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Abstract— In this paper we utilize the notion of affordances to
model relations between task, object and a grasp to address the
problem of task-specific robotic grasping. We use convolutional
neural networks for encoding and detecting object affordances,
class and orientation, which we utilize to formulate grasp
constraints. Our approach applies to previously unseen objects
from a fixed set of classes and facilitates reasoning about which
tasks an object affords and how to grasp it for that task.
We evaluate affordance detection on full-view and partial-view
synthetic data and compute task-specific grasps for objects that
belong to ten different classes and afford five different tasks.
We demonstrate the feasibility of our approach by employing
an optimization-based grasp planner to compute task-specific
grasps.

I. INTRODUCTION

Most of the tools that humans use consist of multiple
functional parts. Part attributes such as shape, size, material,
etc. are often indicators of their function, i.e., a task they
afford. Blades, for example, are sharp and rigid and therefore
afford the task cutting. In the context of robotic manipulation,
using these tools to execute such a task, requires grasping
them first. However, for a given task we cannot just grasp in
any manner. For instance, when grasping a knife for cutting,
a grasp should be applied on the handle and the hand should
be aligned with the main axis of the knife. Obviously, the
object part that affords a task as well as the object pose
condition a grasp applied to it.

For a robot, task-specific grasping is a challenging prob-
lem. In addition to what, a robot also needs to know how
to grasp so that the desired post-grasp action, i.e., task,
can be executed. Task-specific grasping, therefore, requires
modeling relations between object, task and a grasp so that
the reasoning system is able to generalize well to novel
scenarios.

In our previous work [1], we address this problem by
encoding relations of different grasp, task and object vari-
ables in a probabilistic manner. Although this approach
naturally deals with uncertainties, it required a discretization
of multiple variables, which is infeasible for such a high-
dimensional problem.

In contrast, in this work we propose to model relations
between object, task and a grasp by utilizing the notion of
affordances. We describe how to grasp in terms of grasp
constraints, namely contact locations and a hand approach
direction. We assume that contact locations depend on a
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Fig. 1: Given the shape of an object and a task, we detect object
part affordances. From these we formulate grasp constraints, such as
a contact location constraint. These constraints are then utilized to
compute task-specific grasps as shown here for example tasks poke,
pour, pound and support on the objects screwdriver, mug, hammer
and pan respectively. Magenta color indicates high affordance score
(top) and contact avoidance constraint for grasping (middle).

location of a part that affords the task and argue that detecting
part affordances facilitates reasoning about both what and
how to grasp for a given task. While what to grasp depends
only on local information—the presence of a part—how, in
addition, depends on global information—the presence of
other parts of the object and spatial relations between them
as well as the object pose. Therefore, we encode and detect
object affordances (see first row, Fig. 1), class and orientation
in a data-driven way and use these quantities to formulate
grasp constraints (see second row, Fig. 1). A grasp planner
then computes a stable grasp that fulfills these constraints
(see third row, Fig. 1). By utilizing deep learning we avoid
the need for feature engineering. In addition, formulating
these quantities as grasp constraints allows for a flexible
integration with any optimization-based grasp planner.

Overall, this paper makes the following contributions:

1) Using convolutional neural networks (CNNs) for ob-
ject affordance detection for task-specific grasping on
full and partial point clouds.

2) Encoding object affordances, class and, orientation to
formulate grasp constraints and modeling the rela-
tions between task, object, and grasp based on human
knowledge.

3) Showing proof of concept results for task-specific
grasping using optimization-based fingertip grasp plan-
ning.
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II. RELATED WORK

A. Learning Affordances from 2.5D and 3D data

The concept of affordances has been used in many studies
in robotics. Earlier works focus on hand-crafted features
to extract geometric properties from point clouds such as
size, convexity and eccentricity of an object. Song et al. [1]
encode these in a Bayesian network while Ten Pas and
Platt [2] detect graspable object parts from 3D point clouds
by searching for cylindrical shells that satisfy certain criteria
with respect to local neighborhoods of the point cloud. Myers
et al. [3] construct a large corpus of RGB-D images and infer
affordances of 105 tools from geometric features. All of these
approaches rely on manually designed features and therefore
suffer from a lack of generalizability.

