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Building illumination coherent 3D models of
large-scale outdoor scenes

Abstract Systems for the creation of photorealistic models using range scans and digital photographs
are becoming increasingly popular in a wide range of fields, from reverse engineering to cultural heritage
preservation. These systems employ a range finder to acquire the geometry information and a digital
camera to measure color detail. But bringing together a set of range scans and color images to produce
an accurate and usable model is still an area of research with many unsolved problems. In this paper we
address the problem of how to build illumination coherent integrated texture maps from images that
were taken under different illumination conditions. To achieve this we present two different solutions.
The first one is to align all the images to the same illumination. For this, we have developed a technique
that computes a relighting operator over the area of overlap of a pair of images, which we then use
to relight the entire image. Our proposed method can handle images with shadows and can effectively
remove the shadows from the image, if required. The second technique uses the ratio of two images
to factor out the diffuse reflectance of an image from its illumination. We do this without any light
measuring device. By computing the actual reflectance we remove from the images any effects of the
illumination, which then allows us to create new renderings under novel illumination conditions.

Keywords 3D modeling, texture acquisition, inverse rendering

1 Introduction

This paper presents and compares two different methods for creating illumination coherent models of
large scale outdoor scenes. We concentrate in the problem of texture fusion, i.e. how to combine multiple
texture images with 3D range data to produce photo-realistic renderings in a physically plausible way.
In particular, we analyze the problem of combining intensity images of outdoor environments captured
under different (unknown) illumination conditions without the use of light probes to measure the
incident illumination. In this way, we keep model acquisition as simple as possible.

First, we will show how to solve this problem by applying a combination of relighting and de-
shadowing operations. The relighting operation brings two images to the same illumination; the de-
shadowing operation removes any shadows that are present in the image. This approach is a significant
departure from the traditional methods of range and intensity image rendering that either use a
weighted average of the input images (Pulli et al. 1997, Debevec et al. 1996, Buehler et al. 2001) or
apply a global color correction matrix (Agathos & Fisher 2003, Bannai et al. 2004).
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Secondly, we look into the problem of illumination and texture factorization, where our goal is
to factor the illumination from the texture and solve for the shading of each image and the surface
reflectance. In this way, we obtain an illumination-free texture map from a pair of images and the object
geometry without prior recording or calibration of the incident illumination. This technique falls into
the category of inverse-rendering techniques, since we are measuring scene properties from images and
objects of known geometry. While measuring surface reflectance of an object of known geometry under
controlled and calibrated illumination has proved to produce very good results as shown by Debevec
et al. (2000) and Lensch et al. (2003), working with unknown illumination is yet an open problem.
Typically, to handle unknown illumination it is assumed that the material properties of the object
are homogeneous over the whole surface (Ikeuchi & Sato 1991, Ramamoorthi & Hanrahan 2001a). In
addition, when dealing with textured objects the problem of recovering both texture and illumination
becomes unconstrained. As noted by Ramamoorthi & Hanrahan (2001b) in his development of a signal-
processing approach for inverse rendering, lighting and texture can not be factored without resorting
to active methods or making prior assumptions of their expected characteristics. Our method achieves
this factorization by assuming diffuse surface reflectance.

Both of the algorithms we present rely on the images overlapping each other. Our first algorithm
computes a relighting operator by analyzing intensity values in the area of overlap of a pair of images:
a source image to be relighted, and a target image whose illumination we want to match. By applying
this operator over the non-overlapping region of the source image, we transform its color intensities
in such a way that they are consistent with the colors observed in the target image. The operator we
compute to perform the relighting is the ratio of intensity values per surface orientation, which under
certain assumptions, is consistent over all points with the same orientation and only depends on the
illumination of the scene. The texture factorization algorithm also relies on this orientation-consistency
property. However, in this case we use the ratio image to solve for the irradiance map of each image.

Our main motivation is to push forward the automation of the 3D modeling pipeline for large-
scale outdoor scenes. Our work has been done in collaboration with archaeologists, art historians and
urban planners, to provide accurate and photorealistic 3D models that can serve as documentation
for an archaeological site (Allen et al. 2004), teaching tools for the classroom or research material.
During the past years we have worked in automatic methods and tools for range image registration
(Allen et al. 2003), automatic image registration (Troccoli & Allen 2004), and more recently in texture
normalization (Troccoli & Allen 2005, Troccoli & Allen 2006). This paper is an extended version of
these works with several additions:

– Extension of the relighting algorithm for improved penumbra handling and shadow removal.
– Addition of a ”sun plus sky” illumination model to our previous factorization algorithm.
– Generation of new results on outdoor scenes showing the performance of our techniques in relighting,

de-shadowing and texture factorization.

These extensions were developed for better handling of real world outdoor scenes.

2 Related work

The creation of an illumination coherent texture map from multiple images can be a difficult problem
for several reasons. First, the images are taken from different points of view, which means they show
different degrees of foreshortening and view-dependent effects. Secondly, the illumination and camera
parameters might have changed from one shot to the next, resulting in images with color mismatches.
To cope with these difficulties, early work in model acquisition assumed all images were acquired un-
der constant illumination, in which case the problem reduces to finding the optimal blending function
(Debevec et al. 1996, Pulli et al. 1997, Buehler et al. 2001, Wang et al. 2001). When the constant illu-
mination assumption is impractical, as it sometimes is for outdoor scenes, then some color adjustment
is required. Agathos & Fisher (2003) compute a global 3x3 color correction matrix from pixel intensity
constraints obtained from the overlap region of two images, taking care to discard pixels in shadow or
highlight areas by thresholding. Once the matrix is computed, one of the images is color-corrected. This
pairwise adjustment is extended by Bannai et al. (2004) to multiple input views. However, the color
transform approach is good for fixing camera parameters and small changes in the illumination, such
as chromatic or intensity changes, but it is unclear the extent to which these methods can handle large
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illumination variations, since these methods do not make use of the geometry information. Marschner
& Greenberg (1997) solve for the illumination of the scene by using a set of basis images synthetically
created with a ray tracer. Once the illumination of the scene has been estimated, they relight the orig-
inal photograph using the ratio image of a synthetic rendering of the scene under a new illumination
divided by a similar rendering under the solved illumination. Beauchesne & Roy (2003) compute a re-
lighting operator based on image ratios that they apply to a pair of input images to create a new set of
images of faces with consistent lighting. Our relighting algorithm follows a similar idea to Beauchesne
& Roy (2003), which we extend to outdoor scenes to handle shadows and perform de-shadowing. In
recent work by (Xu et al. 2006), the authors solve for diffuse reflectance of large environments through
analysis of the scanner’s returned intensity value in combination with color-balancing techniques on
the input color images.

