
Shape Completion Enabled Robotic Grasping

Jacob Varley, Chad DeChant, Adam Richardson, Joaquín Ruales, and Peter Allen

Abstract— This work provides an architecture to enable
robotic grasp planning via shape completion. Shape completion
is accomplished through the use of a 3D convolutional neural
network (CNN). The network is trained on our own new open
source dataset of over 440,000 3D exemplars captured from
varying viewpoints. At runtime, a 2.5D pointcloud captured
from a single point of view is fed into the CNN, which fills in the
occluded regions of the scene, allowing grasps to be planned and
executed on the completed object. Runtime shape completion
is very rapid because most of the computational costs of shape
completion are borne during offline training. We explore how
the quality of completions vary based on several factors. These
include whether or not the object being completed existed in
the training data and how many object models were used to
train the network. We also look at the ability of the network
to generalize to novel objects allowing the system to complete
previously unseen objects at runtime. Finally, experimentation
is done both in simulation and on actual robotic hardware to
explore the relationship between completion quality and the
utility of the completed mesh model for grasping.

I. INTRODUCTION

Grasp planning based on raw sensory data is difficult
due to incomplete scene geometry information. In this work
3D CNNs enable stable robotic grasp planning via shape
completion. The 3D CNN is trained to do shape completion
from a single pointcloud of a target object, essentially filling
in the occluded portions of objects. This ability to infer
occluded geometries can be applied to a multitude of robotic
tasks. It can assist with path planning for both arm motion
and robot navigation where an accurate understanding of
whether occluded scene regions are occupied or not results
in better trajectories. It also allows a traditional grasp planner
to generate stable grasps via the completed shape.

During training, the CNN is shown occupancy grids cre-
ated from thousands of synthetically rendered depth images
of different mesh models. These occupancy grids are cap-
tured from a single point of view, and occluded regions are
marked as empty. For each training example, the ground
truth occupancy grid (the occupancy grid for the entire 3D
volume) is also generated for the given mesh. From these
pairs of occupancy grids the CNN learns to quickly complete
mesh models at runtime using only information from a single
point of view. Several example completions are shown in Fig.
1. This setup is beneficial for robotics applications as the
majority of the computation time is during offline training,
so that at runtime an object’s partial-view pointcloud can be

*This work is supported by NSF Grant IIS-1208153. Thanks to the
NVIDIA Corporation for the Titan X GPU grant.

Authors are with Columbia University, New York, NY 10027,
USA (jvarley,dechant,allen)@cs.columbia.edu,
(ajr2190, jar2262)@columbia.edu

Fig. 1: Ground Truth, Partials, and Completions (T to B).
The left two are completions of synthetic depth images
of holdout models. The mug and drill are completions of
Kinect-captured depth images of physical objects.

run through the CNN and completed in under a tenth of a
second on average and then quickly meshed.

At runtime, a pointcloud is captured, segmented, and
has regions corresponding to graspable objects extracted.
Occupancy grids of these regions are created, and passed
separately through the trained CNN. The outputs from the
CNN are occupancy grids, where the CNN has labeled
all the occluded regions of the input as either occupied
or empty for each object. These new occupancy grids are
either run through a fast marching cubes algorithm, or
further post-processed if they are to be grasped. Whether
the object is completed or completed and post-processed
results in either 1) fast completions suitable for path planning
and scene understanding or 2) detailed meshes suitable for
grasp planning, where the higher resolution visible regions
are incorporated into the reconstruction. This framework is
extensible to crowded scenes with multiple objects as each
object is completed individually. It is also applicable to
different domains because it can learn from arbitrary training
data, and further shows the ability to generalize to unseen
views of objects or even entirely novel objects.

