Then given segmented object images, we still need to
classify each objects to give them labels. Or simply matching
object images and camera images with SIFT [8] are also
often used.

These methods need to design algorithms to extract fea-
tures which are different for each objects. In contrast, our
proposed method with deep learning object segmentation
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enables end-to-end learning in which feature of objects are
automatically generated as weights of neural network.
Since deep learning has emerged, it has been showing
powerful results than existing methods. In the field of both
object classification [9], [10] and object detection [11], [12],
deep learning based architectures have marked significantly
good results. Long et al. proposed FCN (Fully Convolutional
Networks) [13] where network is fully convolutional that
enables end-to-end learning for object segmentation.

III. GENERATING DATASET FROM
ANNOTATED WORLD

To enable deep learning based object annotating method
in robot systems deployed in real world, it is necessary
to create dataset suitable for each environment in which
robots are deployed. In this section, we describe the way to
autonomously generate dataset for deep learning based object
segmentation in the perspective of handling robot sensor
information.

A. Dataset for deep learning based object segmentation

In the field of image processing, there are well prepared
large scale image dataset for learning. ImageNet [14] pro-
vides large scale image dataset including more than 1 million
images with bounding box annotations and has contributed
to success in many recent work of deep neural network [15],
[9]. Though this dataset for deep learning is constructed by
crowd sourcing and all images are annotated manually, it is
very difficult to build original dataset suitable for learning
in each environment where robots are deployed. To reduce
the cost of labeling all data, some researches have been
conducted [16], [17]. Images used in the most of these
works are already almost segmented and labels are given
as general purpose. In contrast, to perform daily assistive
tasks in home environment robots need to recognize objects
distinctive in each environment. Also image data obtained
from robot sensor is not segmented at all.

In model-based robot system, robots have internal environ-
mental model of real world to plan actions to achieve task
goal. We use this internal environmental model to segment
and label objects in camera image data.

B. Autonomous annotated image generation from annotated
world

Fig.2 shows entire pipeline to obtain annotated object
images for learning from sensor raw data and annotated
world and robots have RGB-D sensor such as Microsoft
Kinect. In this phase we assume robots can know positions of
themselves from world coordinates. In an annotated world,
locations, bounding boxes and labels of all objects from
world coordinates are known. Goal of generating dataset is
to generate annotated object image from sensor data. One
possible solution is projection of object bounding boxes into
camera perspective of robots. We can generate annotated
images by simple computation, but when a part of target
objects is occluded by other objects in the projected bounding
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Fig. 2: The pipeline of generating dataset for learning from real robot sensor and annotated world

box (which we should count as noise), they cannot be
removed.

In our proposed method, we first calculate bounding boxes
of objects (Fig.2 (a)), then select pointclouds only inner
bounding boxes, and project them into perspective of RGB
camera (Fig.2 (b)). We thus generate labeled mask images
from object bounding boxes and pointclouds from depth
sensor. Finally annotated images are generated by applying
labeled mask images to color images.

C. Noisy image removal using robot pose information

Candidate annotated images still contain noises derived
from various causes: noises from sensor hardware devices,
motion blur noises while camera device is moving and so
on. There are also many duplicated images captured from
the same position which causes imbalanced learning problem
[18]. To address the former noises, we remove images while
camera device is moving fast by filtering with the absolute
velocity of the sensor device from world coordinates (Fig.2
(c)(1)). We use 0.01m/s as the threshold for both translational
and rotational velocity. For the latter problem, we keep the
first image at each pose of camera, and then remove images
till the pose of the camera device is different from one at
the previous time (Fig.2 (c)(ii)). We use parameter 0.01m/s
for this filtering.

IV. OBJECT SEGMENTATION WITH
DEEP LEARNING ENABLED ARCHITECTURE

In this section, we propose a new system to segment target
object in 3D real world. Our proposed system consists of two
components: the first is the 2D image segmentation by Deep
Convolutional Network, and the second is 3D registration of
the target object region with box fitting for localization of
target object and size estimation.

