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Abstract In recent years, there has been a growing interest
in enabling autonomous social robots to interact with peo-
ple. However, many questions remain unresolved regarding
the social capabilities robots should have in order to perform
this interaction in an ever more natural manner. In this paper,
we tackle this problem through a comprehensive study of
various topics involved in the interaction between a mobile
robot and untrained human volunteers for a variety of tasks.
In particular, this work presents a framework that enables the
robot to proactively approach people and establish friendly
interaction. To this end, we provided the robot with several
perception and action skills, such as that of detecting people,
planning an approach and communicating the intention to
initiate a conversation while expressing an emotional status.
We also introduce an interactive learning system that uses the
person’s volunteered assistance to incrementally improve the
robot’s perception skills. As a proof of concept, we focus on
the particular task of online face learning and recognition.We
conducted real-life experiments with our Tibi robot to val-
idate the framework during the interaction process. Within
this study, several surveys and user studies have been real-
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ized to reveal the social acceptability of the robot within the
context of different tasks.
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1 Introduction

Human-Robot Interaction (HRI) is an area of research that
has received much attention in the recent years. There exists
a wide range of applications in whichHRI plays an important
role, from the use of robots as companions for the eldery [23],
to their ability to safely evacuate people in emergency situa-
tions [3].

One major topic within HRI research is that of giving
robots the ability to initiate interaction with humans. It is
commonly thought that social robots should engage in the
same way as people do, using human-like physical signals
and gestures [43]. In this spirit, recent studies have shown that
while robots are able to encourage people to initiate inter-
action themselves [11,26], they consistently expect people
to approach them instead of being the ones to initiate con-
tact [37].

In this work, we go a step further and endow the mobile
robot with proactive capabilities to seek out human interac-
tion and to establish engagementwith people,while revealing
an expressive status through an emotional model, such that
the person feels close to the robot and capable of forming a
bond. Concretely, the presented approach is motivated by the
appraisal models of humans emotions [40,46]. As stated in
these models, a robot continuously appraises the situation is
involved in, then, emotions can be triggered (e.g., the person
is interacting with it or not). There exist a set of strategies
that can be used to deal with a specific emotion, for example,
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by updating the agent’s mental state (e.g. ., feeling happy
if the volunteer is collaborating with the robot). Once this
engagement has been established, we provide to the robot
with cognitive and interactive capacities such that they may
perform collaborative tasks wherein the human teaches the
robot new skills in perception.

The contributions of this paper are as follows: first, we
introduce a framework in which a mobile robot is able to
initiate interaction with a person and develop an engagement
proactively, focusing on the way the robot initiates the con-
versation in a manner perceived as natural by the person.
Specifically, we examine the human communication model
proposed by Clark [9], based on the notion that people in
a conversation perceive the roles of other persons, such as
a speaker, listener, and side participants. In order to develop
this initial task, we gave our robot a visual module for detect-
ing human faces in real time, with the caveat that faces must
be non-occluded. To demonstrate the proper development of
our model, we performed a user study wherein we discussed
how the perceived acceptability of the robot is enhanced, as
compared with two other simpler behaviors (base-line).

Our next contribution was to introduce a second robot-
human communication framework, once the engagement had
been initiated,wherein the human cannaturally help the robot
improve the performance of its facial recognitionmodule.We
used an online learning algorithm [56] that incorporates the
human’s assistance to enhance its performance. Following
this interaction, the robot becomes able to detect faces in
adverse conditions, such as when detection of visual targets
is hindered by abrupt changes in light or partial occlusions.
In addition, the robot learns the person’s identity in order to
engage in coherent dialogue with him/her in the future. In
this online and real-time assisted algorithm, the human plays
the role of teacher, guiding the robot through its learning
process, and correcting the output of the facial recognition
system in those difficult cases that require human assis-
tance. The amount of human intervention lessens in intensity
over time, and usually after a few seconds the robot’s visual
system becomes significantly more robust and reliable. Fig-
ure1 shows different frames from a typical teaching process
between a person and our mobile robot, Tibi.

The robot’s demonstrated ability to approach people and
learn to use human assistance leads to a number of pos-
sible applications. Among the most promising of these is
the robot’s capacity to independently look for people who
can assist it, so as to progressively improve upon its skills
throughout the interaction process. For instance, in urban
spaces, if the robot loses its position, or it is looking for a
special location in an unknown place, it can effectively ask
for help from pedestrians. Moreover, in an scenario wherein
an elderly person or a child is lost, the robot, rather than
waiting for the lost individual to initiate contact, can move
towards him/her proactively.

Finally, real-life experiments were conducted over the
course of three weeks with our mobile service robot Tibi
within different urban environments in Barcelona city, con-
taining dynamic obstacles introduced to validate the frame-
work during the interaction process. Furthermore, in this
paper, questionnaires and user studies were carried out to
explore the tolerance for the robot’s different tasks. The
results of these surveys are summarized and their most sig-
nificant factors are discussed in detail.

The remainder of our study unfolds in the following
manner. Section2 introduces the related work in human-
robot natural engagement, emotionalmodels for social robots
and human-assistance for recognition. Section3 provides an
overview of the contributions we describe in this article. Sec-
tion4 describes the robot navigation method employed to
approach people in a friendly manner. In Sect. 5, we spec-
ify the details of the robot’s proactive behavior capable of
creating engagement. The emotional model used to achieve
engagementwith the person is presented in Sect. 6. The active
learning for online face recognition is mentioned in Sect. 7.
In Sect. 8, we present the setting of the experiments and our
evaluation methodology, which is subsequently employed in
the results. Finally, discussion and conclusions are given in
Sects. 9 and 10, respectively.

2 Related Work

We next review related work and distinguish it according
the following contributions of the present work: proactive
methods for natural and friendly human-robot engagement,
robots’s emotions and visual recognition algorithms that pro-
gressively adapt their detections using both the observation
of incoming data and the corrections provided by the human.

2.1 Initiation of Human Robot Interactions

Research in the field of social robots is still relatively new
in comparison to what has been seen in traditional service
robotics, e.g. robots serving food in hospitals or providing
specific security-related services, applications which require
minimal human-robot interaction. Therefore, prior research
in this particular field is rather scarce [12,44].

Researchers are making efforts towards facilitating more
natural approaches to human-robot interaction.A social robot
should detect the human operator and carry out his/her
commands [23]. In [11], researchers showed that in a fetch-
and-carry task a seated person prefers to be approached by
a robot from the left or right direction, rather than frontally
or from behind. Further research showed that there are other
important factors which can affect this preference, such as a
person’s prior experience interacting with robots [35], gen-
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Fig. 1 Human-robot interaction and communication. Left: Tibi mobile robot approaches a person to initiate a conversation. Right: after the first
contact, the person assists Tibi to improve its visual skills. A Wii’s remote controller is used to help to validate and improve the visual face detector

der [11], or in which part of the room he/she is standing or
sitting [57].

Recent efforts have focused on creating robots capable of
starting conversations with humans in a friendly and natural
manner [43]. In the present paper, we aim to give the robot the
ability to approach a person and establish engagement with
him/her. Some studies have focused on developing robots
able to encourage people to initiate interaction [11,26]. The
most common strategy has been to expect people to approach
the robots to initiate a dialogue. In contrast to this, as shown
in Fig. 1, our research introduces a mobile robot that is able
to approach people in a safe and friendly manner in order to
initiate contact.