Nguyen et al. [4] demonstrate the power of deep learn-
ing on an RGB-D dataset, setting a new benchmark for
affordance detection. Since learning the important depth
properties from RGB-D is challenging on small datasets, they
combine multiple modalities such as depth, RGB channels,
horizontal disparity, etc.

Recent successes in deep learning have shown promising
results ranging from shape completion to recognition by
employing a fully volumetric representation to learn complex
shape distributions from large scale 3D CAD datasets. The
first to deploy CNNs on 3D data were Wu et al. [5]. To
study 3D shape representations for objects, they propose a
convolutional deep belief network to represent a geometric
3D shape as a probability distribution of binary variables
on a 3D voxel grid for which they construct a large-scale
3D CAD model dataset. Similarly, Maturana and Scherer [6]
use a volumetric architecture and represent objects as binary
voxel grids. The benefits of these approaches are that they
can process 3D data from different sources such as CAD
models, LiDAR, point clouds, etc.

In this work we follow a similar approach by adopting a
volumetric representation which allows us to make full use
of the geometric information in the data. Additionaly, such
a representation of an object allows for flexible integration
with a fingertip grasp planner when computing a task-specific
grasp.

B. Task-specific Grasping

Numerous methods have been suggested for generating
stable grasps on objects [7–9]. However, grasping in a goal-
oriented manner requires reasoning about task requirements
and satisfying task-specific constraints. Previous attempts
to represent these requirements by grasp wrench analysis
[10] or detection of graspable part [11] do not consider
task-specific constraints such as contact locations and hand
approach directions.

Dang and Allen [12] present an examplar-based planning
framework to generate task-specific grasps. They introduce
a semantic affordance map, which relates local geometry to
a set of predefined semantic grasps that are appropriate for
different tasks. Given a map, the pose of a robot hand with
respect to an object can be estimated so that the hand is

adjusted to achieve the ideal approach direction required by
a particular task. A semantic affordance map on each object
class is built using a representative object of that class, which
limits the capability of their method to deal with objects with
large shape variance inside the class.

Vahrenkamp et al. [13] argue that extracting semantic
information is necessary for task-specific grasping. In their
approach objects are segmented into parts labeled with
semantic information (affordances) which are used for gener-
ating and transfering robotic grasps. This approach, however,
relies on hand crafted features to detect affordances and
requires offline grasp planning for a chosen hand.

In our previous work [1], we encoded relations between
different variables in Bayesian networks (BNs) to represent
and model robot-grasping tasks. To interpret the “goals” of a
given task we defined constraints which depend on both the
object and the action features. This approach relies on hand-
crafted features to extract physical attributes of an object and
requires training of one BN for each hand.

In this paper, we learn affordances, class and orientation
in a data-driven way by using CNNs. Formulating these as
grasp constraints facilitates reasoning about where and how
to grasp for a task.

III. PROBLEM FORMULATION

We propose a system for generating a stable, task-specific
grasp on an object for a robotic hand. Our system aims to
model relations between object, task and a grasp by encoding
and detecting object attributes and utilizing them to compute
task-specific grasps.

A. Notation and Definitions

Before going into the details, we first clarify the use of
notations. We use T to represent a set of tasks. The tasks
we consider are T “ tcut, poke, pound, pour, supportu. We
describe an object by its surface O which we represent by a
point cloud, i.e., a set of points p P R3. We denote a set of
object classes C “ tbottle, can, hammer, knife, mug, pan,
pen, screwdriver, spoon, wine glassu and use g to represent
a grasp.

To describe relations between tasks and objects we define
affordance labels that correspond to given tasks T. Each
affordance label characterizes a set of object parts that have
certain physical attributes. We say that an object affords a
task if it has such a part. We define those relations as follows:
‚ cut — thin parts with a flat edge such as blades
‚ poke — long pointy parts such as shanks of tools
‚ pound — parts of compact solid mass such as hammer

heads or tool handles
‚ pour — parts such as containers typically found on

mugs, cups and wine glasses
‚ support — thin and flat vessels usually used to serve

food such as plates, spoon heads etc.

