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Abstract— This paper focuses on improving performance
with practice for tasks that are difficult to model or plan,
such as pouring (manipulating a liquid or granular material
such as sugar). We are also interested in tasks that involve
the possible use of many skills, such as pouring by tipping,
shaking, and tapping. Although our ultimate goal is to learn and
optimize skills automatically from demonstration and practice,
in this paper, we explore manually obtaining skills from
human demonstration, and automatically selecting skills and
optimizing continuous parameters for these skills. Behaviors
such as pouring, shaking, and tapping are modeled with finite
state machines. We unify the pouring and the two shaking
skills as a general pouring model. The constructed models
are verified by implementing them on a PR2 robot. The
robot experiments demonstrate that our approach is able to
appropriately generalize knowledge about different pouring
skills and optimize behavior parameters.

I. INTRODUCTION

An important robotics challenge is to enable robots to
help with household chores, such as bringing a beer bottle
from a refrigerator to a human, loading dishes into a dish-
washer [1], making pancakes [2], and folding towels [3]. We
are taking a learning from demonstration (LfD) approach
to this problem [4]. However, a key issue for robots to do
household chores is how to treat different strategies of each
task. Consider an opening task. There are a number of ways
to open containers: rotating a cap on a plastic bottle, pulling
a hinge cap of a ketchup bottle, pulling a pop-tab of a beer
can, tearing a bag of potato chips, and so on. In addition,
when opening a tight jar, we will use a different way to
open it, like holding a cap with a wet towel. We call these
methods skills. Learning these skills is essential for robots
to fully handle tasks.

In this research, we examine a pouring task to study skill
involving many strategies. The purpose of pouring is to move
material from a source container to a receiving container.
Humans use many skills to pour, such as shaking a bottle to
pour viscous liquid like ketchup, tapping a bottle to pour a
little amount of coffee powder, squeezing a shampoo bottle,
and pushing a soap pump. Each of these versions of the task
are hard to model and plan from first principles. Thus, the
pouring task is a good example for robots to learn skills.
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The goal of this research is making a general pouring
model from human demonstrations with which a robot can
pour a wide variety of materials using a wide range of con-
tainers. This problem is decomposed into four sub-problems:
(1) Deriving a model of a skill from human demonstrations to
reproduce the skill. Each model will have some parameters to
adapt to a specific situation like container size and material.
(2) Storing skill models and pairs of a situation description
and the parameters for the situation. (3) Selecting a skill for
a new situation with estimated parameters. (4) Correcting the
selection of a skill if necessary, and adjusting the parameters
to the new situation through actual executions.

In this paper, we focus on (4), the learning from practice
step, with manually derived skills from human demonstra-
tion. Though a number of methods are proposed so far in
LfD research, we do not see a practical method that covers
(1) to (4). The issue is that we have not formulated this
kind of problem yet. Therefore, we start from manually
obtained skills and provide a way to improve them through
experiments.

Concretely, we model pouring, two shaking, and tapping
skills. In addition, we develop a general pouring model
that unifies the pouring and the shaking skills. This general
pouring model has a wider generalization ability than the in-
dividual skills. For learning from practice, we also introduce
a parameter optimization architecture for both discrete and
continuous parameters of the skills. Finally, we implement
the models on a PR2 robot, and conduct experiments on the
real robot. In the experiments, we show the generalization
ability of these models in terms of the target amount, the
source container shapes, and the material kinds.

This paper’s approach is close to the “learning from obser-
vations and practice using behavioral primitives” framework
proposed by Bentivegna [5]. Another similar approach is
found in the “learning parameterized skills” framework [6].
There are several attempts for robots to learn pouring from
human demonstrations [7], [8], [9], [10]. However, they
are focusing on a part of the entire pouring problem. For
example, the method in [8] optimizes the source container
trajectory and its goal position for a pouring task, that
will have a generalization ability at a certain level, but
we cannot expect the generalization to the source container
shape and the material kinds. The method in [10] teaches
a robot to pour using force information, and models the
human demonstration with a parametric hidden Markov
model (HMM). Using HMM-like models is useful to encode
a human demonstration automatically, but it is just a part of
the entire pouring problem. To achieve our goal, we need a
method with the capability to learn different strategies for
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Fig. 1. Setup to measure a human demonstra-
tion. Fig. 2. Result of a human demonstration. The amount trajectory

and the orientation (Theta) trajectory are plotted.