A different approach is to compute a surface reflectance map, obtaining an illumination-free texture
representation that can be used to create new renderings under novel lighting conditions. Without
any knowledge about the illumination, however, this problem can become intractable. In laboratory
conditions, the position of the light sources can be measured; with such measurements, (Debevec
et al. 2000, Lensch et al. 2003) show how to obtain a reflectance function once the light positions are
known. To extend this idea to outdoor scenes, Yu & Malik (1998) measure the illumination of the
scene by acquiring photographs of the sky and the surrounding environments. More recently, Debevec
et al. (2004) introduced a novel lighting measurement apparatus that can record the high dynamic
range of both, sunlit and cloudy environments, using a set of specular and diffuse calibrated spheres.
With the captured illumination, they solve for spatially varying diffuse surface reflectance. Our texture
factorization algorithm solves for a diffuse texture map without the need of a light probe.

In the domain of face recognition, Shashua & Riklin-Raviv (2001) define the quotient image of two
different faces as the ratio of their albedos. The main assumption in their work is that all faces have
the same geometry and the variation in their appearance under a point light source depends on the
diffuse reflectance. On the other hand, our methodology is different: from two images of the same scene
under different illumination, we obtain a ratio image which is texture-free. In more recent work, Wang
et al. (2004) take this method a step further and generalize it to faces illuminated by non-point light
sources.

3 Problem definition

We define our problem assuming a 3D model of our scene has already been acquired, registered and
merged into a triangle mesh. Then, given:

1. G the geometry of the scene,
2. I = {I1, I2, . . . , In} a set of overlapping photographs of the scene captured under illumination

conditions L = {L1, L2, . . . , Ln},
3. P = {P1, P2, . . . , Pn} the set of camera projection matrices for each image,

our goal is to create an illumination coherent photorealistic textured model of G. We achieve this by
normalizing the textures in one of two ways:

– Relighting all images in I to a single illumination Lr. The output of our algorithm is in this case a
new set of images Ir = {Ir

1 , Ir
2 , . . . , Ir

n}. In addition, our technique can remove any shadows present
in the images.

– Factoring illumination from the texture. In this case we solve for the relative illuminations Li in
the form of irradiance maps of each image and compute a diffuse albedo map of the scene. We
solve the factorization problem by assuming one of three different illumination models: 1) an object
illuminated by a point light source, 2) non-point light source illumination, 3) outdoor illumination
represented as a combination of a point light source and an ambient component.

Whichever of the two approaches we take, the images need not to be taken from the same viewpoint.
Since we have the geometry of the scene and the projection matrices, it is possible to warp any two
overlapping images to the same view. For simplicity, in the discussions that follows we will consider a
single pair of images acquired from the same view. The input to the texture normalization procedure
is a ratio image R(x, y), which we compute by taking the quotient of the two input images, and a



4 Alejandro Troccoli, Peter Allen

normals image n(x, y) which gives the normal for each pixel and that is generated by ray-tracing the
geometry of the object.

4 The relighting approach

Our relighting algorithm is based on the fact that the ratio of two images of a diffuse object is texture-
free. In this section we will justify this statement and establish the conditions under which it holds. We
begin with the reflected radiance equation, which describes how a surface reflects the incoming light.
The light reflected by a surface point x in the direction (θo, φo) is given by:

B(x, θo, φo) =
∫

Ωi

L(x, θi, φi)fr(x, θi, φi, θo, φo) cos θidωi, (1)

where L is the incident illumination and fr the BRDF at surface point x . For Lambertian surfaces,
equation (1) becomes:

B(x) = ρ(x)
∫

Ωi

L(x, θi, φi) cos θidωi, (2)

where ρ(x) is the surface albedo at x. For simplicity, define the irradiance at x as

E(x) =
∫

Ωi

L(x, θi, φi) cos θidωi. (3)

Then the reflected radiance equation (2) turns into:

B(x) = ρ(x)E(x). (4)

Note that there is still a dependence on the surface position, on both the albedo ρ and the irradiance
E. Under the assumptions that the illumination of the scene is distant, the effects of interreflections are
negligible and there are no shadows, then equation (4) can be reparametrized by the surface normal
at x, which we denote as nx. After reparametrization by surface orientation the above equation (4)
becomes:

B(x) = ρ(x)E(nx). (5)

Now consider two different observations of the same surface point x under different and unknown
illuminations Li and Lj . The image irradiance values for these two observations are:

Bi(x) = ρ(x)Ei(nx),
Bj(x) = ρ(x)Ej(nx).

Taking the ratio of these two expressions we obtain:

Rij [nx] =
Ei(nx)
Ej(nx)

, (6)

since the albedo terms cancel out. R is an irradiance ratio, and is only dependent on the surface orien-
tation at x. Thus, the irradiance ratio of a Lambertian object under the previously stated illumination
assumptions is orientation-consistent, meaning that two surface points with the same orientation will
share the same value. The union of the irradiance ratios over all possible orientations defines an irra-
diance ratio map (IRM). An irradiance ratio map can be built from the quotient of the overlapping
region of two images.
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4.1 Relighting using irradiance ratios.

It can be verified that given the image irradiance of a surface point x′ under illumination Lj we can
compute its image irradiance under illumination Li by taking the product with the corresponding
irradiance ratio value, as follows:

Bi(x′) = Bj(x′)Rij [nx′ ]. (7)

This is verified by substitution of equations (5) and (6) into (7). Therefore, this defines a relighting
operator based on the orientation-consistency assumptions that allows us to relight an image Ij to the
illumination of Ii. The only requirement is to have sufficient surface orientations in the area of overlap
of Ii and Ij to be able to relight the non-overlapping region of Ij .