In [4], the authors introduced a discussion of feature
representations for analyzing human spatial behavior, prox-
emics, which can be applied to initiate an interaction between
humans and robots.

Particularly, some studies have shown that robots may be
capable of encouraging people to initiate interaction, instead
of waiting for people to approach them to begin a dia-
logue [11]. Moreover, there has also been progress in the
development of robots capable of initiating human interac-
tion themselves. [49] proposed a model for robots to initiate
interaction in a shopping mall. Another important topic that
has been studied is that of computing the appropriatemoment
in which to begin the interaction or the human participa-
tion [51]. This should be the situation wherein both human
and robot establish the mutual belief that they are sharing
a conversation. However, in this work, the robot does not
verbally indicate its intention to initiate a conversation, but
rather expresses emotion to denote such readiness.

Michalowski [41] considered the characteristics of the
spatial formation of people around a robot to select an indi-
vidual and initiate interactionwith him/her.Other approaches
chose the person based on their motion trajectories or on their
physical distance from the robot [31]. The social conventions
rules and customs surrounding the beginning of a conversa-
tion have also been considered. For instance, [22] suggested
that these social rules are essentially rituals that mutually
confirm the start of a conversation. Here, we made use of

these spatial formations in order to prevent the robot from
invading the human’s personal space.

In [54] researchers present an integrated motion synthesis
framework designed for robots that interact with people. This
model generates robot motions taking into account human’s
safety to socially interact with humans.

In this paper, we aim to go a step further, and propose that
the robot proactively seeks the interactionwith a human,with
the purpose of convincing the human to contribute actively to
improve its visual perception skills. Themain problem in this
context is that the person approached might not understand
that the robot is trying to initiate a conversation with him/her
and actually establish engagement.

Humans initiate conversation by eye gaze [42], but in the
case of robots in real-life experiments, this task becomes dif-
ficult because robots do not easily recognize human gazes,
as lighting changes is a common problem in outdoor envi-
ronments. Instead, we opt using body orientation gestures,
verbal, interaction and emotion expressions to signal intent
to initiate conversation for. Assuming that the human has
understood the robot’s intentions, we have developed a com-
munication protocol that allows the person and robot to work
collaborating on the task of online face recognition.

2.2 Emotional Models for Social Robots

In this section,we present a brief overview of the current state
of the development of emotional models for social robots.
Expressions of affections of robots can provide benefits in
many ways to human-robot interaction applications [1].

Emotions are essential for making robots able to inter-
act with humans in order to resemble human interaction [7].
Researchers need different models to express emotions in
different manners. Such modeling of emotions encourages
social interaction. In [30] the authors defined the “Affec-
tive Loop” as an interactive process in which the user first
expresses his/her emotions through non-verbal communi-
cation involving the body, and then, the system responds
generating an affective expression, making use of colours,
illuminations, or haptics, which affects the user making
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he/she respond and, consequently, feel more implicated with
the system, in the present work, the robot.

In order to create the mentioned Affective Loop between
users and robots, robots should detect if the user’s feel-
ings are positive or negative, and should reason and choose
the emotional response to display at a cognitive level. The
methodology by which robots are able to express their
intended affective states should be effective, and the actions
of the emotional robot would affect the user.

In the context of Human Robot Interaction, the affective
interactions have different intentions. In the present work, we
are interested, on the one hand, to increase the engagement in
the social interaction context, emotions contribute to create
engagements. Moreover, engagement is defined as “the pro-
cess by which two (or more) participants establish, maintain
and end their perceived connection” in the present con-
text [53]. Besides, it has acquired more attention by the HRI
community [45]. And, on the other hand, to increment the
social presence in the long-term. The absence of emotional
behaviour decreases the user’s perception of social presence,
concretely, during long-term interactions [38]. Social robots
must not only transmit believable affective expressions, but
also be able to do so in a personalized way, in order to be
perceived as socially agents.

For instance, [20] described a long-term field study, which
showed that robots’ facial expression influenced the way
and the time at which humans interacted with the robot.
Moreover, using NAO robot, it has been demonstrated that
emotional gestures can enhance participants’ perception of a
robot’s expressibility [58]. Furthermore, [32] presented the
emotion expressions capabilities of a robotic head. Or [36]
introduced an emotional approach to proactively enhance the
interaction between humans and robots.

Moreover, Yohanan et al. demonstrate in [59] that effec-
tive touch is a crucial element in human robot interaction.
In their work, authors study how humans communicate their
emotional state via touch communication using Haptic Crea-
ture and their expectations of its reactions. Their results can
enhance the affective touch interactions.

Finally, according to [29], the emotional models can
be classified into three different categories: emotion dis-
plays, virtual agents, and social robots. With regard to
emotion, robots may have the ability to express emotions.
Therefore, they can utilize facial expressions, gestures, or
other non-verbal communicative means. Some examples of
these systems are presented in [5,47]. Here, the robots are
able to generate different facial expressions corresponding
to the six basic emotions of anger, disgust, fear, happi-
ness, sadness, and surprise. Most often, these robots have
been used in hospitals for interacting with children. In
this work, our robot, Tibi, is able to express its emotions
through facial expressions (with led illumination) and ges-
tures.

Secondly, virtual agents are simulated operators. The
agents have nomechanical limitations to display their expres-
sions, since their bodies are simulated. Nevertheless, they
cannot physically interact with humans. One example of this
kind of systems is the Roboreceptionist at Carnegie Mellon
University [21]. This robot is equipped with a virtual face
capable of expressing emotions.

And, thirdly, one of the most well-known social robots is
Kismet [13] at the Massachusetts Institute of Technology. Its
developed architecture consists of emotions, the robot’s inter-
nal goals, and a behavior system. Furthermore, [48] described
the interactive robotMaggie.Nevertheless, the purpose of the
majority of these architectures is to work on only one robot
and is optimized for working within only few environments
context.

As stated above, the present work introduces a mobile
robot able to express emotions using facial expressions, ges-
tures, and speech in order to improve the relation between
humans and robots.

2.3 Online Human-Assistance in Computer Vision

Object recognition is a very active topic in computer vision,
with impressive results in spite of the difficulties inherent
to this problem, such as lighting changes, partial occlusions,
intra-class variations, and object’s changes in appearance due
to multiple views [25].

However, most of the methods are trained offline, either
because they use large amounts of training data or because
they require complex and time-consuming learning algo-
rithms [14]. Nevertheless, there are some situations in which
offline learning is not feasible, for example when the training
data is obtained continuously, or when the size of the training
set is very cumbersome. Another obstacle is presented when
the learning is carried out with unknown objects. Such is the
case in the present work, wherein the robot interacts with
people so as to learn to recognize their faces from scratch,
without any prior information or previous contact.

These kinds of scenarios have been addressed by online
learning methods that use their own predictions to train and
update the classifiers [55]. However, although approaches
have shown great results using these adaptation capabilities,
they are prone to suffer from drifting when updating the clas-
sifier with inaccurate predictions.

To increase the robustness of online learning algorithms,
recent approaches have proposed using human assistance
during the learning stage. In [56], a face classifier is computed
on the fly, progressively updatting and improving the use of
its own predictions and human corrections. Specifically, this
method combines self learning and human assistance to avoid
the drifting problem, and to teach the robot to discern accu-
rate predictions from inaccurate ones.