A. Fully Convolutional Networks for 2D Object Segmenta-
tion

The early Researches on object segmentation task have
been tackled with 2D image [19], and recent works with
Fully Convolutional Networks (FCN) architecture report
state-of-the-art results for this object segmentation task. [20]
[21]

We also use this FCN architecture for our object segmen-
tation system for our 5 object classes segmentation problem
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in home environment. The network architecture is shown
in Fig.3, which consists of 16 convolutional layers and 6
max pooling layers. The numbers in the figure represents
the channel size of each convolutional outputs, and (H, W)
are the height and width of the input image respectively.

Fig. 3: Fully convolutional networks architecture

Our segmentation task contains only 5 object classes and
environment where our system is used is focused on home.
Compared to the previous works [19], in which the number of
classes is over 20 and background of images does not depend
on each other, it seems that our problem setup is just easy.
However, there is the difference between our problem setup
and previous works in that the dataset we use is not labeled
by human but by robot. As shown in Fig.4, the dataset for
our task includes annotated images whose label values are
wrong. In this figure, the red represents the region labeled for
refrigerator, blue for table, yellow for drawer, and no color
for background. In failure examples, the labeled region is out
of alignment because of the undetectable camera moving,
mis-localization in SLAM, and the difference between the
annotated world and the real world. In order to deal with
these uncertainties in the dataset, we need to consider un-
reasonable training signals at the learning phase of the FCN,
for avoiding wrongly labeled data is treated as a ground
truth. We apply the gradient clipping strategy [22] to solve
this problem, with suppressing the explosion of gradient and
applying soft constraints. For this study, we set 5 as the L2
norm threshold for gradient clipping.
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Fig. 4: Dataset generated with our method which is described
in Section III. Left side of this figure shows the successfully
labeled images, and right side shows the wrongly labeled
images.

We split the dataset to 8:2 for training and validation,
which contains 418 sets of RGB image and Label images.
For the optimizer to minimize loss function, we used the
Adam [23] with « = le — 5 and 8 = 0.9 parameters. The
learning curve is shown in Fig.5, and it shows the prediction
accuracy arises in both training and validation dataset. The
upper images in the Fig.5 represent the segmentation result
at some states of training iterations, and it also shows the
segmentation result enhances with training iterations.

B. 3D Object Segmentation System for Object-based Navi-
gation

In previous section, we proposed a new method to segment
object on 2D image with FCN Deep Learning architecture.
The network outputs the label image which represents object
label in each pixel. In this section, we describe our system
to use this segmentation result on 3D world.

Fig.6 shows our 3D segmentation system which consists
of three components: first is the registration of FCN segmen-
tation result to the 3D point cloud, second is the denoising
filtering for segmentation by clustering points, and third is
the box fitting to estimate detected object size. The purposes
of each component of this system are to use the object
segmentation for object-based navigation task by detecting
and localizing the target object to approach to it, and the
box fitting process is to estimate object center and size for
localization and threshold for detection.

V. EXPERIMENTS

In this section, we evaluated our proposed framework
in three experiments: a) a PR2 robot performs generating
annotated image dataset from annotated world by letting
robot move about (Section V-A), b) a PR2 robot performs
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Fig. 5: Learning curve and segmentation result with test
image on FCN. The upper images represent changes in
segmentation result with iterations, and the lower figures
show the learning curve of loss, accuracy and mean IU for
both training (left side) and validation (right side) dataset.

daily assistive task with modified position of furniture (Sec-
tion V-B.1). From these two experiments, we confirmed
that our framework has enough robustness to let robots
perform task in dynamic environment. To show that our
proposed framework is independent to a specific robot type,
we also conducted another experiment where c) a HRP2
robot performs the same task with the same framework as a
PR2 (Section V-B.2).

A. Acquisition Phase

In this experiment, we used the Willow Garage’s PR2
robot with head-mounted Microsoft Kinect RGB-D sensor.
To create dataset from robot sensor data, we let a PR2 robot
perform “moving around” task. This task consists of moving
around a room with base and looking around rooms with
moving head.

Transformations from robot to object bounding boxes are
updated at about 60 Hz. We filtered not to use camera
images while the robot is moving at the speed of camera
device was faster than 0.01 m/s and also filtered duplicated
images captured closer than 0.03m from previous camera
position. After performing moving around task about 250
minutes, 450,973 color images and 445,611 depth images
were captured by camera sensor and 417 filtered data were
generated as annotated images (Table I).