4.2 Relighting in the presence of shadows.

Architectural scenes can contain structures that cast shadows. When shadows are present, orientation-
consistency does no longer hold because there can exist two points x and x′ with the same surface
orientation that do not have the same intensity ratio. This will happen if in either of Ii or Ij one of
these points is in shadow and the other one is not. However, it is possible to extend the relighting
algorithm ratios to handle shadows. For a scene illuminated by a single source plus smooth ambient
illumination (e.g. sun plus sky) there exists a shadow mapping function S : G → [0, 1], that assigns
a value of 1 to those scenes points completely shadowed, a value of 0 to those scene points that are
completely lit by the source, and an intermediate value in the range (0, 1) to those points that are in
the penumbra regions. Momentarily ignoring penumbra regions, S is a binary function that partitions
the scene into two sets: a set G0 of points lit by the source and a set G1 of shadowed points. In addition,
in terms of surface orientations, points with the same surface orientation will also be partitioned in two
sets. Therefore, when taking the ratio of two images Ii and Ij , the surface orientations in the scene will
be partitioned into four different sets {G00,G01,G10,G11} according to the values of the shadow bits
Si and Sj . We can now redefine the orientation-consistency property for scenes with shadows: when
orientation-consistency holds, two points with the same surface orientation and same shadow bit value
will show the same intensity ratio. Under these new conditions, we can compute four different IRMs
from the ratio image: R00

ij , R01
ij , R10

ij and R11
ij . The relighting equation for a point x becomes:

Bi(x) = Bj(x)Rsisj

ij [nx], (8)

where si and sj are the shadow bits of x under illuminations Li and Lj . This expression is almost
identical to equation (7), with the exception of the index into one of the four computed IRMs, and is
well defined for binary values of si and sj . The points for which si or sj are not in {0, 1} are points
in the penumbra regions. Penumbra regions are transitions from shadow to non-shadow regions (or
viceversa) in which the irradiance varies gradually. To deal with points in penumbra we can generalize
the relighting operator for real values of si and sj in the following manner: first, we define the four
base cases for binary shadow values to be equal to the measured data:

Rij [nx, 0, 0] = R00
ij [nx], (9)

Rij [nx, 0, 1] = R01
ij [nx], (10)

Rij [nx, 1, 0] = R10
ij [nx], (11)

Rij [nx, 1, 1] = R11
ij [nx]. (12)

We recall now from the definition of the irradiance ratio, that we can write the IRMs in terms of its
constituent components:
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R00
ij [nx] =

E0
i (nx)

E0
j (nx)

R01
ij [nx] =

E0
i (nx)

E1
j (nx)

R10
ij [nx] =

E1
i (nx)

E0
j (nx)

R11
ij [nx] =

E1
i (nx)

E1
j (nx)

,

where E0 and E1 refer to non-shadow and shadow irradiance respectively. We first define the irradiance
in the penumbra regions by linear interpolation of the respective shadow and non-shadow irradiance
values:

Ei[nx, si] = E1
i (nx)si + E0

i (nx)(1− si). (13)

Now, we can define the relighting operator for real values of si and sj as:

Rij [nx, 0, sj ] =
E0

i (nx)
E1

j (nx)sj + E0
j (nx)(1− sj)

(14)

Rij [nx, 1, sj ] =
E1

i (nx)
E1

j (nx)sj + E0
j (nx)(1− sj)

(15)

Rij [nx, si, sj ] =
E1

i (nx)si + E0
i (nx)(1− si)

E1
j (nx)sj + E0

j (nx)(1− sj)
. (16)

Finally, we write the above equations in terms of the measured data:

Rij [nx, 0, sj ] =
1

1
R01

ij [nx]
sj + 1

R00
ij [nx]

(1− sj)
(17)

Rij [nx, 1, sj ] =
1

1
R11

ij [nx]
sj + 1

R10
ij [nx]

(1− sj)
(18)

Rij [nx, si, sj ] = R[nx, 1, sj ]si + R[nx, 0, sj ](1− si). (19)

We can now state the generalized relighting equation for scenes with shadows as:

Bi(x) = Bj(x)R[nx,Si(x),Sj(x)] (20)

4.3 De-shadowing

De-shadowing is a variation of the relighting problem, in which the resulting relighted image is shadow-
free. It is straight forward to convert the relighting equation (20) into a de-shadowing equation by
requiring all surface points in G to be lit under the target illumination Li. This is equivalent to re-
defining Si to map all points to 0. Hence, the de-shadowing equation is:

Bi(x) = Bj(x)R[nx, 0,Sj(x)] (21)

We can also consider the problem of self de-shadowing, in which we remove the shadows of an image
without recurring to relighting a second image. By using the computed IRMs over a pair of images, it
is possible to define a de-shadowing IRM as:

R0
i =

E0
i

E0
j

× E0
j

E1
i

=
R00

ij

R10
ij

, (22)
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and the self de-shadowing equation is:

B0
i (x) = Bi(x)R0

i [nx]Si(x) + Bi(x)(1− Si(x)). (23)

4.4 Extending to multiple images

To work with multiple images, each acquired under a different illumination, we proceed chaining
pairwise operations. First we select the image Ir whose illumination we will convert all other images
to. Then, for every image that overlaps with Ir we can proceed as already explained. If there is an
image Ij that does not overlap, then we apply a multi-step relighting. For example, if image Ii overlaps
with both Ir and Ij , then we can first convert Ij to the illumination of Ii and then to the illumination
of Ir, using the previously computed IRMs. The problem we might run into is that there might not be
enough surface orientations in the respective areas of overlap to relight all points in the image.

If we have multiple images, but there exist a subset of these images that were all acquired under
the same illumination, then we can compute the IRMs using the contributions from all images in this
subset.

5 The complete relighting algorithm

5.1 Data acquisition

For the acquisition of the geometry, we have used a Leica HDS 3000 range finder. We acquire a set
of range images and register them using a combination of fiduciary targets that are measured with a
total station device. After the point clouds are registered, we build a triangular mesh using VripPack
(Curless & Levoy 1996), which uses a 3D volume to accumulate a signed distance function to the
surface. This 3D volumetric representation can require large amounts of memory. If we ran out of
memory, we partition the 3D volume into two or more smaller volumes creating a triangle mesh for
each. For example, for the model of the church of St. Marie at Chappes, we used a two volume partition.

Our input images are high-dynamic range (HDR) linearized images. These are built from a set of
exposure-bracketed raw images, which are linear with respect to the light intensity. To build the final
HDR image we compute the exposure ratios, and combine the input images using a weighted average.

After we have created the HDR images, we compute the camera projection matrices using a point-
and-click software tool that we have developed for that purpose(Troccoli 2006). With the collection
of high-dynamic range images taken under different illuminations, the geometry of the scene and the
camera’s projection matrices we begin our relighting procedure. For a given pair of overlapping images,
we carry out the following steps:

1. View alignment. If the images we are acquired from different view points, we warp one to the view
of the other one so that same pixel locations correspond to the same scene point.

2. Shadow detection. We find the shadows using thresholding, as described next.
3. IRM computation. We iterate over all pixels and compute the 4 irradiance ratio maps. For each

pixel, we obtain the surface normal of the corresponding scene point using ray-tracing.
4. Shadow map update. We refine the shadow function in the penumbra regions.
5. Relighting and de-shadowing.

5.2 Shadow detection

The relighting algorithm requires a shadow map Si associated to each image Ii. We thus need a shadow
detection method that assigns each pixel in Ii a real value in [0, 1], where 0 means the corresponding
point in the scene is lit, 1 means it is completely shadowed, and an intermediate value means the point
is in a penumbra region.