123



Int J of Soc Robotics (2017) 9:231–249 235

Fig. 2 Experiments overview. Sketch of the experiments performed to analyze different robot behaviors

Here, we go one step further, by introducing our social
mobile robot to the pipeline of [56], and providing the robot
with the ability to learn from a human, using a communi-
cation process that requires almost no-human effort. The
robot is able to recognize the volunteer after following the
interaction by saving the face descriptors. We believe that
the integration of this kind of high-level learning algorithms
in an autonomous robot, as well as the development of the
engagement strategies, are important contributions for the
HRI community, as they suggest that the robot will be able
to learn from human interventions.

3 Overview of the Work

The next sections describe the architecture we developed to
provide autonomous mobile robots with proactive behaviors.
Our goal was to study previous approaches and take them
one step further, by encouraging the robot to actively seek
out human interaction and ask the person to help it improve
its visual detection skills. The main obstacle in this scenario
was the possibility that the person would not understand that
the robot was trying to initiate a conversation with him/her.
Humans typically initiate conversation by eye gaze [22], and
in a real environment, it is very difficult for a robot to rec-
ognize this social gesture. Because of this, we relied more
heavily on body position, gestures, and verbal cues. Once
the human had effectively understood the robot’s intentions,
he/she could follow a specially-made, simple, and efficient
communication protocol for teaching the robot. The protocol,
developed specially for the purposes of this stage of the study,
involved the following key components, as shown in Fig. 2:

– Robot’s ability to proactively seek interaction: one of the
main purposes of our research was to identify the optimal
robot behavior for initiating interaction with a human.
To do so, we analyzed three variations of this behavior,
examining scenarios in which: (1) the robot uses only
verbal cues to communicate with the participant; (2) the
robot uses both verbal and non-verbal cues (e.g., gestures
and eye gazes); and (3) the robot uses verbal and non-
verbal cues and also moves towards the humans.

– Tibi’s emotions:making the robot able to express its emo-
tions, the created engagement is stronger, for that reason
we synthesize Tibi’s emotions of happiness, elation or
surprise, among others, we use the model of the three
dimensions of emotion [6], which characterizes emo-
tions in terms of valence, stance and arousal. Rather than
presenting emotions in terms of categories (happiness,
sadness, frustration, etc.), some psychologists conceive
of the dimensions that include the relationships between
different emotions; this model has been developed in our
robot in order tomake it capable of expressing its internal
emotions.

– Active learning for online face recognition: once the robot
has engaged with a human, we propose an approach in
which the robot is able to enhance its visual skills using
the human’s help. We will show that the robot’s skills
improved with each interaction.

– User study of robot’s behavior: we also conducted a
user study to determine whether the robot’s behavior
was perceived as socially appropriate by the experiment
participants. We looked at various key aspects of the
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interaction between a mobile robot and untrained human
volunteers.

4 Social Robot Navigation

Before we review the contributions of our work, in this sec-
tion we present the navigation method developed in order to
allow the robot to be able to approach a person in an accept-
able motion.

Here, we make use of the Social-Force Model (SFM),
described in [27], to model robot navigation. SFM simulates
pedestrian dynamics by using a set of interactive forces. It
introduces a very general framework in which the details
of human motion and behavior are expressed as a func-
tion of the pedestrians’ relative and absolute positions and
velocities. However, this model does not consider the inter-
action between a person and a robot, nor the interaction
between obstacles. This was later considered in the so-called
Extended Social-Forcemodel (ESFM) [17].We have applied
this approach with some modifications to allow the robot to
navigate in a friendly manner.

We consider the robot as a social agent, moving naturally
in human environments according to the Extended Social-
Force Model, and responding appropriately to the obstacles
and people in its path. Furthermore, we believe that a more
human-like navigation will increase the robot’s acceptance
among pedestrians, due primarily to the similarities between
the robot’s behavior and the anticipated movements of other
pedestrians.

To this end, we describe robot navigation, understood as
an instantaneous reaction to sensory information, driven by
the social forces centered on the robot, as in the research
conducted in [33], but focusing more on the social nature of
the approach.

We first define an attractive force to the person with whom
the robot is attempting to establish engagement. Assuming
that robot tries to adapt its velocity within a relaxation time
k−1
r , f goal

r is given by:

f goal
r = kr (v0r − vr ) (1)

where, vr is the actual robot’s velocity, and v0r is the desired
velocity. The relaxation time is the interval of time needed
to reach the desired velocity and the desired direction.

Additionally, we define a set of repulsive forces due to the
presence of other pedestrians:

F per
R =

∑

p j∈P
f int
R, j (2)

where forces f int
R, j represent the repulsive interaction between

the pedestrian p j and robot R:

f int
R, j = ARpe

(dRp−dR, j )/BRpw(ϕR, j , λRp) (3)

The parameters {ApR, BpR, λpR, dpR} rule the kind of
person-to-robot interaction, and depend on the specific
robotic platform being used [15].

Regarding the interaction between the robot and obstacles,
we consider the model:

F obs
R =

∑

o∈O
f int
R,o (4)

where f int
R,o is written as

f int
R,o = ARoe

(dRo−dR,o)/BRow(ϕR,o, λRo) (5)

The parameters {ARo, BRo, λRo, dRo} rule the interaction
person-obstacle.

Finally, the force governing the robot movement can be
written as the weighted combination of all previous compo-
nents:

FR = α f goal
R,i + β F per

R + γ F obs
R (6)

Once the reactive force action is obtained, the system
responds duly to these stimuli, and linearly propagates its
position and velocity according to this force value (Fig. 3).
A detailed study of all these parameters values was presented
in [16].

Additional constraints are also considered. All those robot
propagations which result in a collision with an obstacle are
discounted. Current robot maximum velocity is also a con-
straint, and depends on the robot’s navigation state, which is
a function of the proximity of persons:

vR =
⎧
⎨

⎩

vsa f ety if dR,i ≤ μsa f ety

vcruise if μsa f ety < dR,i ≤ μsocial

v f ree otherwise
(7)

The vsa f ety is the maximum velocity the robot can achieve
when at least one person is inside its inner safety zone. In con-
trast, vcruise is the cruise velocity when someone is inside its
social safety zone and v f ree is the maximum robot velocity
when there are no people inside its safety zone. The navi-
gation states associated with these configurations are those
of social robot navigation and free robot navigation, respec-
tively.

Themost interesting part of the system so far, resides in the
fact that the proposed approach does not require static targets,
the robot is able to move towards people. Moreover, it can
approach those people who share a common destination.

123



Int J of Soc Robotics (2017) 9:231–249 237

Fig. 3 Diagram the navigation forces. Internal elements of Tibi and a
person during the experiments

5 Robot’s Proactively Seeking Interaction

The strategy for creating people-to-robot engagements is
more proactive than those models which merely wait for the
person to begin the interaction. In addition, the robot’s abil-
ity to approach people opens up a wide range of possible
applications. These include an invitation service, wherein,
for example, a robot might approach people to offer city
information and invite them on a tour; or the application pro-
posed above, where proactive behavior is used to improve
the robot’s perception and visual skills by enabling it to learn
from the human it engages with.