IV. SYSTEM OVERVIEW

The input to our system is a surface of an object O in
the form of a point cloud and a task t P T. The output is
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Fig. 2: Pipeline of the process. The input to our system is a point cloud O and a task t P T. In the first stage, we detect object affordances
(first row) and in parallel we classify objects and estimate their orientation (second row). The output of the affordance detection is a binary
map Ot, which indicates contact locations for grasping. The class and orientation estimation is used to determine a desired approach
direction a. In the second stage, these quantities are used by a grasp planner to compute a task-specific grasp on the object.

a stable grasp g which fulfills requirements posed by the
task. We model a grasp as a tuple g “ pφ, T q, where φ is
a hand configuration and T P SOp3q the pose of the hand
with respect to the grasped object.

To generate a task-specific grasp on an object we propose
a two stage process, see Fig. 2. In the first stage, we detect
which parts of the input object afford the given task. In
parallel, we classify the object and estimate its orientation
ort with respect to a nominal class reference frame. To
encode and detect affordances, class and orientation, we
employ two CNNs: one for affordance detection, AFF-
CNN, and one for joint object classification and orientation
estimation, CO-CNN, described in detail in Sec. V. The input
to both networks is a binary voxel grid V of an object, where
a voxel v P V is assigned value 1, if there is p P O that
lies in the voxel’s volume, and else 0.

We assume that the task influences a grasp both in contact
locations and approach direction. Hence, the results of the
first stage are used to formulate grasp constraints, which
consist of a contact constraint and an approach direction
constraint. The contact constraint defines the part of the
object’s surface Ot the robot is allowed to grasp and we
define it with respect to the part that affords the task. The
approach direction constraint describes the 3D angle that
the robot hand approaches the object with, a, and depends
on the detected orientation ort. In addition to the task, both
of these constraints require knowledge about the full object
geometry. Although one object can afford multiple tasks we
define these constraints for the most common combinations
of object classes and tasks they afford, based on human
knowledge. In the second stage, we use an optimization-
based grasp planner to compute a grasp that fulfills these
constraints.

The complete process is summarized as pseudocode in
Algorithm 1. In the following sections we will first provide
a conceptual overview over the individual components before
explaining each component in more detail in Sec. V.

Algorithm 1: Task-specific grasping.
Data: Object point cloud O, task t P T
Result: Grasp g
/* Affordance Detection */

1 V Ð VOXELIZEpOq;
2 VÐ SLIDING-WINDOWSpV q;
3 for each sub-volume Ṽ P V do
4 ppt | Ṽ q Ð FORWARD-PASSpṼ ,AFF-CNNq;
5 end
6 for each voxel v P V do
7 scorepv, tq Ð

ř

Ṽ PV ppt|Ṽ qδpṼ , v, tq;
8 end
9 for each point pi P O do

10 Atppiq Ð scorepGET-VOXELppiq, tq ą ε;
11 end

/* Object Classification and Orientation
Estimation */

12 V Ð VOXELIZEpOq;
13 ort , cÐ FORWARD-PASSpV,CO-CNNq;

/* Grasp Planning */
14 Ot Ð CONTACT-LOCATIONSpAtppiqψpt, cqq;
15 aÐ APPROACH-DIRECTIONport ,anq;
16 gÐ PLAN-GRASPpOt,a,Oq;

A. From Affordances to Contact Locations

The output of AFF-CNN is used to compute a score
function scorepv, tq that assigns an affordance score to each
voxel v P V , where a larger score indicates that the points
represented by this voxel afford the task t.

This scoring function is then used to segment the object
into voxels that afford the task t and voxels that do not
afford this task. After segmentation, we convert the voxel
grid back to the point cloud and for each point p P O
obtain the binary value based on the segmentation. We denote
this segmentation as predicate Atppq P t0, 1u on the set of
points, where the value Atppq “ 1 indicates that the point
p affords the task t. An example for this is shown in Fig. 2,
where a screwdriver is segmented for the task poke.

