
CS 3137, Class Notes

1 Linked Lists

• Linked lists represent an ordered set of elements. We can

refer to the list as having a head element and tail element.

• The list ADT (Abstract Data Type) has a protocol that

says you must access each member of the list to get to the

next member.

• Common list processing primitive functions include Insert

(add), Remove (delete), Find, Count, IsEmpty, Ma-

keEmpty, PrintList etc.

• We can implement a list using an array, but it is not a good

method. Each time we insert at as particular position k we

need to shift the entire array to make room. Similarly, if

we delete an element in the list, we need to shift all the

elements to fill up the empty slot. We also have to allocate

an array of a particualr size, even though we don’t know

how many elements we will need at any one time.

• Linked lists are a dynamic data structure, that can be cre-

ated at run time without knowing ahead of time how many

items are in the list. This is one of the most important and

powerful uses of linked lists versus arrays: you don’t need

to know ahead of time how many elements to allocate as in

an array.

1

• Most list operations are O(N), where N is the number

of list elements. For example, to find an element in an

unordered list, you must potentially look at all N list ele-

ments, and on average, N/2 elements, which is O(N).

• However, there is a cost in using linked lists. A small cost in

extra memory needed to store the links to the next element

in the list, and the cost of extra operations and complexity

in traversing the lists.

• Boundary conditions are a very important part of list pro-

cessing. Whenever we do list processing operations, we

need to check for the special cases of first or last element in

the list. For example, if we try to delete the first element

of a single element list, the link to the head of the list will

have to be updated. Similarly, if we need to insert at the

front of the list, this also changes the link that points to

the head of the list.

• An easy solution (some would call it a hack!) to many

boundary condition problems is to always have an empty

header node at the beginning of every list. Then, you will

never have a pointer to a list that is NULL, since even

empty lists have a single, empty, header node.

• Note that there is a native implementation of linked lists in

the java.util package which implements a class LinkedList.

We will be writing our own implementation of this package.

2

Here is a linked list routine that does its own linked list administration - DOES NOT USE Java’s LinkedList

classes:

//**

// MagazineRack.java Author: Lewis/Loftus

//

// Driver to exercise the MagazineList collection.

//***

public class MagazineRack

{

//--

// Creates a MagazineList object, adds several magazines to the

// list, then prints it.

//--

public static void main (String[] args)

{

MagazineList rack = new MagazineList();

rack.add (new Magazine("Time"));

rack.add (new Magazine("Woodworking Today"));

rack.add (new Magazine("Communications of the ACM"));

rack.add (new Magazine("House and Garden"));

rack.add (new Magazine("GQ"));

System.out.println ("\n" +rack);

rack.delete(new Magazine("Time"));

rack.delete(new Magazine("GQ"));

rack.delete(new Magazine("Communications of the ACM"));

rack.add(new Magazine("People"));

System.out.println ("\n" + rack);

System.out.println ("Forming a new Magazine Rack, alphabetized:");

MagazineList alpharack = new MagazineList();

alpharack.addalpha(new Magazine("Fortune"));

alpharack.addalpha(new Magazine("Newsweek"));

alpharack.addalpha(new Magazine("Blender"));

alpharack.addalpha(new Magazine("Jump"));

alpharack.addalpha(new Magazine("Zagat’s"));

alpharack.addalpha(new Magazine("Zzagat’s"));

alpharack.addalpha(new Magazine("Zaagat’s"));

alpharack.addalpha(new Magazine("Zzzzgat’s"));

System.out.println ("\n" + alpharack);

System.out.println("Magazine Rack Contents - print reversed:");

alpharack.printListReverse();

System.out.println();

System.out.println ("Erasing Magazine Rack contents");

alpharack.erase();

System.out.println (alpharack);

}

}

3

//**

// MagazineList.java Author: Lewis/Loftus

//

// Represents a collection of magazines.

//***

public class MagazineList

{

private MagazineNode list;

//--

// Sets up an initially empty list of magazines.

//--

MagazineList()

{

list = null;

}

//--

// Creates a new MagazineNode object and adds it to the end of

// the linked list.

//--

public void add (Magazine mag)

{

MagazineNode node = new MagazineNode (mag);

MagazineNode current;

System.out.println("adding at end " + mag);

if (list == null)

list = node;

else

{

current = list;

while (current.next != null)

current = current.next;

current.next = node;

}

}

public void addalpha (Magazine mag)

{

MagazineNode node = new MagazineNode (mag); //get new node

MagazineNode current,prev;

System.out.println("adding alphabetical " + mag);

if (list == null) //empty list, add at head of list

list = node;

else

{

prev=null;

current = list;

while (current!= null && current.magazine.compareTo(mag)<0){

prev=current;

current = current.next;

}

if(prev==null) {//goes in first if prev==null

list=node; //list is first node in list

node.next=current; // update new node to point to rest of list

}

else { // goes in after prev pointer

prev.next=node; //add after prev

node.next=current; // update new node to point to rest of list

}

}

}

4

public void delete(Magazine mag)

{

MagazineNode current=list;

MagazineNode prev;

System.out.println("deleting " + mag);

if(current==null) { // delete from empty list

System.out.println("illegal delete from empty list");

}

else if(current.magazine.equals(mag)){ //first entry deleted

list=current.next;

} else {

prev=null;

while (current!=null && //loop down list looking for mag

!current.magazine.equals(mag)){

prev=current;

current=current.next;

}

if(current==null) { //end of list reached

System.out.println("magazine " + mag + " not in list");

} else {

prev.next=current.next; //bypass deleted element

}

}

}

//--

// Returns this list of magazines as a string.