To allow the robot to independently initiate interaction
with humans, we first used a laser range scanner to detect
people in the space [2]. In the first part of the experiment, we
make use only of the laser range scanner, since the person
could be too far away, or there might be lighting changes,
rendering the robot incapable of detecting pedestrians using
only vision. After this initial localization phase, the robot
approaches the person, always adhering to common conven-
tions of what constitutes people’s personal space. We also
make the robot able to respond appropriately to human reac-
tions. For example, if after the initial approach, the robot
invites the selected person to come closer, and he/she does
not notice, the robot will repeat the invitation. However, if the
human simply declines to come closer, the robot will choose
another volunteer. The robot will not begin the interaction
process until the person visibly shows interest in the robot.

To define spatial bounds, we considered the conceptual
framework known as “proxemics,” proposed by Hall [24].
This research establishes the following taxonomy of dis-
tances between persons within a group of people:

– Intimate distance: the presence of another person is
unmistakable, close friends or lovers (0–45cm).

– Personal distance: comfortable spacing, friends (45cm–
1.22m).

– Social distance: limited involvement, non-friends inter-
action (1.22–3m).

Fig. 4 Levels of engagement. Robot-to-person levels of distance, to
distinguish levels of engagement while interacting

– Public distance: outside circle of involvement, public
speaking (>3m).

Based on these proxemics, Michalowski et al. [41] classi-
fied the space around a robot in order to distinguish human
levels of engagement while interacting with or in the pres-
ence of a robot. Figure4 plots these four levels of distance and
their corresponding engagements. In our framework we used
the proxemics shown in the figure to try to maintain a “social
distance” in the initial approach, assuming a “personal dis-
tance” only when the person had accepted the invitation to
interact.

The robot’s active behavior is implemented through the
state machine shown in Fig. 5. Finite State Machines (FSMs)
are widely used in many reactive systems to describe the
dynamic behavior of an entity. The theoretical concepts of
FSMs and an entity’s specification, in terms of state transition
diagrams, have been used for quite some time [19]. A deter-
ministic finite state machine is a quintuple (K,H, s0, �,F),
where: K is a finite, non-empty set of symbols;H is a finite,
non-empty set of states; s0 ∈ H is an initial state; � is the
state-transition function, � : H × K → H; and F is the set
of final states, a (possibly empty) subset ofH.

This state machine allows the robot to respond appropri-
ately to people’s behavior. The robot is able to determine
if humans are interested in initiating interaction simply by
tracking their positions.

One of the main objectives of our study was to determine
the optimal mode of robot behavior for initiating interaction
with a human. After reviewing the literature on empathy and
pro-social behavior [10], we were able to identify three dif-
ferent modes of behavior: (1) the robot uses only verbal cues
to communicate with the participants; (2) the robot uses both
verbal cues and non-verbal cues (gestures and eye gazes);
and (3) the robot performs verbal and non-verbal cues, and
effectively approaches humans.

After the initial interaction has been established and the
human has accepted it, the goal for the robot is then to
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Fig. 5 Example of a state machine. The robot attempts to create an engagement with a person. Different components of the state machine

Table 1 Engagement expressions. Sample Tibi phrases to start inter-
action with a person

Assistance expressions

Invitation to create an
engagement

Hello, I am Tibi. I’m trying
to learn to detect faces, could
you help me?

Hi, I am Tibi, I would like
to learn to recognize differ-
ent objects, will you be my
teacher?

Invitation to continue the
interaction

It will take just 2min

Please, don’t go

Let me explain you first the
goal of this experiment, and
then, you can decide if you
want to stay

approach the person, moving from a “public distance” level
to a “personal distance” level. In order to encourage the per-
son to move even closer, the robot performs the following
actions, depending on the aforementioned behaviors:

– Verbal communication: comments of encouragement,
such as “Don’t be afraid, I just want to talk with you.”
“Could you teach me to detect faces?”

– Non-verbal communication: gestures, arms and neck
movements. A few samples are shown in Fig. 6.

– Robot motions: the robot approaches the person until
reaching a “social distance.”

Somephrases uttered by our robot are presented inTable1.
It has been found that each of these strategies has a dif-

ferent impact on users. For that reason, we performed a set
of experiments to analyze the relative acceptability of each
behavior model.

6 Tibi’s Emotional Model

Emotions play a significant role in human behavior, commu-
nication and interaction [6]. Accordingly, robot’s emotions
are important in our system. In order to bring the robot closer
to humans, we gave the robot the ability to express its emo-
tional status through speech and gestures.

To synthesize Tibi’s emotions of happy, elated, sur-
prised, relaxed, tired, bored, unhappy or angry , we used
the model of the three dimensions of emotion suggested
in [50]. This model characterizes emotions in terms of
stance (open/close), valence (negative/positive) and arousal
(low/high), thereby, it allows the robot to derive emotions
from physiological variables. Our system relies on an open
stance because Tibi is motivated to be openly involved in
interaction with humans (see Fig. 7).

6.1 Arousal Factor

The arousal factor is determined by the human and the
human’s responses, and by factors such as whether Tibi finds
the human, and whether the human responds. The intensity
of the perceived stimuli is required for the implementation of
the arousal factor. Furthermore, the perception system is able
to rate the current state of engagement between the human
and Tibi. In the current implementation, distance is used to
measure intensity. Theses computations are based on the dis-
tance zones as described above (see Fig. 4).

The intensity of a human who stays in the public zone is
rated at zero, whereas a person entering the intimate zone
is assigned the maximum intensity value. The relative inten-
sity of a person is more relevant than the absolute value. If a
human enters the personal zone (from the social zone), inten-
sity will increase, and arousal increases as well. Assuming
that the volunteer remains in the personal zone, his/her inten-
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Fig. 6 Tibi gestures. Movements performed by Tibi during experi-
ments. Top: three different emotional expressions.Bottom: three actions
Tibi can perform

Fig. 7 Emotion space. This representation is used to define the actual
emotional state of Tibi; every emotion can be described by the param-
eters arousal and valence

sity will remain the same, but the arousal level should not rise
any further, as this would indicate a state of continuous fright.

To avoid these problems, the relative intensity is used
for the social zone and for the public zone. Therefore, only
changes in intensity are considered for calculating arousal.
In contrast, for the intimate zone, absolute intensity is used.
Based on these assumptions, the global intensity of the people
currently detected can be calculated. The currently perceived
people locatedwithin a specific distance zone are represented
by Φ(t) = {φ1, . . . , φn} , whereas the people previously
located in this zone are described by recognized Φ(t − 1).
For each zone, a specific intensity level (zone level) is rep-
resented. In the current implementation these zone levels
(ζ ) are defined as follows: Public zone ζ = 0, social zone
ζ = 0.25, personal zone ζ = 0.5, and intimate zone ζ = 1.
This process is summarized in Algorithm 1.