The contributions of this work include: 1) A novel CNN
architecture for shape completion; 2) A fast mesh completion
method, resulting in meshes able to quickly fill the planning
scene; 3) A second CUDA enabled completion method that
creates detailed meshes suitable for grasp planning by inte-
grating fine details from the observed pointcloud; 4) A open-
source dataset of over 440,000 403 voxel grid pairs used for



0 20 40 60 80 100 120 140

Number of Training Batches (Thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Ja
c
c
a
re

d
 S

im
il
a
ri

ty

Training Views

14 Training Meshes (max: 0.999)
94 Training Meshes (max: 0.989)
486 Training Meshes (max: 0.942)

(a)

0 20 40 60 80 100 120 140

Number of Training Batches (Thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Ja
c
c
a
re

d
 S

im
il
a
ri

ty

Holdout Views

14 Training Meshes (max: 0.888)
94 Training Meshes (max: 0.886)
486 Training Meshes (max: 0.894)

(b)

0 20 40 60 80 100 120 140

Number of Training Batches (Thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Ja
c
c
a
re

d
 S

im
il
a
ri

ty

Holdout Models

14 Training Meshes (max: 0.704)
94 Training Meshes (max: 0.811)
486 Training Meshes (max: 0.849)

(c)
Fig. 2: Jaccard similarity for three CNNs trained with a variable number of mesh models (blue: 14, green: 94, red: 486).
While training, the CNNs were evaluated on a) inputs from training (Training Views), b) novel inputs from meshes they
were trained on (Holdout Views) and c) novel inputs from never before seen meshes (Holdout Models).

training. This dataset and the related code are freely available
at http://shapecompletiongrasping.cs.columbia.edu. The
website makes it easy to browse and explore the thousands
of completions and grasps related to this work; 5) Results
from both simulated and live experiments comparing our
method to other approaches and demonstrating its improved
performance in grasping tasks.

II. RELATED WORK

Typical approaches to general shape completion to en-
able robotic grasping [1][2][3] use symmetry and extrusion
heuristics, and are reasonable for objects well represented by
geometric primitives. Our approach differs in that it learns
to complete arbitrary objects based upon training exemplars,
rather than requiring objects to conform to heuristics.

A alternative to general shape completion in the robotics
community is object recognition and 3D pose detection
[4][5][6]. In these approaches objects are recognized from an
object database and the pose is estimated. These techniques
fill a different use case: the number of encountered objects
is small, and known ahead of time. Our approach differs in
that it extends to novel objects.

The computer vision community is also interested in shape
completion. [7][8], use a deep belief network and Gibbs
sampling, and [9], which uses Random Forests. [10] uses an
exemplar based approach. Others [11][12] have developed
algorithms to learn 3D occupancy grids directly from 2D
images. [13] uses a database of models for completion.

It is difficult to apply many of these works directly
to robotic manipulation as no large dataset of renderings
of handheld objects needed for robotic manipulation tasks
existed until now. Also, [11][12] use pure RGB rather than
the RGBD images prevalent in robotics, making the problem
more difficult as the completed shape must somehow be
positioned in the scene and the process does not utilize avail-
able depth information. Most create results with resolutions
too low for use with current grasp planners which require
meshes. Our work creates a new dataset specifically designed
for completing objects useful for manipulation tasks using
the 2.5-D range sensors prevalent in robotics, and provides a
technique to integrate the high resolution observed view of
the object with our relatively high resolution CNN output,
creating a completion suitable for grasp planning.

Our work differs from [14][15], both of which require a
complete mesh to query a model database and retrieve grasps

TABLE I: CNN Architecture

Layer Operation Resulting Shape
Input - 403 x 1 channel

1 43 conv + Relu 373 x 64 channels
2 43 conv + Relu + 2^3 max pool 173 x 64 channels
3 43 conv + Relu + 2^3 max pool 73 x 64 channels
4 Flatten 21952
5 Dense + Relu 5000
6 Dense + Sigmoid 64000
7 Reshape 403 x 1 channel

used on similar objects. These approaches could be used
in tandem with our framework where the completed model
would act as the query mesh. While grasps can be planned
using partial meshes where the object is not completed (see
[16]), they still have their limitations and issues. Shape
completion can be used to alleviate this problem.

This framework uses the YCB[17] and Grasp Database[18]
mesh model datasets. We chose these as many robotics labs
all over the world have physical copies of the YCB objects,
and the Grasp Database contains objects specific to robotic
manipulation. We augmented 18 of the higher quality YCB
meshes with the 590 Grasp Database meshes.