In order to model the contact constraint, we define a
preference for fingertip placement ψpt, cq. If an object that
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Affordance for Task
Object class cut poke pound pour support

bottle 0
can 0

hammer -1
knife -1 -1
mug 0
pan -1
pen 0

screwdriver -1 -1
spoon -1 -1

wine glass 0

Fig. 3: Preference ψpt, cq for fingertip placement depending on
affordance labels. The preference can be positive or neutral (0) and
negative (´1). Empty entries indicate that ψpt, cq is not defined,
meaning that the object class is not suited for that particular task.

belongs to the class c has a part that affords the task t, i.e.,
Atppq “ 1, the function ψpt, cq defines if the fingers are
allowed to touch that part (positive or neutral preference) or
if they should avoid it (negative preference):

ψpt, cq “

#

0, positive or neutral preference
´1, negative preference

. (1)

The definition of ψpt, cq is given in Fig. 3. With this
definition the part of the object that should be grasped for a
given task is:

Ot “ tp P O|Atppq ¨ ψpt, cq “ 0u. (2)

For example, although a screwdriver and a pen both have a
part that affords poking, ψppoke, penq “ 0 for a pen indicates
that the fingers can be placed on the affording part since there
is no other way to grasp a pen for poking. On the other
hand, ψppoke, screwdriverq “ ´1 expresses our preference
for placing our fingers on the handle of a screwdriver rather
than on its shank when poking with it.

B. From Orientation to Approach Direction

In order to define the approach direction constraint, we
require a reference frame. For this, we manually align
all objects from a training set that belong to the same
class and define one prefered nominal approach direction
anpc, tq P S2 for each task in the local frame of the aligned
objects.

During online detection, we assume that the reference
frame of the input point cloud O is aligned with the nominal
class reference frame, apart from an unknown rotation around
the z-axis, see Fig. 4. Hence, we utilize CO-CNN to classifiy
the object and to estimate its rotation along this z-axis.

Once classified, the preferred approach direction for an
input object is a function of the estimated orientation ort
with respect to the nominal frame, and the nominal approach
direction for the task-class pair, i.e. aport,anpc, tqq, see
Fig. 4. While there may be many approach directions suitable
for a particular task, we formulate the approach direction
constraint such that the set of valid approach directions is

Fig. 4: An example of a (colored yellow) for a mug rotated by 450

around the z-axis with respect to the nominal frame. The magenta
arrow indicates an for the class mug for task pour.

limited to the set D “ td P S2 | >pa,dq ď θu, where the
bounding angle θ is a modeling parameter. An example of
the preffered approach direction a on a mug is shown in
Fig. 4 and examples of nominal approach directions anpc, tq
for different objects and tasks are shown in Fig. 5.

Fig. 5: Examples of anpc, tq (colored magenta) for a mug for pour,
for a screwdriver for poke and for spoon and pan for support. A
set of arrows on objects corresponds to one approach direction (x
on a mug, -y on a screwdriver, -y on a spoon and -z on a pan). For
simplicity, we represent a set of arrows with only one arrow in the
rest of the paper.

V. METHOD

A. Data Preparation

For training the CNNs we use a dataset consisting of 3D
CAD models from ShapeNet and ModelNet40. For each
polygon mesh model we first extract coordinates of the
mesh’s vertices and use these to construct a dense point cloud
O from which we then generate a binary voxel grid V . All
objects are scaled to fit inside a 50 ˆ 50 ˆ 50 grid of fixed
size regardless of their relative real-world size. Each point
p P O is therefore, represented as a voxel in this grid that
has a value of 1.

In most real-world scenarios the object point clouds we get
from cameras are noisy, sparse or unsegmented and the object
may be in clutter or occluded. To that end we prepare the data
for training on full and incomplete point clouds. We generate
partial point clouds from different camera perspectives by
randomly sampling viewpoints on a sphere positioned at the
center of the object’s local coordinate frame. AFF-CNN was
trained only on full point clouds and CO-CNN on both full
and partial point clouds.

B. Affordance Detection

1) Training Phase: We construct the training data for
AFF-CNN from parts of the objects in our 3D dataset. For
this, we select for each task t P T the parts of the objects
that afford the task t independent of object class, see Fig. 7.
Although one part can have multiple affordances we mark
only one, dominant affordance. The training set of AFF-CNN
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DATA CONV1 POOL1 CONV2 POOL2 FC3
INPUT FILTER SIZE PAD OUTPUT FILTER SIZE STRIDE FILTER SIZE PAD OUTPUT FILTER SIZE STRIDE OUTPUT

50ˆ 50ˆ 50 5ˆ 5ˆ 5 3 32 4ˆ 4ˆ 4 4 5ˆ 5ˆ 5 3 64 4ˆ 4ˆ 4 4 64

Fig. 6: Layer parameters the both networks. The parameters are the same up to the last fully connected layer fc4 which has different
number of outputs. For affordance detection it is k “ 5, for object class m “ 10 and orientation estimation n “ 36.

