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Abstract— Grasp quality metrics which analyze the contact
wrench space are commonly used to synthesize and analyze
preplanned grasps. Preplanned grasping approaches rely on
the robustness of stored solutions. Analyzing the robustness of
such solutions for large databases of preplanned grasps is a
limiting factor for the applicability of data driven approaches
to grasping. In this work, we will focus on the stability of the
widely used grasp wrench space epsilon quality metric over a
large range of poses in simulation. We examine a large number
of grasps from the Columbia Grasp Database for the Barrett
hand. We find that in most cases the grasp with the most robust
force closure with respect to pose error for a particular object is
not the grasp with the highest epsilon quality. We demonstrate
that grasps can be reranked by an estimate of the stability of
their epsilon quality. We find that the grasps ranked best by
this method are successful more often in physical experiments
than grasps ranked best by the epsilon quality.

I. INTRODUCTION AND RELATED WORK

Analyzing the robustness of a grasp in the presence of
object localization errors and external force perturbations is
an important and difficult problem. Grasp quality metrics
which analyze the contact wrench space of a grasp are com-
monly used to synthesize and analyze grasps. For approaches
which preplan a large database of grasps offline, quantifying
the robustness is the critical component for ranking these
grasps in order to select the best candidate in a particular
environment.

Automating the construction of robust grasps has been
studied by many researchers. A key criterion that has been
used to define a stable grasp is that the contact points of
the grasp are able to generate a wrench in an arbitrary
direction, termed force closure. This property is considered
fundamental in grasp analysis because it provides a simple,
necessary condition for grasp stability[1]. This property is
determined from the set of wrenches that can be feasibly
produced from the contact points of the grasp, termed the
grasp wrench space (GWS).

Force closure provides a binary analysis of grasp robust-
ness. In order to analyze the strength of the force closure,
we commonly use the the epsilon quality (εGWS). εGWS is
defined as the radius of the largest ball around the origin
that fits in the convex hull of the grasp’s contact wrench
space. This radius is the magnitude of the minimum norm
wrench that will break the object free of the grasp[2].

In previous work, measures have been proposed to quan-
tify the robustness of contact location based quality metrics,
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Fig. 1. An illustration of the effect of pose uncertainty on the force closure
of a grasp. On the left is a planned grasp from a database of preplanned
grasps with an εGWS of 0.17. On the right is the same grasp after a 20◦
clockwise rotation and 1cm translation. The contacts of the perturbed grasp
have different normals and locations from the planned grasp. In this case,
this perturbation results in a non-force closed grasp.

with particular focus on the εGWS. One well developed
approach considers the effect of contact model or contact
location uncertainty with respect to the object. The inde-
pendent contact region approach (ICR) introduced in [3]
considers the effect of contact location uncertainty on the
εGWS of a grasp. This approach grows a convex set of
acceptable contact locations for each planned finger contact
on the object. Any set of contact locations chosen from
this set produces a grasp whose quality metric is lower
bounded by a preselected quality threshold. Faverjon et. al.
developed analytical approaches to finding ICRs for complex
2D and simple 3D models[4][5][6]. In Roa and Suarez [7],
this approach is extended to complex three dimensional
shapes and minimal thresholds on the εGWS. Pollard et al.[8]
followed a similar approach with a focus on larger numbers
of original contacts and with extensions to task wrench space
quality metrics, and also presented a method for generalizing
sets of ICRs between objects. Zheng and Qian proposed a
quality metric based on a similar region growing approach by
measuring the radius of the smallest ball in the configuration
space of the regions produced for the grasp parametrized by
contact location, contact normal, or frictional coefficients[9].

All of these approaches consider the effects of contact lo-
cation uncertainty independently, but do not directly address
the effect of calibration error and object pose uncertainty on
the εGWS. These approaches assume that uncertainty causes
the contacts to land near the planned contact points on the
object. However, simulating the entire grasping procedure
often produces very different sets of contacts in the presence
of uncertainty. In Fig. 1, we illustrate this problem and show
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that it is not sufficient to consider the contact locations on the
object in isolation of the full hand geometry and trajectory
planning. In fact, none of the ICR approaches described
are able to fully account for the effects of these resulting
deviations from the planned contact locations.