III. TRAINING

A. Data Generation

To train a network to reconstruct a diverse range of objects,
meshes were collected from the YCB and Grasp Database.
The models were run through binvox[19] generating 2563

occupancy grids. Then in Gazebo[20] 726 depth images
were generated for each object subject to different uniformly
sampled rotations. The depth images are used to create
occupancy grids for the portions of the mesh visible to the
simulated camera, and then all the occupancy grids generated
by binvox are transformed to correctly overlay the depth
image occupancy grids. Both sets of occupancy grids are then
down-sampled to 403 to create a large number of training
examples. The input set (X) contains occupancy grids that
are filled only with the regions of the object visible to the
camera, and the output set (Y) contains the ground truth
occupancy grids for the space occupied by the entire model.

B. Model Architecture and Training

The CNN architecture in Table I was trained using a
cross-entropy error cost function, and optimizer Adam[21].



(a) Image of Occluded Side (b) Point Cloud (c) Segmented and Meshed (d) CNN Input

(e) CNN Output (f) Fast Mesh (g) Detailed Mesh (h) Grasp Planning

Fig. 3: Runtime Pipeline with novel object CNN was not trained on: Images are not shown from the angle captured in order
to visualize the occluded regions. (a): Scene with an object to be grasped. (b): Scene pointcloud. (c): The pointcloud is
segmented and meshed. (d): A partial mesh is selected, voxelized and passed into the 3D shape completion CNN. (e): CNN
output. (f): The resulting occupancy grid can be run through a marching cubes algorithm to obtain a mesh quickly. (g): Or,
for better results, the output of the CNN can be combined with the observed pointcloud and preprocessed for smoothness
before meshing. (h): Grasps are planned on the smoothed completed mesh.

Weights were initialized following [22][23], and trained with
batch size 32 on an NVIDIA Titan X GPU.

We used the Jaccard similarity (intersection over union)
to compare generated voxel occupancy grids and the ground
truth. During training, this measure is computed for input
meshes in the training data (Training Views), novel views
of meshes within the training data (Holdout Views), and
meshes of objects not in the training data (Holdout Models).

C. Training Results

To explore how the quality of the reconstruction changes
as the number of models in the training set is adjusted, we
trained three networks with identical architectures using vari-
able numbers of mesh models. One was trained with partial
views from 14 YCB models, another with 94 models (14
YCB + 80 Grasp Database), and the third with 486 models
(14 YCB models + 472 Grasp Database). Each network was
allowed to train until learning plateaued. The remaining 4
YCB and 118 Grasp Dataset models were kept as a holdout
set. Fig. 2 shows how the Jaccard similarity measures vary as
the networks’ train. We note that the networks trained with
fewer models perform better shape completion when they are
tested on views of objects they have seen during training than
networks trained on a larger number of models. This suggests
that the network is able to completely learn the training data
for the smaller number of models but struggles to do so when
trained on larger numbers. Conversely, the models trained on

a larger number of objects perform better than those trained
on a smaller number when asked to complete novel objects.
Because, as we have seen, the networks trained on larger
numbers of objects are unable to learn all of the models
seen in training, they may be forced to learn a more general
completion strategy that will work for a wider variety of
objects, allowing them to better generalize to objects not
seen in training.

Fig. 2(a) shows the performance of the three CNNs on
training views. In this case, the fewer the mesh models
used during training, the better the completion results. Fig.
2(b) shows how the CNNs performed on novel views of
the mesh objects used during training. Here the CNNs all
did approximately the same. Fig. 2(c) shows the completion
quality of the CNNs on objects they have not seen before. In
this case, as the number of mesh models used during training
increases, performance improves as the system has learned
to generalize to a wider variety of inputs.

IV. RUNTIME

At runtime the pointcloud for the target object is acquired
from a 3D sensor, scaled, voxelized and passed through the
CNN. The output of the CNN, a completed voxel grid of
the object, goes through a post processing algorithm that
returns a completed mesh. Finally, a grasp can be planned
and executed based on the completed mesh model. Fig. 3
demonstrates the runtime pipeline on a novel object.