To normalize the intensity to the range of [0, 1] the inten-
sity value is divided by the number of currently perceived
people. If a certain intensity has been detected, the previous

Algorithm 1: The intensity of perceived people is com-
puted depending on their distance to Tibi.
Input: List of perceived people at time t : Φ(t)
Input: Distance between each person φ j (t) and the robot at time

t : δ(t, j)
Input: Size of Φ(t): N
Output: Intensity value: ι

1 for r = 1, . . . , N do
2 Compute ζ

3 Compute the intensity ι:
4

ι(t) =

⎧
⎪⎨

⎪⎩

ι + (φ j (t) − φ j (t − 1))ζ if ζ = 0.25, 0.5

ι + (φ j (t))ζ if ζ = 1
ι otherwise

Algorithm 2: Arousal: A(t)
Input: Intensity value at time t : ι
Input: List of perceived people at time t : Φ(t)
Output: Arousal value at time t : A(t)

1 if ι > 0 then
2

A(t) = A(t − 1) + ω · ι

#Φ(t)

3 else
4

A(t) = A(t − 1) − Δ (8)

5 Limit A(t) to the interval [−1, 1]

arousal value A(t − 1) is increased depending on the global
intensity and a specific weight ω that indicates how fast the
arousal value increases. In this work, the weight is set to 1. If
no intensity is measured the arousal value is decreased. The
value for decreasing is represented byΔ. Inspired in [28], the
current Δ is set to 0.25. Finally the arousal value is limited
to the range of [-1, 1], Algorithm 2 describes the process to
compute the arousal value.

6.1.1 Valence Factor

Valence represents the robot’s satisfaction with the cur-
rent situation. For example, achieving a goal will cause an
increase in valence. This depends on the current achievement
of the internal goals of the robot. For instance, if the robot is
currently pursuing one goal, the valence depends on the level
of the achievement of the robot’s internal goals. If the goal is
almost achieved, the valence will be rather high; if the robot
is far from achieving this goal the valence is low. If the robot
is pursuing multiple goals, the valence is calculated based on
the level of achievement associated with each goal.
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Table 2 Assistance expression. Sample phrases uttered by the robot
when updating the visual classifier

Assistance expressions

Assistance Can you tell me if your
face is inside the rectan-
gle?

Is the detection correct?

No detection I can’t see you properly,
move a little bit

Can you stand in front of
me?

Farewell I’m so happy you helped
me

I hope to see you soon

In this study, valence is determined by whether the human
responds appropriately to the robot’s requests. As Tibi waits
for a human response, indicated by pressing a “yes” or “no”
button, if the human says something unexpected that Tibi
cannot understand or if he/she fails to press either button,
the negative response increases the emotion of anger; while
a positive response leads to an increase in the emotion of
happiness.

7 Active Learning for Online Face Recognition

We devised an approach to allow the human to improve the
performance of the robot’s visual skills, once the robot has
initiated engagement.

The second objective of the present work is to allow our
robot to benefit from the human’s assistance. To this end,
we equipped it with a screen depicting the results of the face
detector. The robotwas able to use verbal cues and gestures to

be able to communicate with the human user.When the robot
was not confident about the presence of a face in the input
image, it requested the human’s help, through a set of precise
questions, which the human user could answer by pressing
the “yes” or “no” button, using theWii remote control. Table2
shows some examples of these questions. The robot explains
to the human how the Wii remote control functions within
the context of the experiment.

Figure8 illustrates entirety of the interaction between Tibi
and a volunteer considering the internal elements.

Concretely, the goal of this section is to enhance the
human-assisted facial recognition systembased on the degree
of human intervention and its effects on human-robot inter-
action. In particular, we focused on the duration of the
established interactions and on the level of users’ comfort
therein.

The classifier used in the detection phase yields a score
ς ∈ [0, 1], corresponding to the classifier confidence. Usu-
ally, when ς > 0.5, the detection is assigned to a positive
or object class (in this case, faces). Otherwise, the detection
is considered as negative or belonging to the background
class. However, there is a confidence interval ϑ around 0.5
in which the system is unable to assign the detection to a
positive or negative class, due to the fact that the classifier
is uncertain about the detection label (positive or negative)
and the risk of misclassification is high. In these cases, we
resort to the human’s intervention to determine whether the
detection belongs to a particular human face or falls in the
background or on an incorrect person. This is then used to
improve the classifier performance by updating the classifier
only with correctly labeled detections. By conducting these
experiments, we hoped to discover the range and degree of
human assistance by which interaction becomes more effec-
tive.

Fig. 8 Diagram of the interaction. Internal elements of Tibi and a person during the experiments
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Fig. 9 Enviromental labs. Four different labs in UPC Campus where
we performed the experiments with Tibi robot

8 Experimental Field of Study

In order to present the most realistic findings, we performed
our analysis within real scenarios in the city of Barcelona.
The tasks the robot had to accomplish were to: (1) approach a
person to initiate interaction and stimulate interest in helping
the robot; and (2) invite the person to help to enhance the
robot’s facial recognition system. In this section, we begin
by introducing the robot and the environment domain; we
move on to describe the experiment design and procedure;
and finally we conclude with a review of the results obtained
and the user study subsequently performed.

8.1 Robot and Environment Domain

Our working area consists of four different outdoor urban
environments at the UPC Campus: the FIB square and
the Telecos square in the North campus of UPC, the
BRL (Barcelona Robot Lab), and the FME (Facultat de
Matemàtiques i Estadística) lab in the South campus.

The North Campus is a large area outfitted as an exper-
imental zone, covering over 20,000 m2, and comprising
different buildings squares, with multiple ramps, staircases,
and typical obstacles such as bulletin boards, bicycle stands,
trashcans and flower pots. The FME lab consists of a green
space and a paved area, separated by stairs, see Fig. 9.

Tibi is a service robot, designed to operate in urban, pedes-
trian areas. It is based on a two-wheeled, self-balancing
Segway RMP200 platform, and as such, is highly mobile,

Fig. 10 Tibi robot. Mobile robot platform used in the experiments

with a small footprint, a nominal speed of up to 4.4m/s, and
the ability to rotate on the spot (while stationary).

The Tibi robot is 165cm in height, occupies a clearance
space of 80 cm, and weighs 110kg. It is equipped with the
following sensors, (see Fig. 10): twoHokuyoUTM-30LX2D
laser range sensors used to detect obstacles andpeople, giving
scans over a local horizontal plane at 40cm above ground,
facing forward and backwards; a stereo Bumblebee camera
located in the eyes, used for computer vision purposes; a
touch screen to communicatewith people; a speaker,movable
arms and head to express emotion; two on-board computers
(Intel Core 2 Quad CPU 2.66 and 3.00GHz) which manage
all the running processes and sensor signals; and finally, a
laptop used for external monitoring.

The robot’s communication is spoken out loud for the
participants to hear and is also displayed on the touch-screen,
but participants had to answer using a remote Wii control, as
Tibi cannot understand speech in outdoor environments.

Moreover, Tibi was designed in order to interact with dif-
ferent people in open spaces. The robot is socially accepted,
and humans take an interest in interactingwith it, as its design
is well-rendered, and its movements are smooth.

8.2 Experiment Design

To test our framework, we conducted the following exper-
iments, wherein which the Tibi robot moved around the
University Campus:

– Robot’s Proactively Seeking Interaction: we compared
the different robot behaviors described in Sects. 5–6 to
initiate the interaction. In the initial phase, the robot only
used voice instructions to attract people’s attention. Fol-
lowing that, it was allowed to rotate to observe people’s
position. Finally, the robot had the capability to move
towards people to interact with them. In all of these
situations, the robot was able to effectively express its
emotions.