Some work has addressed the effect of object pose un-
certainty in grasping tasks for measures of grasp stability
other than the εGWS. Analytical solutions to the robustness of
spring-like finger models to pose error have been explored
in 2D models[10] or simple 3D models with simple con-
tact formulations[11]. In Balasubramanian et al. the authors
derive a novel grasp measure for robust grasping from
observations of human guided grasping [12]. Bekiroglu et al.
proposed a method to learn haptic features of grasp stability
to assess grasps during their execution[13].

The general problem of motion and manipulation planning
robust to pose error was addressed by by Lozano-Perez et.
al [14] using preimage-backchaining. In Berenson et. al.
[15], this method was extended to hand target pose regions
for grasping objects on a table top. In [16], Brost and
Christiansen investigated the issue of pose error robustness
for a 2D gripper using a sampling based approach on a fixed
trajectory plan in physical experiments. More recently, Hsiao
et al. investigated Bayesian approaches to grasp planning
under object pose and identity uncertainty for a simple
gripper using a sampling approach to select robust grasps
as measured by a grasp quality metric in simulation [17].

In this paper we follow a sampling approach similar to
Hsiao et al. extended to a more commonly used grasp quality
measure on a more complex and dexterous hand using an
uncertainty model similar to Berenson et. al. We apply these
models to a simulated grasping pipeline to estimate the pose
error robustness of the εGWS of a grasp.

There are two primary goals of this research. First, we
show that for a reasonable error model, we can produce
an extension of the εGWS by uniformly sampling the model
and observing the behavior of contact wrench space metrics
over this set of sampled poses. Second, we use these ob-
servations to re-prioritize grasps selected from the Columbia
Grasp Database [18] and thus select more robust grasps. We
validate this method by comparing its performance to the
εGWS in physical experiments.

In the rest of section I, we discuss the εGWS metric and the
grasp dataset used in this paper. In section II, we describe
the implementation details necessary to evaluate grasps from
a database in the presence of uncertainty. In section III,
we demonstrate how uncertainty effects the εGWS under our
noise model and grasping pipeline, and how we use these
measurements as a quality metric. In section IV, we present
the results of physical experiments using this quality metric.

A. THE εGWS-QUALITY METRIC

The εGWS metric of grasping is one of the most widely
cited benchmark metrics in the grasp planning field[2].
Formally, for a set of contact wrenches C ⊂ R6, one can
define the neighborhood ball B(ε) and wrench space metric

εGWS as follows:

B(ε) = {x ∈ R6 | ||x||2 < ε}

εGWS(C) = max
ε

[B(ε)⊆ convexhull(C)]

This quality metric is popular largely because it analyti-
cally addresses an intuitively necessary condition for grasp
stability, the ability to resist force perturbations.

B. GRASP DATABASE

The grasps discussed in this paper were produced using
the Eigengrasp planner presented by Ciocarlie et al.[19].
Briefly, this planner uses a stochastic optimization approach
on the hand configuration space. The objective function is
an approximation of the εGWS in which preselected contact
points on the hand are projected along the finger normal.
Those that make contact with the object are added to the
contact wrench space weighted in proportion to their distance
from the object and the angle of the projected contact relative
to the object’s surface normal at that point. In the limit, the
contributions from points in or near contact with the object
dominate and the approximation nearly agrees with the εGWS.

The grasps we have analyzed in this work are drawn from
the Columbia Grasp Database. This is a large database of
grasps compiled by Goldfeder et al.[18][20] in order to apply
these off-line planning methodologies to the general problem
of automated grasping. The CGDB was constructed by using
the Eigengrasp planner on the Princeton Shape Benchmark
[21], a set of 1814 models with class labels.