It is well known that shadow detection from a single image is a difficult problem, and for this
reason, many researchers perform shadow detection on image sequences or video (Chuang et al. 2003).
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In our application, knowledge of the scene geometry can help find the shadows if the position of the
light source is known. Nevertheless, scanned geometry will not yield shadows that are correct to pixel
level accuracy because of holes in the geometry and the effects of coarse sampling. For this reason, an
image-based method for shadow detection is necessary. We employ a user-assisted method, where the
user selects regions of the image and thresholds the selected region using a pair of thresholds s0 and
s1. All pixels with a luminance value that below s0 are marked as shadowed, all pixels with luminance
above s1 are marked as lit, and pixels in between are labeled as penumbra pixels with a value of
(l−s0)/(s1−s0) where l is the pixel luminance. Before thresholding we filter the images using bilateral
filtering (Tomasi & Manduchi 1998) to remove the high frequency effects of texture. The bilateral filter
is designed to average spatially close pixels that are similar to each other. This similarity condition acts
as an edge-stopping function and overcomes the traditional problem of edge-blurring that is common
of Gaussian filtering.

5.3 IRM computation

Values assigned to penumbra regions are ignored during the data collection for computing the IRMs.
To compute the four IRMs we iterate over all pixels, computing the ratio of the two images. For every
pixel, we look up its surface normal and shadow bits. If the pixel has been labeled as penumbra in
either of the images, we ignore it. Otherwise, we use the shadow bits to establish which of the four
IRMs the pixel contributes to. Each IRM is stored in a 2D representation of the Gaussian sphere. The
surface normal is used to index the corresponding entry to the current pixel. The final value stored in
each IRM entry is the average of all values contributing to it. In addition, we compute one IRM for
each of the three color channels.

5.4 Shadow map update

After the IRM data has been gathered, it is possible to update the shadow masks to find the correct
values for the penumbra regions. This operation will work on all pixels in the area of overlap of the two
images. The basic idea is to update the shadow map by comparing the true irradiance ratio at each
pixel with the ratio obtained from the computed IRMs. Given images Ii and Ij , the current shadow
masks Si and Sj , and the computed IRMs {R00

ij , R01
ij , R10

ij , R11
ij }, we update both shadow masks Si and

Sj . To update Sj we iterate over all the pixels applying the following rules:

1. Lookup Si(x) and Sj(x) and the surface normal nx.
2. If Sj(x) is either 1 (non-shadowed) or 0 (shadowed), skip the current pixel because only pixels

labeled as penumbra will be updated.
3. Based on the value of Si(x) solve for the shadow mask sj using equation (12) if Si(x) is 0, or

equation (18) if Si(x) is 1. If the computed value of sj is outside the range [0, 1], we clamp it to
the nearest value in the range. If Si(x) is neither 0 or 1, then xhas been labeled in penumbra in
the two images. In this case, which is quite unlikely, we can not update the shadow mask unless we
assume one of the two masks is correct.

When we update the shadow masks we compute a new mask per color channel, as opposed of a
single mask based on luminance. We have found that better results are obtained in this way. Finally,
once Sj has been updated, the process can be repeated to update Si, this time using IRMs Rji and
the newly computed shadow map Sj , and interchanging Si and Sj in the steps already outlined.

6 Relighting results

We have tested the proposed algorithm on a variety of scenes. In this paper we present the most
relevant ones, the complete set of results are available in (Troccoli 2006). Our first results correspond
to two buildings in the campus of Columbia University in New York City: a model of Casa Italiana
and a model of St. Paul’s Chapel.

The images used for the test on Casa Italiana are shown in figure 1. These images were taken from
slightly different view points and registered manually. One of the images was acquired at 1:28pm and
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the other one at 3:22pm. In figure 2 we show the same images, now aligned to the same viewpoint, and
their computed shadow masks. Note that shadows are in different locations, and that in one case, one
complete face of the building is shadowed. We do the view-warp process by back-projecting the pixels
to the scene, finding the distance to the camera of the corresponding surface point and projection
to the viewpoint of the corresponding image. Hence, only those pixels for which we have geometry
can be warped. The remaining pixels are left black, and correspond to holes in the 3D model. After
filtering and shadow detection we collected the IRM data and updated the shadow masks. Using these
shadow masks and the computed IRMs, we ran the relighting and de-shadowing algorithms to turn
the image that was acquired at 1:28pm to the illumination at 3:22pm. In figure 3 we show both, the
relighted image and the de-shadowed image. Note that the relighted images preserves the shadows
while the de-shadowed image has none. One important aspect to note about the de-shadowed image
is that regions that were in shadow in both of the input images have been successfully de-shadowed.
For better visualization, figure 3 also shows two composite pictures with the image before and after
the relighting operation. Each composite picture is divided in two regions. The left region shows the
original image of Casa Italiana acquired at 3:22pm. The right region, shows the image acquired at
1:28pm. In one of the composite pictures we show the original image at 1:28pm and in the other one,
the relighted image. Note how in the latter case it is hard to distinguish the boundaries between the
actual and relighted image.

In a similar way we conducted the experiments on the images St. Paul’s Chapel. Figure 4 shows
the acquired images, one of which was taken at 11:22am and the other one at 12:35pm, with their
corresponding shadow masks. In figure 5 we show the results of applying the de-shadowing operation.
In this case, we completely removed the shadows from the image acquired at 12:35pm. The picture on
the left of figure 5 shows the obtained de-shadowed image, and the picture on the right is a composite
picture in which, the left half corresponds to the original image and the right-half to the de-shadowed
image.

7 Irradiance and texture factorization

We now analyze the irradiance and texture factorization problem. In (Troccoli & Allen 2006) we showed
how this could be achieved for point light sources or illumination models written as an expansion
of spherical harmonics (SH) and PCA basis. In this paper we extend this idea to model natural
illumination as a combination of point source plus and ambient component and taking shadows into
account. These algorithms address different situations that arise in practice:

1. An object illuminated by a distant point light sources. Given two images of this object under
different point source illumination and the surface normals at each pixel, the factorization algorithm
solves for the direction of the lights and relative intensities.

2. An object illuminated by smooth ambient illumination expressed as an expansion in terms of
spherical harmonics (SH) or PCA basis. Here, given two images, we solve for the terms of the SH
or PCA expansion.

3. A scene illuminated by a point source and ambient illumination. Such is the case we encounter in
outdoor scenes, where the sun acts as a point source and the sky and the surrounding environment
as an ambient component.