– Active Learning for Online Face Recognition: we ana-
lyzed the effect of the human assistance on the robot’s
face recognition performance, and on the duration and
ease of the human-robot interaction.
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8.3 Experiment Procedure

8.3.1 Robot’s Proactively Seeking Interaction

Our independent variables took into account whether the
robot approached the person, or if it only used voice
instructions. The main dependent variables involved par-
ticipants’ perceptions of the robot’s persuasiveness, their
compliance with the robot’s suggestions, and their percep-
tions of the robot’s social and intellectual characteristics.
Each of these fields was evaluated by each participant
through a questionnaire that was completed upon the con-
clusion of the experiment, based on [34]. The measurement
was a rating on a Linkert-scale between 1 and 7, from
“Not at all” to “Very much”. For the evaluation score,
an analysis of variance (ANOVA) measurement was con-
ducted.

The information given to the volunteers about the robot
was minimal at the start of the experiment, and hence, their
behavior was not predefined at all. Participants were told
to behave naturally, to listen to the robot’s instructions, and
to help it. Volunteers could decide whether to stay and per-
form the experiment or to skip the test at any time. Once the
experiment was completed, participants answered the ques-
tionnaire.

8.3.2 Active Learning for Online Face Recognition

The face recognition system used in our experiments is based
on the classifier proposed in [56]. This classifier, named
Online Random Ferns, interactively computes a discrimina-
tive detector that allows the robot to recognize objects and
human faces in real time. Although this classifier was shown
to improve the recognition performance with higher rates of
human assistance, previous studies did not explicitly evaluate
the influence of human intervention on human-robot interac-
tion.

In this work, we expanded upon [56] with empiri-
cal and quantitative evaluation of the human assistance
from the perspective of HRI. The evaluation was carried
out based on the interactions between the Tibi robot and
several persons in a variety of environmental conditions.
More specifically, we evaluated human-robot interaction for
online face recognition in terms of the degree of human
intervention. To arrive at this measure, we followed the
criterion used in [56], wherein a confidence interval ϑ

was established to determine when human intervention
was required (human assistance interval). However, while
in [56] this threshold was set at fixed value, in our study,
we evaluated the face recognition module using different
values of ϑ , and thus, different degrees of human interven-
tion.

8.4 Participants

For the experiments, we selected 50 people (32 men, 18
women) on the University Campus. Participants ranged in
age from 20 to 65years (M = 35.72, SD = 14.13), and
represented a variety of university majors and occupations
including computer science, mathematics, biology, finance
and chemistry. For each individual selected, we randomly
activated one of the three robot behaviors to begin the inter-
action. Then, each participant assisted the robot to improve
its visual skills (second experiment). It should be mentioned
that none of the participants had previous experienceworking
or interacting with robots.

8.5 Results in Real-Life Experiments

Before conducting the user study to determine whether
different robot behaviors are socially appropriate for humans,
we conducted real-life experiments to evaluate the robot’s
behavior over the course of two weeks. The approach pro-
posed above was effectively tested at the BRL.

Real-world experimentation revealed unexpected obsta-
cles that had not come up during the simulations. We
observed severe limitations of the perception system, laser
people detector, and tracker. People were not always prop-
erly detected, and data association was occasionally wrong.
However, an in-depth discussion of the perception system
falls outside the scope of the present work.

8.5.1 Robot’s Proactively Seeking Interaction

We carried out our experiments with different untrained vol-
unteers over the course of seven days. In each experiment,
the robot was able to approach the participant and try to
establish engagement. Figure11 depicts some examples of
the experiments performed with several volunteers in dif-
ferent urban environments. Figure12 shows the paths taken
by robots when approaching a person in the four different
environments.

Once a significant number of real experiments with differ-
ent volunteers was conducted, we concluded that the system
worked, and that robot was able to approach humans and
begin interactions with untrained people. We used these
findings to proceed to conduct a user study, designed to deter-
mine whether the robot’s behavior was socially acceptable to
humans. This component is described in depth in Sect. 8.6.

8.5.2 Active Learning for Online Face Recognition

As mentioned above, the human-assisted facial recognition
system was assessed based on the degree of human interven-
tion and its effects on human-robot interaction. The classifier
we used in the detection and recognition phase generates a
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Fig. 11 Real-life experiments: Some examples of the real experiments conducted

score ς ∈ [0, 1], which corresponds to the classifier confi-
dence. Nevertheless, this confidence interval ϑ is centered
on 0.5, by which the system is not able to calculated if the
detection is of a positive or negative class. Here, human inter-
vention is required in order to determine if the detection
belongs to a particular human face or falls in the back-
ground or on an incorrect person. Therefore, the interaction
is used to enhance the performance of the classifier, updating
it only with correctly labeled detections. In developing these
experiments, we endeavor to discover the degree of human
assistance at which the interaction becomes more effective.
Figure13 shows different volunteers assisting the robot in
the task of face recognition.

Figure14 shows the impact of human assistance on
human-robot interaction. Figure14-Top-Leftdepicts the aver-
age interaction and assistance times. As the degree of human
assistance grows greater (and with it, interval size), the inter-
action time between robot and humans becomes shorter. It
is also noteworthy that the interaction time with a smaller
percentage of human intervention is relatively short. This
is because when human participation is minimal (i.e., when
human users seldom help the robot), people also lose inter-
est in the task. Figure14-Top-Right plots the percentage of
human intervention for each interval. Again we see that the
percentage of human assistance increases according to the
uncertainty interval size. The graph on the left-bottom of
Fig. 14 depicts the percentage of human acceptance of the
robot’s behavior. Finally, Fig. 14-Bottom-Right depicts the
percentage of ignored requests. Note that as the number of
times the robot asks for assistance increases, the number of
ignored requests also increases. We found that a satisfactory
compromise between the human’s effort and interaction time
was achieved for an assistance interval of ϑ = [0.4, 0.6]. In
other cases, people grew bored and thus the interaction failed
as people declined to complete the experiments.

8.6 Measures

The results presented in the previous section demonstrate
that the robot is able to approach people and initiate inter-
action, and that visual skills may be enhanced using human
assistance. A user study was also conducted to determine
whether the three strategies presented previously to initiate
the interaction are perceived by people as socially appro-

Fig. 12 Paths followed by Tibi to initiates an interaction. The robot
approached different people and begins an interaction with them in the
four different urban environments we performed the experiments

Fig. 13 Human assistance. Top: people assisting Tibi robot in outdoor
scenarios. Bottom: Tibi’s field of vision. The output of the recognition
system is shown by rectangles. Correct detections are represented by
green boxes; blue boxes indicate when the system is not confident and
requires the help of a human

priate. Finally, we concluded this section by studying how
our social navigation enhances a follower approach, wherein
the robot only follows the person’s trajectory, without con-
sidering any social conventions, and we should highlight that
people perceived a difference between these two approaches.

The hypothesiswe endeavored to testwas as follows: “Par-
ticipants will perceive a difference between the three robot
behaviors and will assist at a greater rate when the robot
is able to move and approach people according to accepted
social conventions.”

