Automatic 3-D Model Acquisition from Range Images

Michael K. Reed and Peter K. Allen Computer Science Department Columbia University

Introduction

Objective:

given an arbitrary object or scene, construct a representative CAD model

Method:

- rangefinding sensor
- solid modeling
- view planning

Motivation: Applications

Virtual environment generation • acquire model for use in VRML, entertainment, etc Reverse engineering acquiring a model from a part copying/modification Part inspection compare acquired model to "acceptable" model **3D FAX** transmit acquired model to remote RP machine Architectural site modeling

Talk Outline

Introduction, motivation, & background
Solid modeling of range images
Sensor viewpoint planning
Conclusions & future research

Previous Work

Computer Vision: oriented towards recognition task Computer Graphics: oriented towards recovery task

- [Dickenson et al. 1994] [Wu & Levine 1994]
- [Thompson et al. 1996] [Hoppe 1994] [Fua 1992]
- [Connolly 1989] [Tarbox & Gottshlich 1995]
- meshes & zippering: [Turk 1994] [Rutishauser '94]
- meshes & iso-surface extraction: [Curless 1996]

Previous Work: Issues

Final model is not closed
Single object only
Shape and topological restrictions
Assumed complete surface sampling
No modeling of scene occlusion

Modeling Desiderata

- no topological constraints on object / scene
- resulting model is "watertight"
- incremental model improvement
- model acquisition in few views
- ability to support sensor viewpoint planning

Our method attempts to deal with each of these issues

Modeling with Mesh Surfaces

Advantages:

- able to accurately model many shapes
- effective at varying resolutions
- simple!

Modeling with Mesh Surfaces

Integration:

- find overlap between 2 meshes
- clip & retriangulate

Modeling with Mesh Surfaces

Issues:

- not closed until surface is completely imaged
- no representation of space occluded from sensor
- integration of non-manifold surfaces not welldefined

Our solution: use mesh surface & volume!

- build solid model from each range image
- represent both imaged surface & occluded volume
- integrate using set intersection

Sensor Model

- Rangefinder acts as point light source in plane
- Motion of rangefinder is linear, perpendicular to scanning plane

Sensor Imaging Characteristics

Range image:

• rectangular sampling

Image has structure:

- surface elements
- occlusion elements

Constructing the Solid

Sweep mesh surface *M* to form a solid *S* by:

 $S = \bigcup extrude (m), m \in M$ $\forall m$

Surface Type Attributes Surfaces in the model are tagged: • "imaged" for those directly imaged by the sensor • "occlusion" for those due to scene occlusion "occlusion" "imagec

Merging Models from Different Views

- Each model is a solid, therefore we may use regularized set intersection to integrate:
 - initialize composite model to the entire workspace
 - acquire a new solid model
 - update the composite model by set intersection with new model

Assumption:

• the set described by each model must be a superset of the actual imaged object

Experimental Setup

- Sensor: Servo-Robot laser rangefinder
- Motion: IBM 7575 SCARA robot and turntable

Movie!!!

Example: Hip Replacement

Example: Hip Replacement

Example: Video Game Controller

Example: Video Game Controller

Example: Propeller Blade

Example: Propeller Blade

Example: Toy Bear in 4 Views

Example: Toy Bear in 4 Views

Effects of Sampling on Integration

• Violation of sampling theorem: mesh elements do not necessarily correspond to object surfaces!

Effects of Sampling on Integration

• Surfaces requiring dilation may be identified by their surface type attribute

Effects of Sampling on Integration

without dilation

with dilation

Integration of View Planning

Why plan sensor viewpoints?

- To ensure adequate model acquisition
- To reduce the number of sensing operations

How does one determine the next view?

- Must represent what has not been sensed
- Must determine a viewpoint that will improve model

Previous Work:

Planning in unknown environments

- [Connolly 1989]
- [Maver & Bajcsy 1990]
- [Whaite & Ferrie 1992]
- [Kutulakos 1994]
- [Pito 1997]

Planning in known environments

- [Sedas-Gersey 1993]
- [Abrams 1997]
- [Tarabanis et al. 1995]

Strategy in Viewpoint Planning

At what point should planning be done?

- at the outset?
- after some intial model?
- never?

Integration of View Planning

Caveats for methods in unknown environs:

- scene self-occlusion not considered
- use brute -force raycasting
- discrete solutions only

Our approach:

- acquire preliminary model first, then plan
- plan to acquire "occlusion" surfaces (targets)
- apply static sensor planning methods
- solutions (plans) are in continuous space

Sensor Viewpoint Planning

Our approach:

- target driven computes visibility for target using the composite model
- operates in continuous space solutions are 3-D volumes
- targets are selected from model surfaces labeled "occlusion"

Viewpoint Planning: Method

Determine constraints on sensor position

- sensor imaging constraints
- model occlusion constraints
- sensor placement constraints

Integrate constraints to form planDiscretize as final step (if necessary)

Sensor Imaging Constraints

- Describe limits of sensor's ability to acquire data
- rangefinder example: "breakdown angle" α , standoff:

Model Occlusion Constraints

- Describe space occluded from target
- Must be calculated for *all* occluding model surfaces!

Sensor Placement Constraints

- Describe workspace positions available to sensor
- Usually a function of manipulator type

Constraint Integration

Constraints are represented using solid modeling primitives
 Plan is calculated by:

(imaging constraints - occlusion constraints) \cap placement constraints

Planning Example

Example of View Planning: Strut Target: Occluded Surface of Max. Area

Example of View Planning: Strut

Example of View Planning: Strut

Strut: Final Model

Considering Multiple Targets

Including Sensor Placement Constraints

Example: Model City

3 buildings with very high occlusion:

City Model: After 4 Views

City Model: Target Visibility for 30 Largest Occluded Surfaces by Area

City Model: Placement Constraint

City Model: Total Plan

City Model: Final Reconstruction

City Model: Texture Mapped

City Model: Analysis

View	Volume	Surface Area	Occ. Area	Plan Area	% Planned
1	4712	1571	1571	-	-
2	1840	1317	942	-	-
3	1052	1151	590	-	-
4	432	658	140	-	-
5	416	656	121	61	50%
6	404	659	104	28	27%
7	391	657	90	12	13%
8	386	647	84	8	10%
9	382	644	75	15	20%
10	380	651	62	7	11%
11	374	622	53	16	30%
12	370	604	36	9	25%

Efficiency Considerations

Modeling

- restricted set union mesh "sweep" operation
- problem subdivision is set union
- Planning:
 - target surface decimation
 - occlusion constraints calculated only for model surfaces *within* imaging constraints volume

City Model: Analysis

Limitations

Requires "surrounding" views
 No consideration of overlapping sampling in distinct images
 Planning does not consider partial visibility
 Requires a calibrated system

Conclusion

- The system presented has the following attributes:
 - is incremental
 - uses hybrid of both mesh and volume representations
 - represents both imaged and unimaged surfaces for planning the next view
 - determines a solid model at each step

Future Research

Outdoor Scene Modeling Reduce number of full-model intersections subtraction for some modeling operations extension to other environments Optimal viewpoint and target selection partial visibility Reduction of model to "canonical" form • use symmetry, features, heuristics

consider common design principles

Range Scanning Outdoor Structures

Mesh Surface

'Scan of Rodin's The Thinker

MOBILE ROBOT FOR SITE MODELING

- Outdoor Mobile Base
- Centimeter accuracy GPS system
- Omni-directional 360° Color Camera
- 80 meter laser scanner
- Integrated sonar units
- Wireless ethernet connection