7.1 Factorization algorithm for point light sources

When an object is illuminated by a directional point light source whose direction is described by a
normalized 3-vector l1, the irradiance for a scene point x with associated normal nx is:

E(nx) = L max(nx · l1, 0), (24)

where L denotes the source intensity and · the vector dot product. Given two images illuminated
by point sources with directions l1 and l2, respectively, the ratio image obtained is described by the
following equation:
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R(x, y) =
L1 max(n(x, y) · l1, 0)
L2 max(n(x, y) · l2, 0)

, (25)

defined only for non-zero values of the denominator and numerator. Our goal is to solve for the direction
of the light sources given the ratio image and the surface normals. It should be clear at this point that
there will be an ambiguity in the light source intensities L1 and L2, since multiplying the numerator
and denominator by the same constant in the above expression does not affect the final result. Hence,
we can fix L1 to unity and solve for l1 and l2 scaled by L2. To simplify the notation we drop the
(x, y) coordinates in R(x, y) and n(x, y). Instead we will use a single subindex to enumerate all pixels.
Then, we can solve for the light direction and relative intensities from the following system of linear
equations:




nT
0 −R0nT

0
...

...
nT

k −RknT
k




[
l1

L2l2

]
= 0. (26)

This is a linear system of the form Ax = 0. The solution we are looking for is the one dimensional
null-space of A. Unfortunately, if the dimension of the null-space of A is greater than one it will
not be possible to solve uniquely for the light directions. This condition will arise if the distribution
of the imaged surface normals is small: e.g. if the scene is a flat wall. Given the null-space vector
x = (x0, x1, x2, x3, x4, x5), we obtain l1, l2 and L2 from:

l1 =
(x0, x1, x2)
||(x0, x1, x2)|| (27)

l2 =
(x3, x4, x5)
||(x3, x4, x5)|| (28)

L2 =
||(x3, x4, x5)||
||(x0, x1, x2)|| (29)

To handle color images we could treat each channel separately and solve (26) per channel. However,
this typically yields three slightly different positions for the light source. We can obtain a more robust
solution if we convert the image to luminance space and use the luminance values, instead. After we
recover the direction of the light sources, the relative scale L2 for each channel c is obtained from the
original images by averaging the following expression over all pixels:

L2,c(x, y) =
max(n(x, y) · l1, 0)

R(x, y) max(n(x, y) · l2, 0)
. (30)

Also, note that nothing is known about the absolute chromaticity of the light sources. By fixing the
intensity L1 to the same value for the all three channels, we assume that light to be white. This
chromatic ambiguity can not be solved without further assumptions or resorting to a color calibration
object.

7.2 Factorization algorithm for generalized illumination

We can extend the previous case to a more general form of illumination. To do so, we define irradiance
as an expansion in terms of spherical harmonic basis functions. Ramamoorthi & Hanrahan (2001a)
and Basri & Jacobs (2003) have established that the image of a diffuse convex object under general
illumination is well approximated by a low dimensional spherical harmonic expansion. Spherical har-
monics are orthonormal basis defined over the sphere. Using this framework, we can approximate the
incident irradiance as:
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E(n) =
∞∑

l=0

l∑

m=−l

AlLlmYlm(n). (31)

In (31) above, Ylm are the spherical harmonic functions, Llm are the spherical harmonic coefficients of
the incident illumination, and Al is a constant that represents the effects of multiplying the incident
light with the half-cosine function. In this context, we want to solve for Llm. Since Al decays very
rapidly, a very good approximation can be obtained by limiting l ≤ 2. A first order spherical harmonic
approximation ( up to l = 1 ) has a total of four terms and a second order approximation has a total
of nine. Before writing down the irradiance ratio in terms of spherical harmonics, we do one more
notation change for clarity purposes. We replace the double-indexed Ylm functions and Llm coefficients
by their single-index equivalent Ys and Ls, where s = l2 + l + m. Also, since we have to solve for two
different illuminations Ls, we will denote these with L1s and L2s. Using this new notation, we can
substitute (31) into our irradiance ratio expression to obtain:

Ri =
∑n

s=0 AsL1sYs(ni)∑n
s=0 AsL2sYs(ni)

. (32)

where n = 4 or n = 9 depending on the order of the desired approximation. We can now derive a
system of linear equations similar to (26) on the unknown lighting coefficients L1s and L2s.




A0Y0(n0) . . . AnYn(n0) −R0A0Y0(n0) . . .
...

...
A0Y0(nk) . . . AnYn(nk) −RkA0Y0(nk) . . .







L10

...
L1n

L20

...
L2n




= 0. (33)

The solution to (31) is once more the null-space of A and the coefficients L1s and L2s will be defined
up to a scale factor. This scaling factor can be fixed by setting L10 = 1, which fixes both the relative
scale and chromaticity of the illumination.

The well-conditioning of the system of equations (33) will depend on the distribution of surface
normals. For better results and higher robustness against noise, it is possible to re-cast the problem in
terms of principal components. This means replacing the spherical harmonic basis by lower dimensional
orthogonal basis obtained using principal component analysis (PCA). The rationale behind this change
of basis is that the principal components are vectors in the direction of greater variability (in this case
due to illumination changes). Ramamoorthi (2002) derived an analytic expression for the principal
components of the image of an object under all possible point light sources and showed that these are
related to the spherical harmonic basis Ys . In particular, Ramamoorthi shows that the eigenvectors
obtained from PCA of the image space of an object illuminated under all possible point light sources
can be well approximated as a linear combination of spherical harmonic functions up to order two. Let
V be the matrix with the principal eigenvectors as columns, then there exists a matrix U such that
V ≈ Y U , where Y is a matrix whose columns are the first nine spherical harmonics Y0...Y8. The
matrix U can be computed analytically from the geometry of the object and details on how to do this
are given in (Ramamoorthi 2002). Using the eigenvectors Vi as the new basis, we can now write the
incident irradiance as:

E(n) =
n∑

i=0

eiVi(n), (34)

where ei are the coefficients of the irradiance in principal components basis. The number of terms to
employ in this new approximation will depend on the object geometry, but by looking at the eigenvalues
associated to each vector it is possible to determine a good cut-off point. Now, we can write (33) as:
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V0(n0) . . . Vn(n0) −R0V0(n0) . . .
...

...
V0(nk) . . . Vn(nk) −RkV0(nk) . . .







e10

...
e1n

e20

...
e2n




= 0. (35)

Once we find the coefficients e1i and e2i we can find the corresponding L1s and L2s coefficients by
substitution into:

L1s =
∑n

i Usie1i

As
, L2s =

∑n
i Usie2i

As
, (36)

where Us is the sth row of U . To handle color images we treat each of the RGB channels separately
and solve for three sets of coefficients L1i and L2i. Once again, as before, there is an inherent chromatic
ambiguity that we can only solve for if we have an image of a color calibration object.