We compared the different robot behaviors for initiating
interaction, as described in Sects. 5–6. At first, the robot used
only verbal instructions to attract people’s attention. Later, it
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Fig. 14 Human assistance results. Top: Average times spent for
human-robot interaction and human-assistance. And, percentage of
human assistance in the face recognition system according to varying
assistance intervals. Bottom: percentage of users’ acceptance; percent-
age of ignored request

was allowed to rotate so as to focus more closely on people’s
positions. Lastly, the robot was able to move towards the
people to interact with them. Assistance could begin only
once engagement had been initiated.

As we described in Sect. 8.4, we selected 50 people. For
each participant,we randomly activated one of the three robot
behaviors for initiating interaction. Then, each participant
helped the robot to improve its visual skills. Again, none of
the participants had previous experience working or interact-
ing with robots.

Participants were asked to complete a variety of surveys.
Our independent variables considered whether the robot
approached the person or if it only used voice instructions.
The main dependent variables involved participants’ percep-
tions of the robot’s persuasiveness, their compliance with
the robot’s suggestions, and their perceptions of the robot’s
social and intellectual characteristics. Each of these fields,
was evaluated by every participant using a questionnaire to
fill out after the experiment, based on [34]. Some questions
are presented in Table3.

8.6.1 Social Scales

Participants were asked to answer nine questions, as shown
in Table3, following their encounter with the robot in each
mode of behavior. To analyze their responses, we grouped the
survey questions into three scales: the first measured overall
robot behavior, while the second and third evaluated more
specific questions on the robot’s movement. Both scales sur-

Table 3 Questionnaire. Survey questions asked of each participant.
All questions were asked on a 7-point scale from “Not at all” to “Very
much”

Survey’s questions

General robot behavior scale Cronb. α = 0.74

How comfortable did you feel near the robot?

How safe did you feel around the robot?

How human-like did the robot behave?

Robot’s sociability scale Cronb. α = 0.82

How social was the robot’s behavior?

How natural was the robot’s behavior?

How well did the robot’s movements
adhere to human

Social norms?

Robot’s intelligence scale Cronb. α = 0.79

How intelligent did the robot behave?

How well could the robot anticipate to your
movements?

How well could the robot understand your
responses?

passed the commonlyused0.7 level of reliability (Cronbach’s
alpha).

Each scale response was computed by averaging the
results of the surveyquestions comprising the scale.ANOVAs
were run on each scale to highlight differences between the
three robot behaviors.

Below, we provide the results of comparing the following
three robot behaviors: (B1) the robot only uses verbal com-
munication; (B2) the robot uses both verbal communication
and gestures; and (B3) the robot uses verbal, nonverbal com-
munication and may approach the person.

For the global evaluation score plotted in Fig. 15-Left,
repeated ANOVA measures were computed. A significant
main effect was found, F(2, 47) = 41.52, p < 0.001, η2 =
0.29. Multiple comparisons with the Bonferroni method
revealed that the score forB3 is significantly higher than both
behaviors B1 (p < 0.001) and B2 (p < 0.001). No signifi-
cant difference was found between B1 and B2 (p = 0.224).

To analyze the source of the difference, additional scores
were examined. For the sociability of the robot (Fig. 15-
Center) a repeated-measures analysis of variance revealed a
significant main effect, F(2, 47) = 143.83, p < 0.001, par-
tial η2 = 0.14. Pairwise comparisonwithBonferroni showed
a remarkable difference between the three strategies as well.
B1 vs. B2: p < 0.01; B1 vs. B3: p < 0.001; B2 vs. B3:
p < 0.001.

Finally, for the robot’s intelligence (Fig. 15-Right), a
repeated-measures analysis of variance revealed a significant
main effect, F(2, 47) = 32.28 p < 0.001, partial η2 = 0.31.
Pairwise comparison with Bonferroni revealed that the score
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Fig. 15 HRI results I. Degree of acceptance of the three robot’s behav-
iors. Left: global evaluation of the strategies.Center: robot’s sociability.
Right: robot’s intelligence, as perceived by the humans

Fig. 16 HRI results II.Left: percentage of engagements created.Right:
time of interaction in seconds

for B3 is significantly higher than both B1 (p < 0.001) and
B2 (p = 0.0015) strategies. No significant difference was
found between B1 and B2 (p = 0.42).

In summary, fromour analysis of the three different behav-
iors, we may conclude that when the robot uses verbal and
non-verbal communication, and is able to approach the per-
son, it has the largest rate of acceptance by humans. Under
these circumstances, people generally perceived the robot to
be more intelligent, seeing as it could detect and approach
them; they also believed that it had better social skills.

Furthermore, we measure the percentage of successful
goals, that is, the number of times the robot was able to create
an engagement with the person, and we compared the three
robot’s behaviors. In Fig. 16-left the percentage for the three
behaviors is plotted. And, finally, in Fig. 16-right, we show
the duration of the interaction for the three behaviors. Note
that when the robot is able to approach the person who is
interacting with the duration and the interest of the volunteer
is much larger.

In addition, we studied if the presented emotional model
is well-perceived by participants. Here, to examine whether
there are differences between the use of model of emotion
or not, two scores were examined: “overall” and “robot’s
sociability”, plotted in Fig. 17. Moreover, we compared
the duration of the interactions. For the global evaluation
and sociability, score plotted in Fig. 17-Left, Center, pair-
wise comparison with Bonferroni demonstrate a difference
between the use of the emotional model, p < 0.001, in both
cases. In terms of the duration of the interaction, it can be

Fig. 17 HRI emotional model results. Degree of acceptance of the
Emotional Model. Left: global evaluation if Tibi uses an emotional
model or not. Center: robot’s sociability. Right: duration of the interac-
tion

seen, that if Tibi is able to express its emotions the duration
of the experiments are longer.

Hence, once the three components has been analyzed, we
can conclude that if our robot Tibimakes use of the emotional
model, it has the largest acceptance. People perceived the
robot to bemore sociable, and the duration of the interactions
were longer.

Finally, human perception has been studied in the navi-
gation skill. To analyze the source of the difference, three
scores were examined: “overall”, “robot’s sociability” and
“robot’s intelligence”, plotted in Fig. 18. For the global evalu-
ation score plotted in Fig. 18-Left, pairwise comparison with
Bonferroni demonstrate a difference between the two kind
of navigation approaches, p < 0.001. In terms of robot’s
sociability and intelligences the volunteers also perceived a
difference between the two navigations, p < 0.01 in both
cases.

Therefore, after analyzing these three components in navi-
gation terms, wemay conclude that if the robot has the ability
to socially navigate and respect human conventions, it has the
largest acceptance. People perceived the robot to be more
intelligent more sociable.

8.6.2 Participants Comments

Each questionnaire included several blank lines underneath
the social scales, where participants could include additional
comments about the experiments.Whilewe did not explicitly
codify and analyze these comments, they do provide further
insight into the effect of the three robot behaviors.

8.6.3 Comments When the Robot Uses Only Verbal
Communication (B1)

Many of the participant comments reflect that the robot did
not attract the attention. E.g.:

“I didn’t think the robot was talking to me, because it
wasn’t moving.”

“The only quality I can attribute to him is that he knew
when I was walking around him.”
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Fig. 18 HRI navigation results. Degree of acceptance of the robot nav-
igation. Left: global evaluation of the two navigations. Center: robot’s
sociability. Right: robot’s intelligence, as perceived by the humans

“The fact that the robot didn’t move made it difficult for
me to know whether it was interacting with me or not.”