Fig. 3. Illustration of pouring
model.

Fig. 4. Finite state machines of pouring, shaking A and B, tapping, and general pouring. See “Legend” to understand the state machines; else denotes a
condition that is satisfied if the other conditions are false, entry denotes an entry action that is performed when entering the state, which is not executed
if the next state is the original state. In state machines of pouring, shaking A and B, and tapping, a common condition and the next state are omitted
from every state, which is shown as “Common”. Note that in the tapping state machine, the “Stop” state has an entry action: rtoinit. There are several
utility functions; ctrl(θ̇): control θ with its velocity θ̇, flow: true if flow observed, noflow: true if no flow observed, noflowin(∆t): true if no flow
observed in ∆t, shakeA: perform shaking A motion, shakeB(ϕ): perform shaking B motion with the axis parameter ϕ, rtotap: move the right gripper
to the tapping pose, rtoinit: move the right gripper to the initial pose, elapsed(∆t): true if the elapsed time after entering the state is greater than
∆t, vibrate: perform vibrating motion. There are several constants and variables; θ̇max: maximum velocity of θ, atrg: target amount, tmax: timeout
duration, i: selected skill.

each task, improve the strategies from practice, and have an
extensible generalization ability. Although our approach re-
lies on manual skill implementation, the obtained method has
good generalization ability. This result will provide guidance
for robotics, machine learning, and artificial intelligence to
develop more practical methods.

In Section II, we model skills from human demonstrations.
In Section III, we describe the parameter optimization archi-
tecture. In Section IV, we implement skills on a PR2 robot.
Section V concludes this paper.

II. LEARNING SKILLS FROM HUMAN DEMONSTRATIONS

A. Human Demonstration of Pouring

First, we observe human demonstrations of pouring. We
use the setup shown in Fig. 1 to track the human demon-
strations. A human subject will pour from a source con-
tainer (source) to a receiver container (receiver) where the
orientation of the source and the amount of material in the
receiver are measured by RGB cameras. The material in

the source is dried peas which behave like water, but are
more convenient for measuring the amount and for real robot
experiments especially when spills occur. The human subject
pours the material to a target amount of 0.5 which is half of
the receiving container volume.

Fig. 2 shows a demonstration of pouring where the amount
in the receiving container and the orientation are plotted.
From this demonstration, we can see that there are three
phases in pouring. Phase 1: rotating the source container
quickly until flow is observed. Phase 2: after flow starts, the
human rotates the source container slowly until the amount
reaches the target. We found that once the flow starts, it
continues without rotating the container much, and we infer
the human was more careful. Phase 3: after reaching the
target amount, the human moves the source container to the
initial pose.

B. Modeling Pouring
Based on the demonstration, we discuss how to model

the pouring behavior for a robot. The whole pouring task
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consists of grasping a source container, moving it to the
receiving container, pouring the material from the source to
the receiver, moving the source to an initial location, and
releasing the source. For simplicity, here we assume that
the robot starts to pour when the robot is grasping a source
container and holding it near the receiver.

From the human demonstration, we found that during
pouring, the mouth edge of the source was moving little;
while, the grasping point was moving more widely. Thus, we
think that modeling the movement of a point on the mouth
edge is easier than modeling the movement of the gripper.
We assume that during pouring, the edge point of the source
takes a constant value, and only the orientation changes to
control the flow, as illustrated in Fig. 3. The source container
moves mostly in a 2-dimensional plane, so the orientation is
modeled by a 1-dimensional variable, θ. When the robot is
grasping a source container, the position of the edge point
of the source is constant in the local frame of the gripper.
Thus, controlling the edge point is achieved by a standard
inverse kinematics solver.