II. ANALYZING THE EFFECTS OF POSE ERROR IN
SIMULATION

A. GRASPING PIPELINE

The CGDB describes grasps as pre-grasp and final-grasp
pairs. The pre-grasp is a collision free pose and set of joint
angles found by the simulated annealing planner. The final-
grasp is determined by simulating a grasping heuristic for
closing the hand around the object until contact is made or
joint limits are reached. The pre-grasp is assumed to be a
collision free pose, but in the presence of uncertainty this
may not be the case for all grasps. In the case of uncertainty,
it is necessary to generate a collision free initial pose.

In this work we consider a three-phase grasping heuristic.
1a. Move hand and fingers to an initial pose and initial

posture far from the object along a pre-specified
approach direction.

1b. Move to the planned pre-grasp hand pose from the
initial pose along the approach direction, stopping
if contact is made.

2a. Move fingers to their pre-grasp postures by linearly
interpolating from initial posture, stopping each
finger independently if it makes contact.

2b. (non-fingertip grasps only) For grasps with any
contact points that are not on a fingertip of the
hand, if no contact has occurred thus far, continue
to approach until contact is made.
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3. Close fingers until each joint is constrained by
contact or joint limits.

We use the normal to the center of the palm as the
approach directions for all of the grasps considered. To
determine the finger positions for the initial posture, we
open the fingers so that the hand in the initial pose can
wrap around itself in the pre-grasp position. We illustrate
this strategy in Fig. 2. We open the hand at a constant rate
for all joints until the tips of each finger are outside of the
projection of the second most distal link along the approach
direction of the hand in the planned pre-grasp pose.

Fig. 2. Illustration of the initial pose and posture. The hand is withdrawn
along its approach direction and all of the fingers are opened at the
same constant velocity until each of the fingertips are outside of the
knuckles of the hand in its pre-grasp configuration. The hand is then
opened an additional ten percent of the remaining joint range. The pre-
grasp configuration is shown in green.

B. MODEL OF POSE UNCERTAINTY

Because it is computationally intractable to densely sample
the full six dimensional space of poses near the planned
pregrasp pose, we consider a three dimensional error model
representing an object on a support surface. We assume that
each object is restricted to a set of stable poses on the surface.

This error model is parametrized by [x,y,θ ] as illustrated
by Fig. 3. We use the centroid of the planned contact
locations as the origin of the object because parameterizing
the rotation around the center of mass of the object will have
a disproportionately large effect on grasps planned further
from the center of mass. A reasonable range to explore
in this parameter space should allow each parameter to
move the relative position of the planned grasp’s contact
points by at least 10 mm. If we make the approximation
that the projection of the contact points perpendicular to
the axis of rotation lie on a circle with a 5 cm radius, a
reasonable range for these parameters is θ ∈ [−20◦,20◦] and
x,y ∈ [−10mm,10mm]. These bounds are motivated by our
anecdotal experience in aligning a known object to a point
cloud using common methodologies. Exploring this param-
eter space uniformly in increments of 1[mm,◦] in simulation
requires 18,081 simulations per grasp. The time required
for each simulation is object and grasp dependent. Using
the GraspIt! grasping simulator[22] on a Xeon 2.67GHZ
processor we can perform this many kinematic simulations
of the grasping pipeline in under two hours for the worst
case. With cluster computing this approach can analyze large
numbers of grasps from a database off-line.

Fig. 3. Illustration of the tabletop error model used in this paper. The object
is can be translated [−10,10] mm in both X and Y and rotated [−20,20]◦
around θ . The red cones mark the planned contact points. The white wire
frame indicates the planned end configuration of the fingers.

III. SIMULATION RESULTS

To produce a measure which analyzes the robustness of
a grasp under uncertainty, we estimate the probability of
attaining a force closure grasp (under our error model) for
a large set of grasps and objects, denoted as P( f c). We
simulated the grasp pipeline and error model described in
section II on a set of 480 grasps for the Barrett Hand using
a friction coefficient of 2.0. This set of grasps is composed
of the top five grasps by εGWS on 96 objects of the ’Tool’
Princeton Shape Benchmark category in the CGDB. This
set includes shovels, hammers, wrenches, screwdrivers, and
other tools.