Fig. 7: Segmented objects and examples of parts labeled with cut,
pound, poke and support affordance on a knife, screwdriver and a
spoon.

Fig. 8: AFF-CNN: The network consists of two convolutional layers
and two fully connected layers with ReLU and pooling layers in
between. The last layer is Softmax with loss.

is then the set of object parts labeled with the respective
task. The object parts are represented as sub-volumes of the
complete voxel grid of an object and are upscaled to maximal
expansion inside the 50ˆ 50ˆ 50 grid. To increase the size
of our training set we augment it by scaling, rotating and
translating each part.

2) Network Architecture: The network consists of two
convolutional layers and two fully connected layers with
pooling and ReLU (Rectified Linear Unit) layers in between.
The output of the last layer corresponds to the number of
affordance labels, k “ 5. The network architecture is similar
to LeNet-5 [14] and the choice of architecture was based
on the ratio of the number of training examples and classes.
The parameters are described in Fig. 6 and the architecture
is shown in Fig. 8.

3) Testing Phase: During testing, we use a sliding-
window technique on the complete voxel grid of an object to
obtain a set of candidate sub-volumes which we then classify.
We slide the 3D window in x,y and z direction to obtain a
set of 3D sub-volumes. The sub-volumes are λˆλˆλ voxel
grids where λ P t15, 20, 25, 30, 35, 40u and are obtained with
at least 30% overlap. Each sub-volume Ṽ P V is scaled
to a 50 ˆ 50 ˆ 50 voxel grid and then fed to the network
(Algorithm 1 l. 3-5).

The score for each voxel-task pair pv, tq is calculated as
a sum over all sub-volumes obtained by sliding the window.
The value for each sub-volume Ṽ is equal to the probability
ppt, Ṽ q of the respective sub-volume affording the task t
multiplied by 1, if Ṽ contains the voxel v and if t is the
most probable task afforded by Ṽ , and otherwise 0:

scorepv, tq Ð
ÿ

Ṽ PV

ppt | Ṽ qδpṼ , v, tq, (3)

Fig. 9: CO-CNN. Both towers consist of two convolutional layer
and two fully connected layers with ReLU and pooling layers in
between. The last layer is Softmax with loss.

where

δpṼ , v, tq “

$

’

&

’

%

1, if v P Ṽ and
t P argmaxt1PT ppt

1 | Ṽ q

0, otherwise
. (4)

In the end, all the voxel scores are normalized to sum up to
1.

C. Object Classification and Orientation Estimation

1) Training Phase: For the training set of CO-CNN we
first manually label each object with a class c P C. We
align all meshes so that the local coordinate frame of an
object is aligned with the nominal class reference frame.
As we want CO-CNN to be able to estimate the orientation
of an object, we further rotate each instance for 100 ˆ ort
around the z-axis and label each rotation with a bin ort ,
where ort P t0, 1 . . . , 35u. The network was trained on both
full and partial point clouds and the results of the experiments
are shown in Sec. VI-C.

2) Network Architecture: Considering that object class
and orientation share similar information, we train two
networks jointly to avoid having to learn one network per
class. The network has similar structure to AFF-CNN except
it consists of two towers: one for the class and one for the
orientation. Since bottom layers of the network are more
general, we share weights up to the first fully connected
layer. This weight sharing mechanism also helps in reducing
the complexity of the system. The outputs of the network
are two vectors of m and n probabilities, where m “ 10 is
the number of classes and n “ 36 the number of orientation
bins. The parameters are described in Fig. 6 and the structure
of the network is shown in Fig. 9.

D. Grasp Planning

We wish to verify that the contact and the approach
direction constraints computed in Algorithm 1 can be uti-
lized in planning stable task-specific grasps. For this, we

95



adopt the integrated fingertip grasp and motion planner
presented in [15]. The algorithm is based on [16–18] and
simultaneously searches stable fingertip grasps and hand-
arm approach motions for an nf -fingered robotic hand. The
grasps are planned by performing stochastic optimization of
grasp contacts γ P Onf under an objective function Opγq
using a multilevel refinement metaheuristic.