As we mentioned above, we found three phases in the
human demonstration. A simple way to model this kind of
behavior is using a finite state machine. When no flow is
observed, the robot increases θ (Phase 1). If flow is observed,
the robot slows down the movement (Phase 2). If the target
amount is achieved, the robot moves θ to the initial value
(Phase 3). Through some demonstrations, we found that
if the material starts flowing, it continues to flow without
increasing θ. Thus, in Phase 2, we increase θ only when the
flow is not observed, and keep the same value when the flow
is observed.

A state machine for pouring is illustrated in Fig. 4. We
assume θ = 0 at the initial pose, and θ should be less than
θmax where the source container is upside down. The “To
Init” state is used when θ is not zero at the state. This
happens when the robot tries again from the initial pose
due to jamming, or the pouring skill is combined with the
others. The other states, ”Find Flow”, ”Pour”, and ”Stop”,
correspond to the Phase 1 to 3 respectively.

Note that we can expect generalization abilities of this
state machine at a certain level, in terms of the target amount,
the initial amount in the source, the source container type,
and the material kind. In the experiments, we investigate
these generalization abilities.

C. Shaking

Humans sometimes shake a bottle to pour when the
material is jamming inside the bottle or the material is a
viscous liquid. Through human demonstrations, we found
that there are some variations in shaking behaviors; for
example, shaking vertically, shaking at an angle, shaking
linearly, and shaking rotationally. We model two types of
shaking since they have good pouring performance. These
demonstrations are shown in Fig. 5(a) and 5(b), which we
refer to as shaking A and B respectively. Shaking A is
a vertical motion while holding the bottle upside down.

(a) Shaking A. (b) Shaking B. (c) Tapping.
Fig. 5. Human demonstrations of shaking and tapping.

Shaking B is a shaking at an angle where the flow is
maximized.

Shaking A and B are modeled with finite state machines
as illustrated in Fig. 4. In this figure, shakeA denotes the
shaking A motion where the source is moved in vertical
direction, and shakeB(ϕ) denotes the shaking B motion
where the shaking direction is decided by the parameter ϕ
as [sin(ϕ), 0,− cos(ϕ)] in the source frame. The parameter
ϕ is chosen to be suitable for the current situation.

D. Tapping

Tapping is used to pour material accurately (see Fig. 5(c));
for example, pouring coffee powder. Reproducing such a
motion with a robot is a bit difficult unless the robot can
move a gripper or finger rapidly. The PR2 can “tap” by
touching the right gripper to the source container held by
the left gripper, and then vibrating the right gripper.

The tapping is also modeled with a finite state machine as
illustrated in Fig. 4. This state machine is more complicated
compared to the others since the tapping includes dual-
gripper motions. In preliminary experiments, we found that
the initial flow is much larger than the amount poured by
the tapping. Thus, we design the state machine so that it can
find the initial flow carefully.

E. General Pouring

Finally, we model a general pouring where the pouring,
and shaking A and B skills are unified. Each skill is modeled
by a finite state machine, so the general pouring is also
modeled by a state machine, as illustrated in Fig. 4. This
is a higher-level state machine, where the individual state
machines are used as sub-state machines. Basically, [BEGIN]
and [END] of each sub-state machine are connected to the
“Start” state of the general pouring state machine. The “Stop”
state of each sub-state machine is removed and the terminal
condition is directly connected to [END]. This is because
every sub-state machine is designed to be able to start at any
value of θ. In a known situation, namely, a known source
container type and material kind, the suitable skill can be
selected easily; in an unknown situation, the skill selection
is optimized through trial and error as described in the next
section.

III. LEARNING FROM PRACTICE

The task of the human demonstration shown in Fig. 5(a)
and 5(b) was a bit difficult for the human, where we found
several interesting behaviors. First, the human tried some
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different skills that we are referring to as shaking A and B.
Since the human did not know the most suitable skill for the
task, the human investigated the best one through trial and
error. The human also adjusted some skill-related parameters
like shaking axis and speed.

These are on-line parameter optimizations. The former one
is a discrete parameter optimization (skill selection), and
the latter one is a continuous parameter optimization. We
introduce a parameter optimization architecture into the skill
models so that the robot can widen the variety of pouring task
scenario. In the following, we describe the problem setup,
optimization methods, and the architecture to introduce the
optimization methods into the skill models.

