CS W3137, Homework 4, DUE: 4/3/14, in class

Non-programming Problems, 7 points each.

1.

- W

Exercise 6.7b

Exercise 6.8

Exercises 5.1 (assume table size of 10)

Exercises 5.2. Rehash using a table size of 19 and a hash function of h(z) = xmod 19.
Exercise 5.6

Suppose you want to create a “dictionary” of images for lookup. Input is a thumbnail image of each larger
image that we want to store. The lookup method will use the thumbnail to index the larger image. Each
thumbnail image is 20 pixels wide by 10 pixels high, and contains 256 colors/pixel. Assume we want to
store 1000 images. Suggest a hashing function that can be used to perform the lookup given a thumbnail
image.

Programming Problems

1.

(20 pts) create a perfect Hash Function for the 46 JAVA language reserved words below. If you can’t find
a perfect function, then your grade on this question will be a percentage of the total points evaluated this
way:

6 * 20

‘maz(6,collisions)

Your program must print out a list of each word and its index value in the table, and mark any words
which are in collision. You must also print out the exact hash function you used. Note: you may only use
a TABLESIZE of 46, and no double hashing is allowed. Keep in mind that generating 46 if statements
to check for a certain string is NOT considered a hash function! You need to come up with a simple and
efficient function on your own - you may not use various hash functions that are floating around on the
web. As usual, any hash function in the text or discussed in class is usable. A file with the reserved words
can be found at:

WWww.cs.columbia.edu/~allen/S14/HMWK/reservedwords.txt

abstract | default if private throw
boolean do implements protected throws
break double import public transient
byte else instanceof return try
case extends int short void
catch final interface static volatile
char finally long super while
class float native switch true
const for new synchronized false
null

www.cs.columbia.edu/~allen/S14/HMWK/reservedwords.txt

2. (38 points) Huffman codes: Reference, class notes and section 10.1.2 (page 433) of Weiss. Write a program
to create a Huffman code for a message. Input to the program should be a text message to be encoded.
Your program should do the following;:

(a)

()

(8 points) In a GUI window (see figure [I)), input a message to be encoded and compute character
frequencies for each character in the message. Store these frequencies in an array indexed by each
character’s code, and print out each character code with its frequency. You can print the frequencies
out in a GUI window or on the terminal.

Message: abaccda

CHAR ASCII FREQ

a 97 3
b 98 1
[99 2
d 100 1

(25 pts) Create a priority queue (heap) prioritized by the smallest frequency for the characters in
the message. Using the priority queue, create a Huffman tree for the message Your program should
display the tree in the GUI window (see figure|1]). Each node of the tree should display the character
and its frequency if a leaf node, and if an interior node it should print the combined frequencies of its
two children. You may use the heap code in the Weiss text to implement the Priority Queue but you
may not use any Java Collections API PriorityQueue class or methods.

(5 points) Display the Huffman code word below each leaf node of the tree. Use a binary 1 for a left
child and a binary 0 for a right child (see Figure [1)).

Extra Credit: (3 points) In the GUI, display the binary digits of the encoded message using the Huffman
code you created.

Figure 1: GUI for Huffman Code Tree