B. Task Execution Phase

1) PR2 fetches can from refrigerator before and after
room design is changed: After generating dataset, we con-
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Fig. 7: Robot fetches can from refrigerator after repositioning furniture and home electric appliances

Object Name  Number of Images Rate
Background 417 100.0%
Refrigerator 162 38.85%

Drawer 119  28.54%
Table 81 19.42%
Door 63  15.10%

All class 417  100.0%

TABLE I: Annotated Object Class and Data

firmed effectiveness of our framework with “fetching can
from refrigerator” task on home environment. The setup of
experiment consists of a table, refrigerator and coffee can
which is placed in the refrigerator.
This task is proceeded as below:
1) In Fig.7a, the robot approached to the refrigerator,
target objects.
2) In Fig.7b, the robot opened door by detecting handle
of refrigerator.
3) In Fig.7c-Fig.7d, the robot picked can up.
4) In Fig.7e-Fig.7f, the robot found the table and ap-
proaches there.
5) In Fig.7g-Fig.7h, the robot placed can to the table.
For planning this task and managing failure and recovery
actions, we used “task compiler” [24]. In task compiler, given
domain which represents environmental states and goal states

(a) Environmental setup before rear- (b) Environmental setup after rear-
ranging the room ranging the room

Fig. 8: Experimental setup of home environment

of task, action transition graph to transit a current state to
the goal is generated. The advantage of using task compiler
is we can plan not only just action sequence but also failure
states and recovery action from them. Fig.9 shows the entire
action transition graph which represents task description for
the task in this experiment.

At initial environment shown in Fig.8a where real en-
vironment is almost completely the same as annotated
world as robot internal representation, we tested that the
PR2 robot successfully performed the “fetching can from
refrigerator” task with our proposed system. Then after
relocating refrigerator, table randomly, we confirmed the
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(a) Camera image during task per-
formance

(b) Object segmented image

(c) Bounding box as object posi-
tion estimation result for naviga-
tion

(d) Projection of object annotation re-
sult on pointcloud

Fig. 10: Object segmentation and object based navigation
based on deep learning architecture

robot still successfully achieved the task. On rearranged
room environment, the robot first tried to find refriger-
ator at (find-object fridge) in Fig.9, then after
he found that the refrigerator does not exists where it
was located in annotated world, action is transited to
(look-around), then again robot try to find the target
object with deep learning based object segmentation. Af-
ter the robot found the refrigerator, the robots approach
it ((approach-to fridge)) and began to manipulate
((open—-door fridge)). After the target objects are
found with our proposed framework and robots successfully
enough close approach them to register with the models they
have, robot can manipulate them using the exitsing model
based approaches.

2) HRP?2 fetches can from refrigerator with same frame-
work: We then let HRP2 robot perform the same task as
PR2 did in the previous section, where HRP2 robot has
no assumption that robots should know their location in
environment. We confirmed that our approach using semantic
map instead of geometrical map for navigation can extend
feasibility of task performance with various types of robot
through this experiment. In current 2D geometric map based
SLAM, the performance of localization is sensitive to the
sensor attached position. In contrast, with semantic map
based navigation, robot is navigated by object segmentation,
so the robot can approach to target objects even in case of
badly localized.

VI. CONCLUSIONS

In this paper, we proposed a novel framework to generate
semantic map for navigation for dealing with dynamic en-
vironment by automatically generating dataset for learning



Fig. 11: Biped robot fetches can from refrigerator with the same framework as PR2

from annotated world representation, segment and label ob-
jects with deep learning technique. We successfully formed
the robot system which can deal with daily assistive task
even in dynamic environment where location of furniture
and objects is changed. We confirmed the feasibility of our
approach by performing task in dynamic home environment
using a real robot. We also confirmed that our proposed
framework enables robot task to be represented independent
to robot types through experiment performed the same task
by two different robots with the same architecture.

The algorithms, framework, and task descriptions for this
paper are implemented and available in public source code
repository jsk_demos'
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