A. Problem Specification

Though there are several objectives in the pouring task
such as pouring as fast as possible and avoiding spills, we
focus on the pouring speed optimization. The optimized
parameters are, for example, skill selection, the shaking axis,
and the shaking speed. The problem is to maximize the
pouring speed, namely a score function, with respect to these
parameters. We do not have an analytical model between the
parameters and the score; the score can be obtained through
actual execution using the parameters.

There are two kinds of parameters to be optimized. One is
a discrete parameter that is selected from a set of options (e.g.
a set of skills). The other is a continuous parameter that is
selected from a single or multi dimensional continuous space
(e.g. a shaking axis).

B. Optimization Method

Since score functions like the pouring speed are noisy,
we need to choose a robust optimization method. For con-
tinuous parameter optimization, we use the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) proposed and
implemented by Hansen [11]. CMA-ES is an evolutionary
algorithm that does not require the gradient of the score
function.

For the discrete parameter optimization problem, we use
Boltzmann selection (as known as the softmax selection) [12]
to select an option where each option is evaluated with an
upper confidence bound (UCB). Though there are several
versions of the UCB, we use the sum of the expected score
µ and its standard deviation σ similarly to [13]. µ and σ
are updated by an exponential moving average scheme. The
details can be found in [14].

There are many other choices to optimize the parameters,
for example, using a reinforcement learning method (e.g.
[15]). Rather than using or developing a state-of-the-art
method, we are focusing on showing an entire solution to
the pouring problem. Thus, we choose simple but practical
methods.

C. Architecture

We use these optimization methods in an on-line manner.
An on-line parameter optimization consists of three steps:
(1) Selecting a parameter to be used, (2) Using the parameter

Fig. 6. Setup of the experiments.

Fig. 7. Object specific vectors. A pose means a xyz position and a
quaternion. [sf] and [wf] denote a vector defined in the source container
and the wrist frames respectively.

and obtaining the score, and (3) Updating based on the score.
A natural way to integrate these steps in a state machine is
treating them as actions of the state machine, since these are
a kind of action.

The optimization method for the skill selection is intro-
duced to decide the skill index i in the general pouring state
machine (Fig. 4). In this case, the selecting and the updating
steps are executed as the entry action of the “Start” state.
The score is the difference of the amount divided by the
execution duration.

Note that the general pouring state machine supports trial
and error learning during a single pouring trial. For example,
if the material jams in the shaking A state machine, it is
detected by the noflowin(2) condition, and the state moves
back to the “Start” of the general pouring. Thus, the skill
selection can be updated and a new skill selected.

In this paper, we apply continuous parameter optimization
to ϕ of the shaking B. In this case, the selecting and the
updating steps are executed right before and right after the
shakeB(ϕ) action.

IV. EXPERIMENTS

We implement the pouring skills modeled in the previous
sections on a robot, and investigate their capabilities. In
the experiments, first, we show the generalization ability
of the pouring in terms of the target amount. Second, we
compare the shaking A and B skills. Third, we show how
learning from practice works. Fourth, we demonstrate the
generalization ability of the general pouring model in terms
of the source container shapes and the material. Finally,
we investigate the tapping skill. The accompanying video
is available at http://youtu.be/cGci9FOl680.

We use a PR2 robot that has two 7-degrees of freedom
arms with grippers. Fig. 6(a) shows the setup of the robot
and containers. In order to measure the amount of poured
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Fig. 8. Source containers and poured materials. Each photo contains a coin
of diameter 0.955 inches as a scale. BBs are copper-coated bullets for toy
guns. The container B3 and B4 are specially designed for the experiments;
these holes are designed to be small in order to produce jamming.

material, we use an RGB camera and detect specific colors
as shown in Fig. 6(b). The ratio of colored areas is used as the
amount. For this purpose, as the receiving container, we use
a transparent plastic container whose back half is colored.
We use ROS packages for the PR2 to implement low-level
control and inverse kinematics solver of the grippers.

