
Quick Introduction to ROS

ROS is huge
ROS is an open-source, meta-operating system for

humanoid robots

What can ROS do?

◉ Hardware abstraction
◉ Low-level device control
◉ Message passing between nodes
◉ Sophisticated build environment
◉ Libraries
◉ Debugging and Visualization Tools

What are the major concepts?

◉ ROS packages
◉ ROS messages
◉ ROS nodes
◉ ROS services
◉ ROS action servers
◉ ROS topics
◉ ...and many more!

Installing Ubuntu
14.04
Quick and painless with Virtualbox

1

Open Virtualbox

◉ Install Virtualbox
◉ Download Ubuntu

14.04
◉ Install to a USB

drive

Time for a demo!
Let’s install Ubuntu on a USB drive.
I’ve uploaded a video of this to
Youtube here:
https://youtu.be/UGl0x2ZT_cI

https://docs.google.com/file/d/1rfzJYqeYn_kT8-q6tQIeApqxF5cpHT4x/preview

What is ROS?
Getting started with the concepts

2

What can ROS do?

◉ Research development
− Fast prototyping easier in a simulated world

◉ Transferring from simulated robot to real robot
takes a bit of effort

ROS Concepts
Like HTTP but with extra steps

3

ROS Nodes

◉ The ROS framework is a graph
◉ Each component is called a node

○ A node is a process
○ Nodes communicate through topics, services, and

actions

ROS as a framework

◉ ROS Master
sends/receives

◉ Several nodes at once
◉ Whole network on your

computer

ROS as a framework cont.

◉ Kinect2 →
/kinect2/images

◉ Publishes image
messages

◉ What are messages?

So what does this mean?

◉ Hardware talks to drivers, which then talk to
nodes, which then talks to ROS

◉ Nodes can run any software you want as long
as it is a language ROS supports

Topics

◉ Each node can listen on or publish messages
to topics
− Built in message types (std_msgs)
− User defined messages

Complex.msg
float32 real
float32 imaginary

All ROS messages are viewable

Services

◉ A node can provide services – synchronous
remote procedure calls
− Request
− Response
−

Add.srv #Example Service
float32 x
float32 y
--- #Three dashes separate the request and response
Float32 result

Can view all ROS services

Actions (actionlib)

◉ Actions (asynchronous) are for long-running
processes.

◉ They have a Goal, Result, and Feedback
− Navigation.action #Example Action

float32 dest_x
float32 dest_y

boolean success # Result

uint32 percent_complete # Feedback

Can view all ROS actions

Packages

◉ ROS software is organized into packages
− Each package contains some combination of

code, data, and documentation
package_name/

package.xml ← describes the package and its dependencies
CMakeLists.txt ← Finds other required packages and messages/services/actions
src/ ← C++ source code for your node (includes go in include/ folder)
scripts/ ← Python scripts for your node
msg/ ← ROS messages defined for your node (for topics)
srv/ ← ROS services defined for your node (for services)
launch/ ← The folder that contains .launch files for this package

Building/Running

◉ Catkin is the official build system of ROS
− Catkin combines Cmake macros and Python scripts to provide

some functionality on top of Cmake’s normal workflow

◉ Run ROS code

Launch Files

◉ Automate the launching of collections of ROS nodes
via XML files and roslaunch

−
−

Launch Files

◉ You can also pass parameters via launch files

Command Line Tools

Robots + ROS

Sensor Data

Joint Trajectories

Your ROS
Code
Here

http://fetchrobotics.com/wp-content/uploads/2016/02/Fetch_spec_download_2016.pdf

Robots available - Fetch
Provides Data From (sensors):
- Depth camera
- Laser scanner
- Head camera
- Current Joint States

http://fetchrobotics.com/wp-content/uploads/2016/02/Fetch_spec_download_2016.pdf

Robots available - PR2
Provides Data From (sensors):
- Kinect
- Two Laser Scanners
- Multiple Cameras (head and hand cameras)
- Fingertip pressure sensor arrays (gripper)
- Current Joint States

Robots available - Baxter

● More cost-effective
● Also has 2 arms
● Stationary base
● Sensors:

○ Sonar
○ Hand and head cameras
○ Hand rangefinders

Robots in the wild - Problems

● I don’t have a Robot in front of me
● I want to try something that may break

my Robot
● Setting up the Robot takes too much

time, I want to test changes to my code
quickly

Gazebo Simulator

Gazebo Simulator

● Same interface as real Fetch, PR2 or
Baxter

● Add/remove items in environment
● Physics engine to simulate effects of

motor commands and provide updated
sensor feedback

Gazebo Simulator

The organization that makes the robot often provides a Gazebo setup package
for that robot.

For example: https://github.com/fetchrobotics/fetch_gazebo

https://github.com/fetchrobotics/fetch_gazebo

Gazebo Simulator Demo

roslaunch fetch_gazebo playground.launch

rosrun applications keyboard_teleop.py

rostopic list | grep gazebo

Rviz: Robot Visualization

Moving the robot - TF

● A robotic system
typically has many 3D
coordinate frames that
change over time.

● tf keeps track of all
these frames over
time.

RViz and tf Demo

rosrun rviz rviz

Moveit!

Moveit!

● Given:
○ Current State of Arm
○ Desired End Effector Pose
○ Scene

● Returns:
○ Trajectory to Move End Effector to

Desired Pose

Moveit!

● Provides a common interface to several
different planners

● Probabilistic Planners: will not return the
same path every time and may not even
find a path reliably.

MoveIt! config

The organization that makes the robot often provides a MoveIt! config package.

These will provide information about robot joints, links, control information. For
example:
1. joints of each group
2. end-effector of each group
3. joint limits
4. default planners

For example: https://github.com/fetchrobotics/fetch_ros

https://github.com/fetchrobotics/fetch_ros

Moveit! demo

roslaunch fetch_moveit_config move_group.launch

MoveIt! Python interfaces

● moveit_commander
○ http://docs.ros.org/jade/api/moveit_c

ommander/html/index.html
● moveit_python

○ https://github.com/mikeferguson/mov
eit_python

http://docs.ros.org/jade/api/moveit_commander/html/index.html
http://docs.ros.org/jade/api/moveit_commander/html/index.html
https://github.com/mikeferguson/moveit_python
https://github.com/mikeferguson/moveit_python

Graspit!

● Grasp planner
● Lots of robots and

objects

Graspit! demo

roslaunch graspit_interface graspit_interface.launch

Python interface: graspit_commander
https://github.com/graspit-simulator/graspit_comman
der

https://github.com/graspit-simulator/graspit_commander
https://github.com/graspit-simulator/graspit_commander

Graspit! demo

import graspit_commander
gc = graspit_commander.GraspitCommander()
gc.clearWorld()
gc.importRobot('fetch_gripper')
gc.importGraspableBody("longBox")

grasps = gc.planGrasps()
grasps = grasps.grasps

If you have a question

● Look in Tutorials:
○ http://wiki.ros.org/ROS/Tutorials

● Reference class slides/codes provided
● Google it
● http://answers.ros.org/questions/
● Ask a TA

http://wiki.ros.org/ROS/Tutorials
http://answers.ros.org/questions/

Some project tips

● Get going early.
● Start from a simple prototype.
● Seek help.
● Several robot platforms available (Fetch,

PR2, and Baxter)

Homework are out!

◉ Homework deadline: Feb. 26
◉ Start early, last part is a little bit annoying
◉ Paper choice deadline: Feb. 5
◉ Walk-through

