
CS W3137 Assignment 5. DUE: Thursday, April 17 in class
Non-Programming Problems, 7 points each.

1. Let G be a graph whose vertices are the integers 1 through 8 and let the adjacent vertices of each vertex be given
by the table below:

Vertex Adj. Vert.

1 2 3 4

2 1 3 4

3 1 2 4

4 1 2 3 6

5 6 7 8

6 4 5 7

7 5 6 8

8 5 7

Assuming that we use an adjacency list data structure, and we access the adjacent vertices from each vertex in the
order according to the above lists, do the following:

(a) Draw the Graph.

(b) Show the sequence of vertices visited in G using a Depth First Search beginning at vertex 1.

(c) Show the sequence of vertices visited in G using a Breadth First Search beginning at vertex 1.

2. Would you use an adjacency list data structure or and adjacency matrix data structure in each case below. Briefly
justify your choice.

(a) The graph has 10,000 vertices and 20,000,000 edges and it is important to use as little space as possible.

(b) The graph has 10,000 vertices and 20,000 edges and it is important to use as little space as possible.

(c) You need to answer the query isAdjacent(vertex V) as fast as possible, regardless of space.

3. Show that if all the weights are different in a connected graph G then there is exactly one unique minimum spanning
tree.

4. Exercise 9.1

5. Exercise 9.26

6. Exercise 9.38 a,b.

Programming Problems

1. (34 pts) Fibroconnect.com has asked for your help as a consultant. Fibroconnect wants to connect major US cities
via fiber optic cable to create their own internet. They have asked you to find the minimum total cable length
needed to create a path to connect every city. The input to your program will be the file

http://www.cs.columbia.edu/~allen/S14/HMWK/cityxy.txt

which contains the name of each city and its X and Y coordinates. Below are a few lines from the file:

Boston 2542 1230

Chicago 1756 1048

Omaha 1350 990

SaltLake 565 1025

Peoria 1676 962

NewYork 2435 1081

....

....

Here is what you must do:

1

http://www.cs.columbia.edu/~allen/S14/HMWK/cityxy.txt

Figure 1: Sample output of fully connected US City map before MST computation. Programing Problem 1
(Minimum spanning tree) will produce a similar map with only the edges of the MST draw in.

(a) Read in each city and its X Y coordinates.

(b) (6 points) Assume the cities in the graph are fully connected - an edge exists between every city
pair. Using a 2-D Euclidean distance metric for the edge costs, print out all the edge pairs and their
distances. Print them out as: city1 city2 distance. Also, to reduce the print out length, make sure
you only print out each city pair and its distance once (i.e. DO NOT print “city1 city2 distance” and
also print out “city 2 city 1 distance”).

(c) (18 points)Using these edge costs (path lengths), implement Kruskal’s algorithm for finding the min-
imum spanning tree of the city graph. You are required to use a Priority Queue in your algorithm
(Java Collections classes allowed). Output the edge pairs that make up the minimum spanning tree.

(d) (10 points) Using a JAVA GUI window, draw a map of the cities, along with the edges that represent
the Minimum Spanning tree as calculated by Kruskal’s algorithm. (see figure 1 for the fully connected
city graph BEFORE the MST computation). Note: the X Y coordinates of each city is in a coordinate
system in which the first coordinate (X) increases from left to right (same as the JAVA GUI X
coordinate system), and the second coordinate (Y) decreases from the top of the page to the bottom
(the reverse of the JAVA GUI Y coordinate system). Therefore, you need to transform the Y coordinate
of each city to reflect this. Also note that all city names are a single string (i.e. no white space as
“Las Vegas” becomes “LasVegas”) to make it easier to input and identify city name strings.

2

Figure 2: 3-D Word Hunt. Find as many legal words of length N as you can. You may return to a letter and
use it more than once (e.g. word “TITAN”), but you cannot “stand” on a letter and use it more than once (e.g.
word “DITTO”).

2. (24 points) The New York Times Magazine has a puzzle called 3-D Word Hunt (see fig 2). In this puzzle,
you need to search a 3D matrix of letters for legal words. Each node of the matrix contains a single letter
and a list of connections to other adjacent nodes. The puzzle is solved by finding all legal words of length
N . A word is formed by concatenating each of N adjacent letters as you traverse the matrix. Letters can
be repeated, but a single node’s letter cannot be repeated by “standing” on the same node you are on. In
graph terms, this means no self-loops.

(a) Read in the word hunt matrix. It is contained in the file:

http://www.cs.columbia.edu/~allen/S14/HMWK/graph.txt

The file is organized as follows:

Letter

X Y Z coordinates of letter in the matrix

X Y Z coordinates of adjacent node

X Y Z coordinates of adjacent node

Letter

X Y Z coordinates of letter in the matrix

X Y Z coordinates of adjacent node

X Y Z coordinates of adjacent node

X Y Z coordinates of adjacent node

Letter

(and so on - note that not all nodes have the same number of adjacent nodes)

3

http://www.cs.columbia.edu/~allen/S14/HMWK/graph.txt

here are the first few lines of the file:

v

0 0 0

1 0 0

0 1 0

0 0 1

e

0 0 1

0 0 0

0 1 1

1 0 1

o

0 1 0

0 0 0

0 2 0

0 1 1

1 1 0

....

....

(b) Search for legal words of length N , where N is a user specified parameter. A word is legal if it can be
found in a dictionary. You will use /usr/dict/words, the standard Unix dicitonary as our dictionary.

You will do a lookup for a legal word using a Hash Table of all the words in /usr/dict/words. Your hash
function will be a standard polynomial multiplier for strings. For Collision Detection and resolution
you will use Open Addressing with Linear Probing. Since there are 25,143 words in the dictionary,
use a table size of the smallest prime number greater than 2 * 25,143, which would be 50,287.

Your program should output all legal words of length N that can be found in the dictionary by
traversing the matrix. N is a user input.

Extra Credit (5 points): Program the Word Hunt in a GUI with a display of the matrix and an
animation of each letter as it is visited.

Note: The Unix dictionary file is not very good, since it leaves out some words and also most suffixes
and prefixes (e.g doesn’t do plurals etc.) For testing and fun, you may want to try a larger dictionary
which contains 152,476 words (don’t forget to increase your hash table size if you use it):

http://www.cs.columbia.edu/~allen/S14/HMWK/largedictionary.txt

4

http://www.cs.columbia.edu/~allen/S14/HMWK/largedictionary.txt