As mentioned in Section II-B, in order to control the pose
of the pouring edge point with the 1-dimensional variable
θ, we define several object specific vectors as illustrated in
Fig. 7. The pouring edge pose and the grasping pose are
constant vectors in the source container frame; these are
defined for each source container. Since during grasping,
the gripper pose corresponds to the grasping pose, we can
compute the pouring edge pose in the wrist frame. An inverse
kinematics solver for the wrist link is implemented in a ROS
package, thus we can control the pouring edge pose. From
the initial pose of the source container, we can estimate the
rotation axis.

In order to investigate the generalization ability in terms of
the source containers and the poured materials, we prepare
14 containers and 5 materials as shown in Fig. 8. Though we
use only dry materials to avoid hardware damage by liquid,
they behave similarly to a viscous or runny liquid. The object
specific vectors shown in Fig. 7 are manually measured for
each container. We plan to totally automate perception in
future work.

A. Pouring

Fig. 9 shows a typical result of pouring where the target
amount is 0.5, the source container is B1, and the poured
material is the dried peas. The flow started around 2 [s],
and the robot slows down. Compared to the human demon-
stration (Fig. 2), the robot behavior has similar structure;
namely, there are three phases. However, we can find some
differences. For example, the human slows down the angular
velocity before the flow starts. One possible reason is that the
human tries to keep the initial flow small. Estimating the ori-
entation where the flow starts is necessary to reproduce this

Fig. 9. Typical result of pouring. The setup corresponds to that of the
human demonstration (Fig. 2); the source container is B1, and the poured
material is the dried peas. For the consistency with Fig. 2, θ (Theta) is
shifted so that their ranges match with each other.

(a) Dry peas.

(b) Rice.
Fig. 10. Generalization in terms of target amount.

behavior; humans are using visual information and/or force
information. We have not yet implemented this behavior.

Next, we investigate the generalization ability of the
pouring skill in terms of the target amount. We use B1
as the source container, the dry peas and the rice as the
poured material, and change the target amount from 0.1 to
0.6. Fig. 10(a) and 10(b) show the results of using the peas
and the rice respectively. In Fig. 10(a), the case of the largest
error is at the target of 0.1. The reason is that the amount of
initial flow (around 3 [s]) was large; the initial flow poured
more than the target amount. In the other cases, the target
amount is achieved well.

On the other hand, the results of the rice case (Fig. 10(b))
seem to be noisy. Each amount trajectory overshoots. This
was caused by the vision system being confused by the
stream of material during the pouring. Compared to the peas,
the flow of rice spread more widely and was more visible to
the camera. There are several ways to reduce this problem:
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TABLE I
COMPARISON OF SHAKING A AND SHAKING B.

Src. Method # of failures Avg. duration [s] SD [s]

B4

{ Shaking A 0 19.06 1.27
Shaking B(0) 2 45.76 N/A
Shaking B(π/4) 0 31.03 6.79

B3

{ Shaking A 2 94.29 N/A
Shaking B(0) 3 N/A N/A
Shaking B(π/4) 0 38.87 0.54

using a better vision system, adjusting pouring parameters,
using force information like [10], and so on. Anyway, we
can say that the pouring skill has some generalization ability
in terms of the target amount.

B. Comparison of Shaking Skills

We investigate two versions of the shaking skills, shaking
A and B, and make clear the necessity of both versions. We
use B4 and B3 as the source containers. The poured material
is the dried peas. For each container, we apply the shaking
A, shaking B with the axis ϕ = 0 and ϕ = π/4.

Table I shows the results of the B4 and the B3 cases. The
table describes the number of failures out of 3 runs, average
pouring duration and its standard deviation. The failure is a
timeout case; tmax is about 40 [s] in the B4 case, and is about
80 [s] in the B3 case, since the latter case is more difficult.
Obviously, in the B4 case, shaking A outperforms the others;
meanwhile in the B3 case, shaking B with ϕ = π/4 is the
best. Both shaking versions are necessary to cover the wide
range of source containers.