We define the probability of force closure P( f c) as the
probability of achieving a positive εGWS, which is calculated
as P(εGWS > δ ). In order to be somewhat robust to small
modeling errors, we must establish a lower threshold for
the desired εGWS that is greater than zero. In this work, we
choose a δ of 0.001.

The best grasp by P( f c) has a P( f c) score .19 higher
than the P( f c) of the best grasp by εGWS on average. This
difference means under the error model described, choosing
the highest P( f c) grasp will result in a force closed grasp
19% percent more often than choosing the best grasp by
εGWS. Using this criterion, we see that the εGWS is not
sufficient to predict pose error robustness. In fact, for 72 of
the 96 objects, ranking the grasps by εGWS does not produce
the same grasp choice as ranking the grasps by P( f c).

In Fig. 4, we have plotted the planned εGWS against
the P( f c) for each grasp. This figure clearly shows that
over most of the range of εGWS, there is no correlation
between εGWS and P( f c). Although there appears to be some
correlation in the region of the graph where εGWS > 0.2, only
five of the 96 objects have a grasp with this high an εGWS.

Although this method of estimating grasp robustness is not
practical for analyzing grasps in real time, it does enable us
to analyze a large database of grasps such as the CGDB off-
line. The rationale for producing such a measure is further
elucidated in the Discussion section.
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Fig. 4. εGWS plotted against P( f c), which is equivalent to the probability of
attaining a force closed grasp under our error model from a planned starting
grasp configuration. This figure demonstrates that the εGWS is generally a
poor predictor of pose error robustness as measured by the P( f c). 480 grasps
over 96 objects are presented in this figure. Note that while grasps with an
εGWS > 0.2 demonstrate a high probability of being robust, only five objects
have a grasp in the database with an εGWS that high.

IV. PHYSICAL EXPERIMENTS

These simulation results show that using P( f c) as a quality
metric for ranking grasps from a database may select grasps
which are more reliable in the face of object pose estimation
error. To test whether these simulation results can be verified
against physical experiments, we attempted to grasp ten
objects for which we had high quality mesh models readily
available courtesy of the the DARPA ARM-S project and
the Willow Garage object database [23]. We added these
models to our database, and calculated the P( f c) for the top
five grasps by εGWS value. To test these grasps on a real
robotic grasping system we used a Barrett 280 model hand
attached to a Staubli TX60L 6 degree of freedom arm to
implement the grasping pipeline described in section II-A.
To emulate the friction coefficient used in our simulations,
we wrapped the contacting surfaces of the hand in rubberized
shelf liner. One object attempted was a blue detergent bottle
made of very smooth plastic. We added a rubberized tape
to the contact locations on this object to increase its friction
coefficient. For each object, we selected the best grasp ranked
by εGWS and the best grasp ranked by P( f c).

The objects were calibrated to the robot using a printed
template of the bottom outline of the objects. We align the
edge of each template to a known coordinate system in our
robot’s workspace. We selected a perturbed position by sam-
pling our error model and then applying the grasp pipeline
as though the object’s origin was at the perturbed location.
We tested up to ten randomly selected perturbed positions
for each grasp. The same perturbations were applied to both
of the tested grasps for each object.

We moved the arm and hand at very slow speeds to
simulate quasi-static conditions. In the first two stages of the
pipeline, we moved the arm at 1% of its maximum speed,
and the fingers of the Barrett hand at 10% of their maximum
speed. In the final closing step, initial contact had been

achieved or joint limits have been reached for each finger. We
then raised the finger speed to 50% to drive the underactuated
fingers to their final positions1. After the fingers stopped
moving, we lifted the object 3 cm perpendicular to the table’s
surface. If any part of the object was still touching the table
when the arm came to a stop, we graded the trial as a failure,
otherwise we graded the trial as a success.