//--

public String toString ()

{

String result = "Magazine Rack contents:\n";

MagazineNode current = list;

while (current != null)

{

result += current.magazine + ", ";

current = current.next;

}

result=result + "\n";

return result;

}

public void erase(){ list=null;}

public void printListReverse()

{

MagazineNode current=list;

this.printReverse(current);

System.out.println();

}

public void printReverse(MagazineNode current)

{

if(current!=null) {

printReverse(current.next);

System.out.print(current.magazine + ", ");

}

}

}

5

//***

// An inner class that represents a node in the magazine list.

// The public variables are accessed by the MagazineList class.

//***

class MagazineNode

{

public Magazine magazine;

public MagazineNode next;

//--

// Sets up the node

//--

public MagazineNode (Magazine mag)

{

magazine = mag;

next = null;

}

}

//**

// Magazine.java Author: Lewis/Loftus

//

// Represents a single magazine.

//**

import java.lang.String;

public class Magazine implements Comparable

{

private String title;

//---

// Sets up the new magazine with its title.

//---

public Magazine (String newTitle)

{

title = newTitle;

}

//---

// Returns this magazine as a string.

//---

public boolean equals(Object Obj)

{

Magazine testMag = (Magazine) Obj;

// System.out.println("testing " + testMag.title + " " + title);

if (testMag.title.equals(title))

return(true); else return false;

}

public String toString ()

{

return title;

}

public int compareTo(Object Obj)

{

Magazine testMag = (Magazine) Obj;

return (title.compareTo(testMag.title));

}

}

6

Here is the output of the program:

$java MagazineRack

adding at end Time

adding at end Woodworking Today

adding at end Communications of the ACM

adding at end House and Garden

adding at end GQ

Magazine Rack contents:

Time, Woodworking Today, Communications of the ACM, House and Garden, GQ,

deleting Time

deleting GQ

deleting Communications of the ACM

adding at end People

Magazine Rack contents:

Woodworking Today, House and Garden, People,

Forming a new Magazine Rack, alphabetized:

adding alphabetical Fortune

adding alphabetical Newsweek

adding alphabetical Blender

adding alphabetical Jump

adding alphabetical Zagat’s

adding alphabetical Zzagat’s

adding alphabetical Zaagat’s

adding alphabetical Zzzzgat’s

Magazine Rack contents:

Blender, Fortune, Jump, Newsweek, Zaagat’s, Zagat’s, Zzagat’s, Zzzzgat’s,

Magazine Rack Contents - print reversed:

Zzzzgat’s, Zzagat’s, Zagat’s, Zaagat’s, Newsweek, Jump, Fortune, Blender,

Erasing Magazine Rack contents

Magazine Rack contents:

2 Using Java Collections LinkedList class
Java collections has a class LinkedList that supports most LinkedList operations. As of Java 1.5, it can be generically

typed as well.

This class gives you access to the first and last element of the list with addFirst(Object o), addLast(Object
o) and Object getFirst(), Object getLast() methods.

To add and remove elements anywhere in the list, there is an iterator class that allows you to position yourself

anywhere in the list. It does not give you direct access to the links themselves to make sure you don’t mess them up

and break the list apart.

LinkedList list = new LinkedList();

ListIterator iterator = list.listIterator();

You should think of the iterator as pointing between 2 adjacent items of the list. Initially, the iterator points just

before the first item in the list. To move the iterator, use the method iterator.next(). To check to see if there is a

next element, use the boolean method iterator.hasNext()
The next() method returns the object of the link that is is passing. The iterator add(Object o) method adds

an object after the iterator, and then moves the iterator position past the new element. There is also a remove()
method, but it is tricky. Remove removes and returns the object in the list that was returned by the last call to next.

It can only be called once after a next(), and it cannot be called directly after an add operation.

Finally, this class is a doubly-linked list, with previous() as well as next() methods, meaning you can move in

both directions in the list.

7

// This program demonstrates operations on linked lists using Java LinkedList class

import java.util.*;

public class LinkedListTest2{

public static void main(String[] args) {

LinkedList a = new LinkedList();

a.add("Angela");

System.out.println("adding to list a " + a);

a.add("Carl");

System.out.println("adding to list a " + a);

a.add("Erica");

System.out.println("adding to list a " + a);

LinkedList b = new LinkedList();

b.add("Bob");

b.add("Doug");

b.add("Frances");

b.add("Gloria");

System.out.println("list b: " + b);

// merge (interleave) items from lists a and b into list a

System.out.println("merging list b into list a");

ListIterator aIter = a.listIterator();

ListIterator bIter = b.listIterator();

while (bIter.hasNext())

{

if (aIter.hasNext()) aIter.next();

aIter.add(bIter.next());

System.out.println("mergedlist: " + a);

}

System.out.println("List a after merges: " + a);

// remove every second word from b

bIter = b.listIterator();

while (bIter.hasNext()) {

bIter.next(); // skip one element

if (bIter.hasNext()) {

bIter.next(); // skip next element

bIter.remove(); // remove that element

}

}

System.out.println("List b with every 2nd word removed " + b);

// bulk operation: remove all words in b from a

a.removeAll(b);

System.out.println("remove all words in list b from list a: " + a);

}

}

adding to list a [Angela]

adding to list a [Angela, Carl]

adding to list a [Angela, Carl, Erica]

list b: [Bob, Doug, Frances, Gloria]

merging list b into list a

mergedlist: [Angela, Bob, Carl, Erica]

mergedlist: [Angela, Bob, Carl, Doug, Erica]

mergedlist: [Angela, Bob, Carl, Doug, Erica, Frances]

mergedlist: [Angela, Bob, Carl, Doug, Erica, Frances, Gloria]

List a after merges: [Angela, Bob, Carl, Doug, Erica, Frances, Gloria]

List b with every 2nd word removed [Bob, Frances]

remove all words in list b from list a: [Angela, Carl, Doug, Erica, Gloria]

8