Fig. 11(a) shows a result of shaking A for the B4 container.
Fig. 11(b) shows a result of shaking B with ϕ = π/4 for the
B3 container. While the orientation θ takes a constant value,
the shaking motion is performed. In Fig. 11(a), we can see a
little flow before starting shaking (around 5 [s]) but the flow
stops due to the jammed material, so standard pouring does
not work any more. During shaking, we can see the amount
is increasing. Thus, shaking is a possible way for the robot to
solve jamming. Compared to the B4 case, it takes more time
to pour the target amount in the B3 case. The B3 container
is also difficult for humans to pour.

C. Learning from Practice

We demonstrate how the parameter optimization architec-
ture works. Here, we investigate separately discrete param-
eter optimization (skill selection) and continuous parameter
optimization.

1) Skill Selection Optimization: There are three choices:
pouring, shaking A, and shaking B. The axis of shaking B
is fixed to ϕ = π/4. We initialize the expected scores of the
three options as 1.0, 0.5, 0.5 respectively, which means that
the robot will use standard pouring initially.

Fig. 12(a) shows the result of the B3 case, and Fig. 12(b)
shows the result of the B4 case. The dried peas are used in
both cases. Several trials are sequentially done in each case;
six trials in the B3 case, and seven trials in the B4 case.
In each graph, the selected option is plotted on the amount
trajectory.

(a) Shaking A. The source container is B4.

(b) Shaking B(π/4). The source container is B3.
Fig. 11. Results of shaking A and B. The material is the dried peas.

(a) Container B3.

(b) Container B4.
Fig. 12. Learning process of skill selection optimization.

In the first trial of Fig. 12(a), we can see the three options
were tried. First, the robot applied pouring, but since it
did not work, the robot switched to shaking A (recall that
this is an on-line parameter optimization). In the first and
second trials, shaking A seems to have been dominant.
However, shaking A got stuck due to jamming in the 4-th
trial. Eventually, shaking B was selected.

In the first trial of Fig. 12(b), only pouring was used though
the selection was done several times. As we could see a
little flow before starting shaking in Fig. 11(a), the standard
pouring works in this setup initially. Actually in the first trial,
repeating alternately pouring and going back to the initial
achieved the target amount. Thus, it took several times to
learn that the performance of pouring was not good. In the
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(a) Scores per generation (greater is better). Moving average
filter is applied, and the data of first 20 generations are omitted
because of inadequate data for the filter.

(b) Chosen parameters (ϕ) per generation.
Fig. 13. Learning process of parameter ϕ optimization in shaking B.

second and the third trials, the robot used the shaking B and
A respectively. Since the robot could pour continuously with
each skill, it did not change the skill in each trial. In 5-th and
6-th trials, the robot experienced jamming with the shaking
B. Eventually, the robot decided to use the shaking A for
this situation.

Therefore, in the both B3 and B4 cases, we obtain the
corresponding results with the previous experiment.

2) Continuous Parameter Optimization: Next, we opti-
mize the parameter ϕ to decide the axis of the shaking
B. The initial mean and standard deviation are ϕ = π/4
and 1 respectively. In the early stage of optimization, the
robot will choose the parameter almost randomly with this
configuration. ϕ is limited in [0, ϕ/2].

We ran 11 trials sequentially. Fig. 13(a) shows the scores
in each generation. Fig. 13(b) shows the parameters in each
generation of the CMA-ES; there are 4 individuals (different
parameters) in each generation. We can see that the parameter
converges to around 0.6 in Fig. 13(b), and the score is
improved in Fig. 13(a). The pouring duration was improved
from 60.71 [s] of the first trial to 42.47 [s] of the last trial. In
the previous experiment, we compared ϕ = 0 and ϕ = π/4
in the same setup, and found that ϕ = π/4 is better. In
this experiment, the robot could find the optimal parameter
automatically, and the found parameter is close to the manual
optimization result, ϕ = π/4. Thus, the CMA-ES could find
an appropriate solution.

On the other hand, the score function was very noisy.
Even taking the same parameter, the resulted scores are
different. The shaking result is affected by the previous
shaking motion. Due to these effects, in Fig. 13(b), the
parameter seems to have almost converged around 30 [s],
but the score of the corresponding generation was not so

(a) Short pouring duration (1).

