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1 Traveling Salesperson Problem

Web References:

• http://www.tsp.gatech.edu/index.html

• http://www-e.uni-magdeburg.de/mertens/TSP/TSP.html TSP applets

A Hamiltonian cycle is a special kind of cycle in a graph in which each vertex in the graph is visited exactly once
(except the start and end vertex which are identical). Not every graph will admit to containing a Hamiltonian
cycle. However, there is special case of the this problem in which a Hamiltonian path of shortest distance is
sought in a complete graph on N vertices. This is known as the Traveling salesperson problem, as it mirrors
the task of a salesperson who must visit N cities in the most efficient possible way.

How difficult is it to solve this problem? To get a quick idea of the complexity of the problem, we can say
that any TSP path will be a listing of the N cities in some order. How many possible orderings are there? Given
a starting city (we can choose any city since it will be somewhere on the path) there are N − 1 choices for the
second city, in the path, N −2 choices for the third city in the path, and so on, leaving (N −1)! factorial possible
paths: (N − 1)! = (N − 1) · (N − 2) · (N − 3) · . . . · 1. Actually, this will generate paths which are circularly
symmetric, so they constitute the same path. For example, listing a 4 city Hamiltonian cycle as 1-2-3-4-1 is
identical to the cycle 1-4-3-2-1. The actual number of distinct paths is (N−1)!

2 because of this, but we can ignore
symmetry to do the analysis below.

To determine which of these paths is shortest, we are forced to try them all. This is an extremely expensive
computation. For 11 cities, 10! is the number of possible paths, or 3,628,800 paths we have to examine to see
which is shortest. If we increase it to only 20 cites, we get 1.2 · 1017 paths!

How long does it take to compute 1.2 · 1017 paths? Lets assume that your computer can do about 1 billion
instructions per second (1 GHz), and that each 20 city path takes about 20 operations to compute, so that you
can calculate 50 million paths per second. So in 1 day, your computer can calculate this many paths:

1Billion Instructions

1sec.
·

1path

20instructions
·
60sec.

1min.
·
60 min.

1hour
·
24hours

1 day
=

4, 320, 000, 000, 000paths

1day
(1)

To find out how many days this computation would take, we divide:

1.2 · 1017

4.32 · 1012
= .28 · 105days = 28000 days = 76 years (2)

Such problems are practically intractable; in fact they belong to a special class of problems known at
NP Complete. There are no known algorithms that can compute these problems in a reasonable amount of
time. So what are we to do? On large search problems like this, we can use approximate methods that can
come close to finding the minimum distance path, yet can be computed in a much shorter time than what we saw
above. The basic method is 1) find a feasible solution, and then 2) improve that solution, moving it towards the
optimal solution.

Is there a simple algorithm that will choose a TSP path that we can say will be bounded by never being
greater than the optimal path by a constant factor? There is, and it is a variant of the Minimal Spanning Tree
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(MST) we computed. Given an MST, If we perform a preorder traversal of this tree and number its nodes in the
order we visit them, we can come up with a TSP path that is guaranteed to be no more than twice the MST cost.
To see this, we define:

C(Hopt) = cost of optimal TSP path (3)

C(T ) = cost of MST (4)

Since we can generate a spanning tree by removing a single edge from a TSP path, we know that:

C(T ) ≤ C(Hopt) (5)

Now, define a walk of the graph as a path that mimics the MST, but when it reaches a “dead end”, it simply
backtracks to the vertex it came from and continues along the MST. This walk will traverse every edge of the
MST twice, and if its cost is C(W ):

C(W ) = 2C(T ), and substituting (6)

C(W ) ≤ 2C(Hopt) (7)

which means the cost of a walk is within a factor of 2 of the optimal path. A walk isn’t quite a TSP path,
since we repeat vertices. However, we can turn the walk into a TSP path if we do a depth first search with a
preorder numbering the nodes as we go along (see figure 1). This ordering then becomes our path. This cycle’s
cost can be no greater than the cost of the walk, since we omit some vertices along the walk’s path. So if we
denote this TSP path’s cost as C(H):

C(H) ≤ C(W ) ≤ 2C(Hopt) (8)

1.1 Approximate algorithms for TSP paths

A simple way to find a TSP path is to use a local, greedy algorithm, known as the Nearest-Neighbor (NN) path.
In this method, we always travel to the nearest city that hasn’t been yet visited from the most recent city we
have visited. At the end, we simply link the first and last cities to finish the path. For the city distance matrix
below the optimal TSP path is 1790 miles, and the NN method will give a value of 2080 miles starting from
Washington, which is 16% more than optimal. Interestingly, the NN path will vary depending on the starting
city. Therefore, if we compute NN from each vertex, we can take the minimum of these paths as our best TSP
path (the shortest path is 1995 miles beginning at Bufflo).

The NN method can perform poorly sometimes because we build it very locally. Another way to look at
the problem is known as the method of Coalesced Simple Paths which is a variant of Kruskal’s MST method:
add edges of minimum cost as long as the problem’s constraints are satisfied. In MST, we always added the
edge of minimum cost under the constraint that no cycles were created. In TSP, we do the same: add the edge
of minimum cost as long as no cycles are created AND no vertex has degree greater than 2. This will generate
a unique TSP cycle if there are distinct edge costs. For the city distance matrix its minimum cost path is 2056
miles, which is 14% greater than optimal.