The input to the algorithm is the point cloud O of an
object, the approach direction constraint in form of the
preferred approach direction a, the tolerance angle θ, and
the contact constraint in form of the subset of contact points
Ot Ď O. We limit the search space of grasp contacts to O

nf

t ,
thus implicitly adopting the contact constraint. To address
the approach direction constraint, we formulate the objective
function

Opγq “
Qpγq

Rpγq ` βp1´ a ¨ epγqq ` α
, (5)

where Q denotes a Ferrari-Canny grasp quality function
[19], R the grasp reachability function described in [17, 18]
and epγq P S2 the approximated end-effector orientation
for a fingertip grasp achieving contacts γ. The parameters
α, β P Rě0 serve as scaling factors between the dif-
ferent sub-objectives. The end-effector orientation epγq is
computed using an approximate hand configuration that is
provided by the reachability heuristic R as described in
[17, 18].

By stochastically maximizing Eq. 5 the algorithm searches
for contacts that achieve high grasp quality and are likely to
be feasible and reachable with the desired hand orientation. If
the found contacts γ˚ P Onf

t achieve a sufficient grasp qual-
ity, i.e., achieve a stable grasp, a post-optimization procedure
is applied to compute a hand configuration φ and pose T ,
for which the hand reaches γ˚. For this, the approximate
hand configuration and pose which are provided by the
reachability heuristic R are adjusted to minimize the error
to the planned contact locations γ˚ and preferred approach
direction a. If the resulting grasp pφ, T q is infeasible or
violates any of the constraints, we rerun the stochastic
algorithm.

VI. EXPERIMENTAL EVALUATION

A. Training and Testing Data

There are about 10, 000 instances spanning over 5 task
and 10 object classes. Each object class consists of „1000
instances. The training and testing sets for AFF-CNN consist
of object parts and we use 70% of these instances for training
and 30% for testing. Fig. 3 indicates to which objects the
parts used as training data for AFF-CNN belong to.

During evaluation, for each object labeled with a certain
affordance label, we first obtain the scores scorepv, tq for
each voxel and the input task as described in Sec. V-B.3.
We then apply a threshold to segment the object. This gives
us voxel coordinates of points that afford the task t. We
calculate the overlap with ground truth values (parts used in
training) to compute F1 scores.

CO-CNN AFF-CNN
Optimizer SGD (Stochastic Gradient Descent)

Learning policy step
Base learning rate 0.001

Step size 1000 200
Gamma 0.95

Momentum 0.9
Loss cross entropy

Batch size 50

Fig. 10: Training parameters for both networks.

Fig. 11: Loss over time for object classification (top) and orientation
estimation (bottom) network (CO-CNN).

For CO-CNN network we use 70% of the objects belong-
ing to each class for training and 30% for testing. We provide
F1 scores, precision, recall and accuracy1 results on training
and testing set for both classification and orientation.

For training we use a modified version of the Caffe
library [21], which supports 3D convolution and pooling. We
train CO-CNN from scratch and use the learned weights to
initialize the AFF-CNN. The training parameters are shown
in Fig. 10. The networks were trained until convergence on
an NVIDIA GeForce GTX TITAN and the training curves
for CO-CNN are shown in Fig. 11. The loss for CO-CNN is
computed as:

Ljoint “ Lclass ` Lort (6)

where Lclass is classification and Lort orientation loss. Both
losses are computed as cross entropy losses.2

B. Affordance Detection

We evaluate the performance of the network on full and
partial point clouds. The network trained on full point clouds
and tested on partial data did perform worse as shown in
Fig. 12. To plot the ROC curve we vary the threshold
parameter when converting score values scorepv, tq to binary
values At. For each threshold ε P t0, 0.1, 0.2, . . . , 1.0u we
calculate precision and recall based on overlap with ground
truth. We find the optimal threshold to be 0.5 based on

1see the definition of these terms in [20]
2see the definition of this term in [22]
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Fig. 12: ROC curves for network trained on full and tested on full
and partial point clouds.