(b) Short pouring duration (2).

(c) Long pouring duration.
Fig. 14. Results of generalization test in terms of the source container and
the poured material. Each curve shows a result of SOURCE-MATERIAL
combination. (K) shows the parameters are known, (U) shows unknown,
and (I) shows incorrect.

high. After that, it increased the search deviation and found
a parameter with a better score. Thus, CMA-ES is practically
useful.

D. Generalization Ability

We investigate the generalization ability in terms of the
source container and the poured material. Each situation
is described as a SOURCE-MATERIAL format; e.g. B1-
BBS. We prepare 15 combinations from the containers
and the materials shown in Fig. 8. For some of them, we
manually assigned the parameters of the skill selection and
the shaking axis. We assigned incorrect parameters for a B3-
rice case where we use the same parameters as those of
B3-peas treated in the previous experiments. We assume the
parameters of the other cases are unknown. For these cases,
we initialize the parameters as was done in the parameter
optimization experiments. The target amount is 0.3 except
for a B41-rice case; in the B41-rice case, the target amount
is 0.1 since B41 is a small container.
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Fig. 14 shows the results where the combinations are
categorized into long pouring duration ones (Fig. 14(c)) and
short ones (the others). In the B8-rice, the B40-rice, and the
B41-rice cases, the overshoot problem happened similarly to
the previous experiment. In the B7-pasta case, the poured
amount exceeds the target significantly. This is because the
friction between the source container and the material is
pretty low in this combination. In the B6-BBs case, the
poured amount also exceeds the target. The reason is that
since the hole of the container B6 is small, the robot rotated
the container more than the others, which increased the
material flow during moving the container back to the initial
orientation. For the other cases in the short pouring duration
category, the target amount was almost achieved.

In the long pouring duration cases in Fig. 14(c), the known
cases, B3-peas and B4-peas, were poured relatively quickly.
Though incorrect parameters were given, the B3-rice case
was also poured fast. This is because the problem setup
was similar; the difference was the dried peas and the rice
only. The B5-clips and the B9-pasta cases took longer time.
Obviously, these problems were difficult since the material
particle was large compared to the containers’ holes. Since
these were unknown setups, the skill selection was optimized
during the execution (we executed only one trial).

Though there is room for improvement, we have achieved
the generalization ability at a certain level.

E. Tapping

Next, we investigate the performance of tapping. This skill
uses the right gripper to tap, so we start from the setup shown
in Fig. 6(c). The robot grasps a source container with the
left gripper while the right gripper stays above the receiving
container. In order to touch the right gripper to the source
container, we define a tapping pose as illustrated in Fig. 7,
which is a constant vector in the source frame. We use the
B25 container and the BBs.

Fig. 15 shows a part of trajectories of the tapping where
the result of B25-peas in the previous experiment is shown
as the comparison. We can see that using tapping, the robot
can pour the material very slowly. Thus, tapping enables the
robot to pour accurately. However, there is another difficulty;
in the slow pouring setup, the amount of initial flow is
comparably large, which dominates the total amount. Thus,
without an accurate controller for the initial flow, we cannot
achieve accurate pouring with respect to the total amount.

V. CONCLUSION

In this paper, we investigated a way for robots to learn
pouring from demonstration and practice. A pouring task
involves the possible use of many skills; we manually
modeled pouring by tipping, shaking, and tapping using
finite state machines. We unified the pouring and the two
shaking skills as a general pouring model. For learning a skill
selection and skill parameters from practice, we introduced a
discrete and continuous parameter optimization architecture
into the models. The constructed models were verified by
implementing them on a PR2 robot. The robot experiments

Fig. 15. Comparison of the standard pouring and tapping.

demonstrated that our approach could appropriately gener-
alize knowledge about different pouring skills and optimize
skill parameters. Future work is expanding the scenario to
the whole pouring process including a pick-and-place of the
container, and using the pouring skills in higher level tasks
like cooking, as well as increasing the number of skills.
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