Insertion methods are also used, in which we insert a vertex to increase the size of a path. Starting with
a simple cycle of k vertices, we keep adding vertices that minimize the change in the path’s new cost. For
example, if we have a an edge (u,v) in the path, we add the vertex x such that:

dist(u, x) + dist(x, v) − dist(u, v) is a minimum (9)
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Figure 1: Given a spanning tree of a graph, there is a simple way to construct a Hamiltonian circuit of the graph
using Depth First Search. Top left: A spanning tree of a graph. Top Right: A depth first search of the spanning
tree. Bottom Left: A Hamiltonian circuit of the graph formed by linking the vertices according to a preorder
numbering of the nodes from the Depth First Search. Bottom Right: An improved circuit formed by removing
any crossing edges in the graph. Step 1: Crossing Edges a-g and e-f are exchanged for a-f and e-g. Step 2:
This still leaves crossing edges a-f and h-d, which are then exchanged for edges a-d and h-f, yielding the circuit
without crossing edges.
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We may iterate over all choices of u,v to select this minimum.

Another simple refinement is to take an existing path, and analyze if 2 edge pairs can be rearranged to
produce a shorter path. If the path has an edge from A to D and an edge from C to B, we can see if connecting
A to B and C to D will reduce the cost:

- - - - - A***B - - - - - - - - - A B - - - - -
* *
*
* *

- - - - - C***D - - - - - - - - - - C D - - - - -

If dist(A,B) + dist(C,D) < dist(A,D) + dist(C,B) we perform the switch. We can prove that if
2 edges cross each other, they can never be part of the optimal path. So checking for these edges and then
switching them as above can reduce the path length. To prove this add an intermediate node Z where the path;s
cross:

- - - - - A B - - - - - - - - - - A B - - - - -
* * * *
* Z
* * * *

- - - - - C D - - - - - - - - - - C D - - - - -

dist(A,D) + dist(C,B) = dist(A,Z) + dist(Z,B) + dist(C,Z) + dist(Z,D) (10)

Because dist(A,B) < dist(A,Z)+dist(Z,B) and dist(C,D) < dist(C,Z)+dist(Z,D) we can always
improve the tour by making this switch.

This known as 2-opting, and a path in which all edge pairs are analyzed this way is 2-optimal. We can also
look at sets of 3 edges edges to perform 3-opting, and on up to an arbitrary k-opting. However, the cost increases
quickly. There are 8 possible ways to reconnect 3 pairs of edges, and 2k−1(k − 1)! alternatives in general in
k-opting.
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Figure 2: 3-opting has many choices of replacement paths to try to reduce the tour cost.

2 Critical Path Analysis

Many graphs are acyclic, and we can do special kinds of searches for paths on these graphs. because we can
impose a topological ordering on these graphs, the path search is simplified. In a topolgical sort of an acyclic
graph, once we process a vertex it is finished, since it will have no edges entering it. Hence, its distance is
updated.

An important use of these ideas is in critcial path analysis. If we structure a graph such that vertices represent
activities to be performed, we can use such a graph to establish precedence relationships. An edge (v,w) means
activity v must be completed before we can start activity w. In large construction projects, with 100’s or 1000’s
of indentifiable tasks, figuring out the right order to perform them efficiently is critical - hence the name critical
path analysis. This analysis also makes it clear which activities can be done in parallel - activities which are
independent and don’t depend on each other.

Figure 3(top) shows a set of activities along with the time each activity takes. We can use this graph to find
out what the earliest completion time is for the entire project. We can also determine which activities have slack
- they can be delayed and not affect the overall completion time.

To do this computation, we will transform the activity node graph to an event node graph. In this graph, each
vertex corresponds to the completion of an activity, and all its dependent activities. Any event vertex reachable
from vertex v may not commence until event v is completed.

To construct this graph, we create an edge for each activity (these are sometimes called activity on edge
graphs). To reinforce the idea of multiple tasks needing to be done before an activity can commence, we use
dummy nodes with zero edge cost. Fig. 3(bottom) is the orginal graph transformed into an event node graph.

To find the earliest completion times for each event, we need to topological sort the nodes, creating a linear
ordering. Using a depth-first search of the graph (which is acyclic) we can postorder number the nodes. The
reverse of this postorder numbering is the topological ordering. For the graph in figure3(bottom), the topological
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Figure 3: Top: activitygraph. Bottom: event graph

ordering is (note: this ordering may not be unique):
1,2,4,3,6’,6,7’,7,5,8’,8,9,10’,10

Then, taking each node according to the topological sequence, we compute the earliest completion time as:

EC1 = 0 ; ECw = max(ECv + cv,w) ∀(v, w) (11)

Figure 4 shows the earleist completion time for the event graph. We can also compute the latest completion
time for each event. Here, we process each node in reverse topological order, starting at the end and working
back to the start. The latest completion time is calculated as (see Figure 5):

LCn = ECn ; LCv = min(LCw − cv,w) ∀(v, w)
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Figure 4: Earliest completion times

Figure 5: Latest completion times
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Slack time is computed as:

Slack(v,w) = LCw − ECv − cv,w

Figure 6 shows the slack time. Any activity that has zero slack is on the critical path for completion. It
cannot have any delays without increasing the overall completion time. There is at least one path from start to
finish that consists entirely of zero slack edges - this is the critical path for the project.

Figure 6: Earliest, latest and slack times

8