7.3 The point light plus ambient illumination algorithm

Consider the case of outdoor illumination, where the sun is a distant point light source and the sky a
hemispherical area source. We can model this situation as a sum of a point light source plus an ambient
component. However, the sun is not just any directional light source. Its daily trajectory over the sky
has been very well studied, and its position in the sky dome can be computed from the time of the
day and the geo-location (latitude and longitude) of the scene (Reda & Andreas 2003). Since these two
pieces of information are easily available, the time being provided by the camera and the geolocation
by a GPS unit or any of today’s web-based mapping engines, we can assume the position of the sun
to be known. Hence, our model of outdoor irradiance can be expressed as the combination of the sky
irradiance plus a half-cosine term. To model sky irradiance, we can use a spherical harmonics or PCA
basis expansion. Then, we can express outdoor irradiance as:

E(n) = P max(n · s, 0) +
n∑

s=0

LsYs(n). (37)

Here Ls are the coefficients for the basis expansion of sky irradiance in SH or PCA basis, P is the
relative intensity of the sun and s the sun direction. Since the ambient and direct components are
modeled separately in equation (37), we can work with images with shadows, as we did with the
relighting technique. All we need is the shadow mapping function S, and (37) becomes:

E(x) = S(x)P max(nx · s, 0) +
n∑

s=0

AsLsYs(nx). (38)

For two images taken at different times of the day, with the sun at directions s1 and s2 and relative
intensities P1 and P2, the irradiance ratio of point x is given by:

R(x) =
S1(x)P1 max(nx · s1, 0) +

∑n
s=0 AsL1sYs(nx)

S2(x)P2 max(nx · s2, 0) +
∑n

s=0 AsL2sYs(nx)
. (39)

Our goal is to solve for the relative sun intensities P1 and P2 and the sky irradiance coefficients L1s

and L2s, which we do as before, linearizing the equations into the form Ax = 0 and solving for the
null-space of A.
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7.4 Extracting the albedo map

After we have solved for the relative irradiance using one of the three models presented, we compute
an albedo map for the scene. However, note that the chromatic and scale ambiguity in the estimated
irradiance will translate to the estimation of the albedo map, which will also be defined up to scale.
From the image pair I1 and I2 with estimated irradiance E1 and E2 we compute the albedos at each
pixel:

ρ1(x, y) =
I1(x, y)

E1(n(x, y))
(40)

ρ2(x, y) =
I2(x, y)

E2(n(x, y))
(41)

ρ(x, y) =
I1(x, y)ρ1(x, y) + I2(x, y)ρ(x, y)

I1(x, y) + I2(x, y)
. (42)

In other words, for each pixel (x, y) we set its albedo ρ(x, y) to a weighted average of the albedos we
obtain from I1 and I2. The weights are set to the pixel intensities, so that dark pixels, which are more
dominated by noise, are down-weighted.

8 Texture factorization results

We tested the three factorization algorithms on different kinds of scenes under different types of
illumination conditions. In this section, we report the obtained results.

8.1 Point light source model

First, we ran the point light source algorithm on synthetic and real data. The images used in our tests
are shown in Figure 6. The first two renderings are synthetic scenes for which we used a model of a
sphere and a model of the Armadillo1 textured with a synthetic wooden pattern and rendered using
a ray-tracer. We then included three objects that had been imaged under known point-light source: -
a buddha, a cat and an owl2. The geometry and normals-map for these objects were obtained using
photometric stereo. Finally, we included in our testing a set two objects that had been scanned using
a Polhemus hand-held scanner3: a chicken and a figure of an Asian girl. The synthetic renderings and
photometric stereo models are good for ground-truth comparisons, because we know the position of
the light sources and do not require image registration. For the chicken and girl models, we captured
several images varying the position of a point light source but leaving the viewpoint fixed. We manually
registered these images with the 3D model.

We ran our point-light source estimation model of section 7.1 on all of the image pairs shown in
Figure 6. Tables 1 and 2 show the ground truth and recovered light source positions and relative
scales for the synthetic and photometric stereo models. For the synthetic scenes, the recovered light
source directions and scaling factors shown in Table 1 are almost identical to the actual directions.
Likewise, the computed light source directions for the buddha, cat and owl models listed in Table 2
are very close the ground truth data. We had no ground truth data for the chicken and Asian girl
models. Nevertheless, we ran our algorithm to obtain the position of the light sources and obtain the
factorization.

As a second step, we used the computed light direction to factor the input images into their
corresponding texture (albedo maps) and shading (irradiance) components. The results are shown in
Figure 7 - the top row shows the albedo map, and the second and third rows the irradiance maps for
each of the input images. Note that, with the exception of a few minor artifacts, the albedo maps do

1 The Armadillo model was downloaded from the Stanford scanning repository.
2 The buddha, cat and owl data sets were generously provided by Dan Goldman and Steve Seitz from the

University of Washington, Seattle, WA.
3 These models were scanned for us using the Polhemus scanner by Michael Reed of Blue Sky Studios
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not contain any shading effects. This is certainly true for the synthetic models: both the sphere and the
armadillo albedo maps look completely flat. For the real data sets, some artifacts can be seen where
the surfaces are not purely Lambertian. For example, the owl shows some specular components in the
albedo map. Other artifacts are brighter spots in non-convex regions, in particular at the junction
of the head and body of the cat and owl models, the junction of the arm and body in the chicken
model, and the junction of the hair and face in the girl model. The convexity assumption fails here
and inter-reflections influence the final result. The visible effect is a brightening of the albedo map,
since the pure Lambertian model can not explain the increase in irradiance due to inter-reflections. As
a final comment, the pants in the chicken model are not in the albedo map since the luminance value
of those pixels falls below the shadow threshold, and hence ignored by the algorithm.

When ground truth was available, we also computed a quantitative measure of the quality of the
factorization by comparing the obtained irradiance images with the irradiance images generated using
the ground truth light source position. Since there is a scale ambiguity that is inherent to our method,
we normalized all images before computing the error metric. This normalization was achieved by
setting the norm ‖ I ‖2= ∑

x,y I(x, y)2 equal to one. Then, for a given pair of normalized ground
truth image I0 and reconstructed irradiance image I1, we computed the relative squared error of the
reconstruction4:

err(I1, I0) =
‖ I1 − I0 ‖2
‖ I0 ‖2 . (43)

The resulting reconstruction errors are reported as percentages in Table 3. It can be observed that the
reconstructed irradiance images using the point light source algorithm are very accurate.