We find that the grasps ranked best by the P( f c) are
successful more often. The results of this experiment along
with the grasps and objects analyzed are in Fig. 5 and Fig.
6. Overall, for these ten objects the P( f c) ranking selected
successful grasps on 85 out of 93 trials (91%), whereas the
grasps selected by the εGWS ranking succeeded on 63 of 93
trials (67%).

For some objects, nearly all of the grasp attempts were
successful irrespective of the P( f c) score. We separated
the objects in our experiment into two groups. One group
is composed of of larger, more complex objects shown in
Fig. 5 and the other group is composed of light, roughly
cylindrical objects shown in shown in Fig. 6. We see that
all of the objects in the roughly cylindrical category were
grasped very robustly irrespective of P( f c) score. For these
objects, the Eigengrasp planner finds grasps which more or
less encompass the object. In contrast, for the five objects
which could not be enveloped by the hand, we see that
the P( f c) ranked grasp is successful in 35 out of 43 trials
(81%), as compared to 16 out of 43 trials (37%) using
the εGWS grasp. These results show that the P( f c) ranking
chooses more successful grasps; especially on the larger,
more complex objects where the success rate is doubled.

V. DISCUSSION AND FUTURE WORK

In this work, we have shown that the planned εGWS
of a planned grasp is not predictive of the probability of
achieving a force closed grasp in the presence of uncertainty,
neither in simulation nor physical experiments. To analyze
this in simulation we generated the measure P( f c) as an
approximation of this probability. We then showed that the
P( f c) can itself be used to rank grasps from a preplanned
grasp database and that this reranking predicts grasping
success in physical experiments better than the εGWS.

Despite the fact that the analysis discussed in this paper is
not applicable to on-line grasp analysis, it is still relevant for
several reasons. For known objects this allows us to screen
bad grasps out of our database in a way that appears to
predict success in physical experiments. Additionally, one
of the challenges in attempting to generalize grasps from a
database to a novel object is finding an appropriate alignment
to the novel object. If the grasps in the database are more
robust to pose error, there is more latitude in this alignment.

There are many potential extensions of the P( f c) to
improve efficiency and accuracy. One potential extension

1The Barrett Hand uses an underactuation mechanism in which the
proximal and distal joints are coupled when the finger is moving freely. A
large torque differential between the proximal and distal joint will decouple
the two joints, allowing the distal joint to continue closing if the proximal
joint is impeded.
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Fig. 5. The results of physical experiments on five larger, more complex objects. In the left column are the best grasps for each object ranked by εGWS.
An example of the simulated and physically realized grasp is illustrated for each grasp attempted. Additionally, the figure gives the P( f c) and εGWS for
each grasp attempted, as well as the fraction of attempts which succeeded in lifting the object by 3 cm in physical experiments. The higher P( f c) grasp
is successful on many more trials than the higher εGWS grasp for these objects.

would be to find the pose error space analog to the εGWS.
This measure would find the magnitude of the smallest
pose perturbation for which the grasp is not force closed.
The algorithm for calculating this measure can terminate
on the first non-force closed pose it finds, and is thus less
computationally expensive.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of Corey
Goldfeder and Hao Dang in pursuing this work.

REFERENCES

[1] J. K. Salisbury, Jr., Kinematic and force analysis of articulated hands.
New York, NY, USA: John Wiley & Sons, Inc., 1985, pp. 131–174.

[2] C. Ferrari and J. Canny, “Planning optimal grasps,” in IEEE Int. Conf.
on Robotics and Automation, August 1992, pp. 2290–2295.

[3] V.-D. Nguyen, “Constructing force-closure grasps,” IJRR, vol. 7, pp.
3–16, June 1988.

[4] J. Ponce and B. Faverjon, “On computing three-finger force-closure
grasps of polygonal objects,” Robotics and Automation, IEEE Trans-
actions on, vol. 11, no. 6, pp. 868 –881, 1995.