“The robot attractedmy attention because it’s cute, but not
because of its behavior.”

Note that the comments on this behavior indicate that par-
ticipants felt that the robot did not try to initiate engagement
with them.

8.6.4 Comments When the Robot Uses Both Verbal
Communication and Gestures (B2)

Many of the comments reflect that the robot did not attract
participants’ attention to a satisfactory degree. Tibi was con-
sidered a social robot, but it was not perceived as intelligent:

“I like when she gestures, and attracts my attention, but I
would have preferred that the robot also approached me, not
just waited for me to act.”

“I love when the robot greets me when I pass nearby, I
find it very sociable.”

“If Tibi was able to move, it would draw more attention
and hold my interest, yet I find it very interesting that I could
play the role of a teacher.”

“I like that the robot comes do me and doesn’t wait for me
to approach it before speaking to me.”

Note that the comments on this behavior generally indicate
that although participants felt that the robot tried to initiate
an engagement with them, it was not enough, and most par-
ticipants wondered if Tibi was moving independently.

8.6.5 Comments When Robot Uses Verbal, Nonverbal
Communication, and was Free to Approach the
Person (B3)

Many of these comments indicated that participants felt that
the robot tried to initiate engagement with them, and they
were generally interested in the robot’s skills:

“This is the first time I find myself around a robot who
interrupts me in order to help me; it’s very original.”

“Tibi is very polite, and I find it charming that it follows
me around until I pay attention.”

“I felt that Tibi obeyed social conventions by approaching
me and starting the interaction.”

“Does it mean that Tibi will be here alone? That’s original
but may be dangerous for her.”

“I feel that the robot is very intelligent because she knows
when I’m nearby and approaches me in order to interact. I’d
like to know what else she can do.” (emphasis in original)

“It’s funny that Tibi gets mad when I ignore her; it would
be interesting to see if she rememberedme next time she sees
me.”

Note that the comments on this behavior indicate that par-
ticipants felt that the robot tried create an engagement with
them. Moreover, Tibi behaved in a socially acceptable man-
ner and generally understood if people wanted to interact
with her or not.

9 Discussion

The findings presented in the previous section reinforce the
notion that the robot’s ability to initiate engagement is an
important skill to master in order to achieve natural inter-
action with people. Overall, people were surprised to find a
robot in a public space, and they were astonished when the
robot caught their attention. Moreover, they enjoyed helping
the robot to detect their faces and were surprised to see how
the robot progressively improved its skills with their assis-
tance.

The experiments we conducted yielded conclusive results.
We found that people felt their interaction with the robot was
more naturalwhen the robot communicated throughgestures,
verbal cues, and motion. Detailed analysis showed that these
capacities improved the human’s perception of the robot’s
intelligence and sociability. We also found that the amount
of speech and comments made by the robot seems to be
appropriate for this type of scenario. Moreover, people felt
comfortable using the Wii remote control to communicate
with the robot. In order to studywhether the emotional model
improves the quality of the interaction between the robot and
the human, we performed experiments to evaluate if the use
of the emotional model enhanced the interaction. Volunteers
percieved Tibi more sociable and closer when it expresses
its emotional model, and the interactions were longer. Fur-
thermore, the presented navigation has been perceived more
sociable for users.

We were also able to effectively demonstrate that human
assistance helped to enhance visual perception tasks such as
online face recognition. The entire process was done with
minimal human effort and great efficiency. The results show
that the use of a social robot piques people’s interest and
encourages them to collaborate with the robot to enhance its
visual skills.
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We noticed that very few participants were capable of
specifically naming the robot’s disadvantages, and most of
them provided helpful suggestions when asked about possi-
ble improvements for Tibi. People expressed an interest in
communicating with the robot via voice commands, finding
that kind of communication to be generally more comfort-
able. They also suggested that it would be interesting if they
could teach the robot to identify new objects by pointing
them at the robot’s screen. Both of these remarks will be
incorporated into our future research.

Finally, we must address some of the cultural limitations
of our project. The parameters and definitions for human
personal space, employed in the first set of experiments,
are specific to European people and to the design of our
own robot. Therefore, if this experiment were to be adapted
in other cultures, its parameters would need to be adjusted
accordingly through experimentation. In addition, the pro-
posed model of interaction was tested in a specific scenario,
and so its application in other situations is limited. It is possi-
ble that context and environment significantly affect humans’
preference for a specific mode of robot behavior. For exam-
ple, in a business environment, a mobile robot approaching
people could be annoying, as its interruptions might disturb
people. We believe that the University Campus is rather neu-
tral, and can thus reflect general trends in interaction in many
daily use scenarios. However, this question warrants further
study.

9.1 When will This Capacity be Used?

Webelieve that robot’s capacity to naturally establish engage-
ment is a major function that should be implemented in
future social robots. While other projects have assumed that
people and robots can meet and initiate interaction, it has
been observed that this is generally not the case in real
world scenarios. In principle, robots might not need to initi-
ate interaction themselves, because ideally people would be
interested in the novelty and would approach them of their
own volition. In these concrete cases, robots would not need
to adjust their behavior to initiate interaction.

However, in most cases, humans will not initiate interac-
tion with robots themselves, especially if the robots do not
approach them and attract so much attention. Here, robots
will often fail to initiate interaction [49].

There are many situations that involve a first meeting,
such as a tour guide in cities or museum [8,18], nurse in
hospitals [39] or a shopping assistant [52], which are actual
and potential applications of social robots.

10 Conclusion and Future Work

We have introduced an autonomous mobile robot that seeks
interaction for the purposes of human-assisted learning. The
major contributions of this paper are two-fold. First, we
have studied different robot behaviors for initiating inter-
action with humans. We showed that the robot was able to
autonomously approach a person and establish an engage-
ment with him/her.

Secondly, once engagement was established, people could
assist the social robot to improve its visual skills. Following
the assisted learning stage, the robotwas able to detect people
by using its visual skills even under challenging scenarios,
such as when the objects were partially hidden.

Both contributions have been extensively and rigorously
tested in a real environment in Barcelona city with non-
trained volunteers. Our findings suggest that allowing the
robot to take the initiative when communicating with people
usually increased the number of human-to-robot interactions.
This, in turn, allowed humans to assist robots in improving
their visual skills, and engage in subsequent, and more pre-
dictable, interactions.

Finally, with respect to future work, humans routinely
interact with other people and perform tasks individually and
collectively on a daily basis. Robotic researchers are inter-
ested in designing robots that can interact with people in
the same way as humans do. To be able to reach this goal,
robots should learn from their interaction with humans and
acquire the humans’ skills which are used in our everyday
life. The learned social behaviors could be used in a wide
range of real-world scenarios, such as, domestic tasks, shop-
ping, assistance, guidance, entertainment, surveillance, or
rescue.

There are many examples where these interactions occur,
but some of them are so basic that people might not real-
ize the extreme difficulties that come with executing such
tasks for a robot. Navigation in crowded environments, or
the social engagement required to initiate a conversation, are
some examples.

Continuing the work presented in this paper, we plan
to develop new techniques to learn from interaction with
humans using multi-modal interaction. The models can be
learned offline or online, and humans can use information
from inputs and outputs to train the system again in order
to improve the models. We expect that with these new tech-
niques, the multi-modal interactive system can improve the
accuracy and robustness of the methods.
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