8.2 Generalized illumination model

We tested the generalized light model algorithm on the same set of images we used for testing the
point-light source factorization, shown in Figure 6. In all cases, we first analytically computed the
PCA basis. We used a basis of dimension 3 for all of the models except for the sphere, for which we
used a PCA basis of dimension 5. We found these dimensions empirically, by testing with different basis
size. The resulting factorizations into irradiance images and albedo maps are shown in Figure 8 and the
reconstruction errors for the irradiance images are tabulated in Table 3. It can be seen that the model
approximates well the irradiance and produces a good factorization. The reported reconstruction errors
are less than 4.5%. For the sphere, the quality of the approximation is as good as for the point-light
source model. For the remaining models, the irradiance reconstruction error varies between 0.5% for
the buddha to 4.50% for the cat.

8.3 Point plus ambient illumination model

We ran the factorization algorithm on the images of Casa Italiana and images of the church of St.
Marie, in Chappes, France. For Casa Italiana, the input images are the same we used for our relighting
test, shown in figure 2. We modeled the ambient light with a constant term approximation and with
a PCA basis expansion of order 3. The results are shown in figures 9 and 10, respectively. Each figure
shows the computed albedo and irradiance maps for each of the illuminations. In the absence of ground
truth, we restrict ourselves to a qualitative analysis of the results. Comparing the albedo maps we can
see the best results were obtained from the constant term ambient approximation. The albedo map in
figure 9 shows almost none of the illumination effects, except for a few brightening in regions where
the sampling of the scanner was not high enough to approximate correctly the geometry variations. In
contrast, the results obtained using a 3 term expansion do show some artifacts for surfaces looking down.
Regions with downward pointing normals only receive indirect illumination from inter-reflections, so it
is very unlikely that orientation consistency will hold for those points, and the higher order expansion
attempts to account for these effects.

4 The relative squared error is frequently used in the literature (Basri & Jacobs 2003, Frolova et al. 2004) as
a metric for evaluating the goodness of image reconstructions.
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For the test on a model of the church of St. Marie, we used two sets of four images each: one set taken
at 10:56am, and the other taken at 4:55pm. We put the images together into a composite picture for
each illumination, shown in figure 11. Since each set of images is acquired under constant illumination
with the same camera parameters, these blended images do not show artifacts. The two composites,
plus the shadows masks shown in figure 12, the normals map, and the directions of the sun, were
given to our illumination and texture factorization algorithm. The resulting albedo and illumination
maps are shown in figure 13 and 14, respectively. The resulting albedo map is illumination free; the
only artifacts are some regions in which the shadow boundaries are noticeable, which is a result of
inaccuracies in the shadow detection. Unfortunately, this is a limitation of our method: it requires very
accurate shadow masks which are very difficult to compute. Nevertheless, the computed albedo map
is good for generating new renderings under novel illumination conditions. To show this, we created
a set of renderings of St Marie as the sun traverses the sky from morning to afternoon. The results,
which were created using a ray tracer, are shown in figure 15. Additionally, an animation is available
from (?).

9 Discussion

Our algorithms produce high quality results, as shown in the previous section and in (Troccoli 2006).
It is important, however, to understand the possible sources of error that can affect the quality of the
reconstructed texture map. These possible sources of error are:

Inadequate geometry sampling. The geometric models we use are obtained using a time-of-
flight laser scanner that samples the scene in a discrete manner. Using discrete sampling we are only
able to reconstruct geometry variations at half the frequency of the sampling rate. Rapid variations in
the geometry are lost. Since surface normals are computed by triangulation of the measured points, the
algorithm is expected to work better in scenes with smooth varying surfaces than in rapidly changing
scenes.

Registration errors. These are errors that are introduced when computing the camera param-
eters, either intrinsic or extrinsic. Registration errors can result in the incorrect mapping between a
pixel and a surface normal, and in incorrect pixel correspondences between two images. Image-geometry
registration is a difficult problem, and we have tried in our experiments to reduce registration errors
as much as possible. Registration errors can influence the final result more or less depending on the
scene. For example, small registration errors have less impact on geometrically smooth surfaces, where
a small misalignment will still map a pixel to the correct surface normal. This is the case of flat walls,
for example. Also, for smooth textures, small registration errors can be tolerated. It is for this reason
that we apply a bilateral filter and smooth high frequency textures before computing the IRMs: we
smooth out the texture and hence reduce the effects of image misalignments. Note that this smoothing
is not a theoretical requirement but a practical one to make the algorithm more robust.

Shadow detection. The shadow labels define which of the four IRMs a sample contributes to.
If a shadow label is incorrectly assigned, then the sample will incorrectly be attributed to the wrong
IRM. For large number of samples per surface normal, a small number of outliers will not affect the
results; but if there are only a few samples for a given surface normal, then the computed IRM could
contain errors.

Non-Lambertian reflectance. Most real-world surfaces are not purely Lambertian. However,
some diffuse surfaces have Lambertian-like behavior for a range of viewing directions. Hence, our
relighting and de-shadowing algorithms will produce good results in these cases. In architectural scenes,
windows can be a problem, since they can behave like mirrors and significantly deviate from the
Lambertian assumption. For this reason we mask windows out in our experiments, completely ignoring
them during the IRM computation stage.

Interreflections and spatially varying ambient occlusion. When a scene is not perfectly
convex, the effects of interreflections and spatially varying ambient occlusion can affect the results of
the relighting and de-shadowing algorithms. Interreflections are indirect contributions of light bouncing
off a surface and reaching another one. Spatially varying ambient light occlusions are variations in the
cone of sky5(or extended distant light sources) visible by a scene point. If two scene points with
the same surface normal see a different cone of sky, then the irradiance at each of these points will

5 Also defined as sky-aperture in (Narasimhan & Nayar 2001)
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be different, violating the orientation-consistency assumption. Also, the effects of interreflections and
spatially varying ambient light occlusion are more noticeable in shadowed regions. In our algorithm,
we do handle these indirectly and in an ad-hoc manner by allowing the shadow masks to take real
values in the range [0,1].

Of these potential sources of error, the first two are not inherent to our methodology, but will
be present in any system used to recover illumination-coherent texture maps from range and color
images. To better account for the effects of interreflections and ambient occlusions, the contributions
from these sources could be approximated using a ray-tracer; however, ray-tracing requires hole-free
geometry with accurate normals, which is not always available from range scans. Acquiring a hole-free
model is possible if unlimited time is available, but that is not typically the case during field work.