[5] J. Ponce, D. Stam, and B. Faverjon, “On computing two-finger force-
closure grasps of curved 2d objects,” IJRR, vol. 12, no. 3, pp. 263–273,
1993.

[6] J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, and J.-P. Merlet,
“On Computing Four-Finger Equilibrium and Force-Closure Grasps
of Polyhedral Objects,” IJRR, vol. 16, no. 1, pp. 11–35, Feb. 1997.

[7] M. Roa and R. Suarez, “Computation of Independent Contact Regions
for Grasping 3-D Objects,” IEEE Transactions on Robotics, vol. 25,
no. 4, pp. 839–850, 2009.

[8] N. S. Pollard, “Closure and quality equivalence for efficient synthesis
of grasps from examples,” IJRR, vol. 23, no. 6, pp. 595–613, 2004.

561



Fig. 6. The results of physical experiments on five smaller, relatively simple objects. In the left column are the best grasps for each object ranked by
εGWS. In the right column are the best grasps by P( f c). An example of the simulated and physically realized grasp is illustrated for each grasp attempted.
Additionally, the figure gives the P( f c) and εGWS for each grasp attempted, as well as the fraction of attempts which succeeded in lifting the object by 3
cm in physical experiments.

[9] Y. Zheng and W.-H. Qian, “Coping with the Grasping Uncertainties
in Force-closure Analysis,” IJRR, vol. 24, no. 4, pp. 311–327, 2005.

[10] T. G. Sugar and V. Kumar, “Metrics for analysis and optimization of
grasps and fixtures,” IJRA, vol. 17, no. 1, pp. 28–37, 2002.

[11] T. Yamada, T. Koishikura, Y. Mizuno, N. Mimura, and Y. Funahashi,
“Stability analysis of 3d grasps by a multifingered hand,” in IEEE Int.
Conf. on Robotics and Automation, vol. 3, 2001, pp. 2466 – 2473.

[12] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka,
“Human-guided grasp measures improve grasp robustness on physical
robot,” in IEEE Int. Conf. on Robotics and Automation, 2010, pp.
2294–2301.

[13] Y. Bekiroglu, J. Laaksonen, J. Jorgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” IEEE
Transactions on Robotics, vol. 27, no. 3, pp. 616–629, June 2011.

[14] T. Lozano-Prez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” IJRR, vol. 3, no. 1, pp. 3–24,
1984.

[15] D. Berenson, S. S. Srinivasa, and J. J. Kuffner, “Addressing pose
uncertainty in manipulation planning using Task Space Regions,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1419–

1425, 2009.
[16] R. Brost and A. Christiansen, “Empirical verification of fine-motion

planning theories,” in Experimental Robotics IV, 1997, vol. 223, pp.
475–485.

[17] K. Hsiao, M. Ciocarlie, and P. Brook, “Bayesian grasp planning,” in
ICRA 2011 Workshop on Mobile Manipulation, May 2011.

[18] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen, “The columbia
grasp database,” in IEEE Int. Conf. on Robotics and Automation, May.
2009, pp. 1710 –1716.

[19] M. Ciocarlie and P. Allen, “Hand posture subspaces for dexterous
robotic grasping,” in IJRR, vol. 28, Jul. 2009, pp. 851–867.

[20] C. Goldfeder and P. Allen, “Data-driven grasping,” Autonomous
Robots, vol. 31, pp. 1–20, 2011.

[21] “The princeton shape benchmark,” June 2004.
[22] A. Miller and P. Allen, “Graspit! a versatile simulator for robotic

grasping,” Robotics Automation Magazine, IEEE, vol. 11, no. 4, pp.
110 – 122, dec. 2004.

[23] M. Ciocarlie, G. Bradski, K. Hsiao, and P. Brook, “A dataset for
grasping and manipulation using ros,” in IROS Workshop: RoboEarth
- Towards a World Wide Web for Robots, Taipei, Taiwan, Oct. 2010.

562