Fig. 13: Examples of part affordance detection on full point clouds
for spoon (poke), bottle (pour), knife (pound) and pan (support).

Fig. 14: Examples of part affordance detection on partial point
clouds for spoon (support), wine glass (pour), screwdriver (poke)
and hammer (pound).

Fig. 15: Detection results on objects which do not belong to the
training set for drill (poke), spatula (support) and ladle (pour).

Youden’s index J “ sensitivity ` specificity ´ 1 for which
J is maximum.

The F1 scores for each affordance label on full and partial
point clouds are shown in Table Fig. 16 and qualitative results
are shown in Fig. 13 and Fig. 14. Note that the F1 scores
for the cut task are low for full and partial point clouds. This
is because we only test the performance on the objects from
the knife class and for many instances the shape of a blade
and a handle are very similar.

The AFF-CNN can be applied to affordance detection on
objects whose parts were not used in the training process.
We show qualitative results in Fig. 15.

C. Object Classification and Orientation Estimation

We trained CO-CNN on full point clouds and tested it on
full and partial point clouds. The results after 30, 000 training
iterations show that when testing the network on partial point

F1 score

Affordance Label full partial pc

cut 0.7262 0.6471
poke 0.8569 0.8244

pound 0.8946 0.7405
pour 0.9111 0.8249

support 0.8925 0.8327

overall 0.8461 0.7792

Fig. 16: Performance on full and partial point clouds.

Training Testing Precision Recall F1 score Accuracy

full full 0.8932 0.8500 0.8242 0.8500
full partial 0.7487 0.6200 0.6231 0.6200

partial partial 0.7580 0.7800 0.7297 0.7800

Fig. 17: Object Classification Performance on Full and Partial Point
Clouds

Training Testing Precision Recall F1 score Accuracy

full full 0.8205 0.8393 0.8155 0.9000
full partial 0.6871 0.7024 0.6616 0.7700

partial partial 0.7128 0.6962 0.6813 0.8300

Fig. 18: Orientation Estimation Performance on Full and Partial
Point Clouds.

clouds the accuracy decreases by 23% for classification and
13% for orientation in comparison to the results on full point
clouds.

To improve the performance on partial point clouds we
trained the same network on partial point clouds. Since the
dataset which consists of partial point clouds is similar to
the original—it consists of the same objects—higher-level
features learned in the first network are relevant for the new
dataset as well. Thus, we initialized the network with the
weights from the network trained on full point clouds and
trained until convergence. The results show an increase in
accuracy for classification to 78% and orientation to 83%.
Tables in Fig. 17 and Fig. 18 summarize the results of CO-
CNN.

D. Grasp Planning

We qualitatively demonstrate the usability of the contact
and approach direction constraint by applying grasp plan-
ning as described in Sec. V-D for a Schunk-SDH hand
mounted on a KUKA KR5 sixx 850 manipulator using a
simulation environment [23]. The imported meshes of the
objects are rotated randomly around the z-axis in their local
coordinate frame.

As shown in Fig. 19e, the grasp planner successfully com-
putes stable grasps for which the robot hand only contacts Ot

while being sufficiently aligned with the preferred approach
direction a. For comparison we plan grasps in the same
environment without any of the constraints (see Fig. 19b),
without approach direction constraint (see Fig. 19c), and
without contact constraint (see Fig. 19d). This often leads
to grasps that do not allow the task.
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(a) Contact locations(blue) and nominal approach direction

(b) Grasps planned without any task constraints.

(c) Grasps computed with the contact constraint only.

(d) Grasps computed with the orientation constraint only.

(e) Grasps computed with both constraints.

Fig. 19: Example grasps computed with the grasp planner on three
objects for support, poke and pound.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a system for computing a
stable, task-specific grasp on an object by encoding and
detecting part affordances, class and orientation of an object
and formulating these quantities as grasp constraints. We
evaluated the affordance detection, object classification and
orientation estimation performance on full and partial point
clouds and showed examples for grasps in simulation using
a standard optimization-based planner. We used a fingertip
grasp planner as a proof of concept. In the future we plan
on considering the grasp type as an additional constraint
induced by a task. Further, we plan on deploying an encoder-
decoder network architecture for semantic segmentation of
part affordances and extending our method to real-world
data.
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