10 Conclusions and Future Work

In this paper we have presented two different methods for building illumination coherent photorealistic
models of outdoor scenes from images acquired under different illumination conditions. We did this
without introducing additional overhead to the acquisition process. This required that all the infor-
mation needed for the creation of these models in a physically plausible way would need to come from
the photographs themselves and the geometry of the object. Under these conditions, we developed
two different algorithms: an algorithm that normalizes the textures using a relighting operator and an
algorithm that does it by solving the texture and factorization problem, for which we have presented
results on different real scenes. Comparing one method against the other, it is worth mentioning that
the relighting algorithm does not assume any illumination model, and thus can be more general than
the factorization approach, which does assume a particular parametric model for the illumination and
uses the input data to find the parameters of this model. However, in those cases where the para-
metric model adjusts closely to real world scenarios, the factorization approach has the advantage of
generating illumination-free textures which can then be relighted under novel illumination settings.

The results we have presented are for a number of outdoor scenes using a variety of lighting
conditions. For more complex scenes and illumination settings, our assumptions might not hold, and
our method may not produce the expected results. Inverse rendering, in particular for outdoor scenes,
is indeed a difficult problem and even more elaborate techniques that make use of a light-probing device
are limited to mostly diffuse like surfaces. Debevec et al. (2004) fit image data to a pre-measured BRDF
model based on the Lafortune representation and assume that the colors of the Lambertian component
and retroreflective lobes both follow the Lambertian color.

In our method, by assuming materials to be Lambertian like,we guaranteed that the ratio image
is texture-free, allowing us to derive a simple model for relighting and for factoring irradiance and
texture. It seems unlikely that this restriction can be relaxed for the general case, but under certain
circumstances, we might be able to. For example, if we had a small database of materials representative
of the materials in the scene, and assumed point light source illumination, we could search the space
of materials and source positions until we find the parameters that best fit the observed ratio image.
This will require proper segmentation and materials clustering, as in (Hertzmann & Seitz 2005).

Yet to be explored is the use of active methods for reflectance modeling in outdoor environments.
The range finder is in fact, an active device which does report a returned intensity value. In recent work
(Xu et al. 2006), pure diffuse reflectance of large environments is obtained by analyzing the scanner’s
returned intensity value in combination with color-balancing techniques on the input color images.
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Fig. 1 Two images of Casa Italiana taken at different time of the day from slightly different view points. Left:
image acquired at 3:22pm; right: image acquired at 1:28pm on the same day, under partly cloudy conditions.

Fig. 2 Input images to our relighting algorithm. From left to right: the two images of Casa Italiana warped
to same view point and zoomed to show the region of interest; the corresponding shadow masks.

Fig. 3 Relighted and de-shadowed images of Casa Italiana. Left: image taken at 1:28pm relighted to illumina-
tion at 3:22pm; middle-left: same relighted image but with shadows removed. Middle-right: composite picture
before relighting; the left half of the image is the original input image acquired at 3:22pm, the right half is the
image taken at 1:28pm. Right: Composite picture after relighting, where the right half is now replaced with
the results of relighting the image taken at 1:28pm with the illumination at 3:22pm.
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Fig. 4 Two images of St Paul’s Chapel at Columbia University acquired at 11:22am and at 12:35pm, and
their corresponding shadow masks.

Fig. 5 De-shadowing results for the images of St Paul’s Chapel. Left: de-shadowed image. Right: Composite
image that shows, on the left, the original image and on the right, the de-shadowed image. Note how the
shadows are successfully removed.
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Fig. 6 Objects used for testing our algorithm. Starting from the left, first come the synthetic renderings: a
sphere and the Armadillo; followed by three objects with their geometry acquired using photometric stereo:
the buddha, the cat and the owl; and finally two scanned objects: the chicken and the girl. Each row shows the
objects with a different illumination.

Fig. 7 Results obtained using the point light source model for the images in figure ??. The top row shows the
recovered albedo, the middle row shows the factored irradiance for the first illumination, and the last row the
factored irradiance for the second illumination. Notice how the factorization de-couples texture from shading.

Point source 1 Point source 2 Rel. intensity
x y z x y z (R, G, B)

Actual position -0.58 0.36 0.73 0.28 -0.28 0.92 (5.00, 10.00, 20.00)
Sphere -0.58 0.36 0.73 0.27 -0.28 0.92 (5.03, 10.10, 20.48)

Armadillo -0.58 0.35 0.73 0.27 -0.28 0.92 (5.11, 10.27, 20.88)
Table 1 Ground truth and recovered light directions and relative intensities for the synthetic images of the
sphere and the Armadillo
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Point source 1 Point source 2 Rel. intensity
x y z x y z (R, G, B)

Actual position 0.40 0.48 0.78 -0.32 0.49 0.92 (1.00, 1.00, 1.00)
Buddha 0.44 0.47 0.77 -0.32 0.47 0.82 (1.03, 1.03, 1.04)

Cat 0.39 0.49 0.78 -0.33 0.47 0.82 (1.09, 1.09, 1.05)
Owl 0.39 0.48 0.78 -0.31 0.44 0.84 (1.02. 1.01, 1.00)

Table 2 Ground truth and recovered light directions and intensities for the buddha, cat and owl models.

Fig. 8 Results obtained using the generalized illumination model the images in Figure 6. The top row shows
the recovered albedo, the middle row shows the factored irradiance for the first illumination, and the last row
the factored irradiance for the second illumination.

Model Method Error 1 Error 2
Sphere PL < 0.1% < 0.1%

PCA 5 0.40% 0.20%
Armadillo PL < 0.1% < 0.1%

PCA 3 3.50% 4.30%
Buddha PL 0.40% 0.50%

PCA 3 0.10% 1.60%
Cat PL < 0.1% < 0.1%

PCA 3 4.40% 4.50%
Owl PL < 0.1% < 0.1%

PCA 3 3.80% 3.50%
Table 3 Normalized reconstruction error for the irradiance images. The first column indicates the object, the
second one the method used (PL = point light, PCA n = generalized illumination using PCA of size n), and
the last two columns show the normalized reconstruction error for the two irradiance images.
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Fig. 9 Casa Italiana - Computed albedo and irradiance maps with constant ambient component.

Fig. 10 Casa Italiana - Computed albedo and irradiance maps using an order 3 PCA basis for the ambient
component.
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Fig. 11 Real images of Saint Marie, Chappes, France. The top image is a composite made of images acquired
at 10:56AM on May 26th 2005. The bottom is a composite made of images taken at 4:55PM on that same day.

Fig. 12 Shadow masks for the input images of Saint Marie, Chappes, France.



Building illumination coherent 3D models of large-scale outdoor scenes 25

Fig. 13 Albedo map for the south facade of Saint Marie, Chappes, France.

Fig. 14 Illumination images computed for the images of Saint Marie, Chappes, France.
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Fig. 15 Renderings of Saint Marie at Chappes under novel illumination conditions. These renderings simulate
a day-time sequence with the sun at 10am, 11am, 12pm, 1pm, 2pm and 3pm.