1) Acquire Target Pointcloud: A pointcloud is captured
using a Microsoft Kinect, then segmented using PCL’s[24]
implementation of euclidean cluster extraction. A segment
corresponding to the object to be completed is selected.
2) Complete via CNN: The selected pointcloud is used to
create an occupancy grid with resolution 403. This occupancy
grid is input to the CNN whose output is an equivalently
sized occupancy grid for the completed shape. To fit the
pointcloud to the 403 grid, it is scaled down so the bounding
box of the pointcloud fits in a 323 voxel cube, and then
centered in the 403 grid such that the center of the bounding
box is at (20, 20, 18). Finally all voxels occupied by points
from this scaled and transformed pointcloud are marked
as such. Placing the pointcloud slightly off-center in the z
dimension leaves more space in the back half of the grid for
the network to fill.
3a) Create Fast Mesh: If the object being completed is not
going to be grasped, then the voxel grid output by the CNN
is run through marching cubes, and the resulting mesh is
added to the planning scene, filling in occlusions.
3b) Create Detailed Mesh: Alternatively, if this object
is going to be grasped, then post-processing occurs. The
purpose of this post-processing is to integrate the points from
the visible portion of the object with the output of the CNN.
This partial view is of much higher density than the 403 grid
and captures significantly finer detail for the visible surface.
This merge is made difficult by the large disparity in point
densities between the captured cloud and 403 CNN output
which can lead to holes and discontinuities if the points are
naively merged.

Algorithm 1 Shape Completion

1: procedure MESH(cnn_out, observed_pc)
2: //cnn_out: 403 voxel output from CNN
3: //observed_pc: captured pointcloud of object
4: if FAST then return mCubes(cnn_out)
5: d_ratio ← densityRatio(observed_pc, cnn_out)
6: upsampled_cnn ← upsample(cnn_out, d_ratio)
7: vox ← merge(upsampled_cnn, observed_pc)
8: vox_no_gap ← fillGaps(vox)
9: vox_weighted ← CUDA_QP(vox_no_gap)

10: mesh ← mCubes(vox_weighted)
11: return mesh

Alg. 1 shows how we integrated the dense partial view
with our 403 voxel grid via the following steps. (Alg.1:L5)
In order to merge with the partial view, the output of the CNN
is converted to a point cloud and its density is compared to
the density of the partial view point cloud. The densities are
computed by randomly sampling 1

10 of the points and aver-
aging the distances to their nearest neighbors. (Alg.1:L6) The
CNN output is up-sampled by d_ratio to match the density
of the partial view. For each new voxel, the L1 distance to 8
original closest voxels are computed and the 8 distances are
summed, weighted by 1 if the original voxel is occupied and -
1 otherwise. The new voxel is occupied if its weighted sum is

View Type Partial Mirror Ours
Training Views 0.1182 0.2325 0.7771
Holdout Views 0.1307 0.2393 0.7486

Holdout Models 0.0931 0.1921 0.6496

TABLE II: Jaccard Similarity Results (Larger is better).
This measures the intersection over union of two voxelized
meshes as described in Section V-A.

View Type Partial Mirror Ours
Training Views 11.4 7.5 3.6
Holdout Views 12.3 8.2 4.0

Holdout Models 13.6 10.7 5.9

TABLE III: Hausdorff Distance Results (Smaller is better).
This measures the mean distance in millimeters from points
on one mesh to another as described in Section V-A.

nonnegative. This has the effect of creating piecewise linear
separating surfaces similar marching cubes and mitigates up-
sampling artifacts. (Alg.1:L7) The upsampled output from
the CNN is then merged with the point cloud of the partial
view and the combined cloud is voxelized at the new higher
resolution of (40 ∗ d_ratio)3. For most objects d_ratio is 2
or 3, depending on the physical size of the object, resulting
in a voxel grid of either 803 or 1203. (Alg.1:L8) Any gaps
in the voxel grid between the upsampled CNN output and
the partial view cloud are filled. This is done by finding the
first occupied voxel in every z-stack. If the distance to the
next occupied voxel is less than d_ratio+1 the intermediate
voxels are filled. (Alg.1:L9) The voxel grid is smoothed
using our CUDA implementation of the convex quadratic
optimization from [25]. (Alg.1:L10) The weighted voxel grid
is run through marching cubes.
4) Grasp completed mesh: A grasp is planned on the
reconstructed mesh in GraspIt![26], and the reachability of
the planned grasps are checked in MoveIt![27], and the
highest quality reachable grasp is executed.

V. EXPERIMENTAL RESULTS

We created a test dataset by randomly sampling 50 training
views (Training Views), 50 holdout views (Holdout Views),
and 50 views of holdout models (Holdout Models). The
Training Views and Holdout Views were sampled from the
14 YCB training objects. The Holdout Models were sampled
from holdout YCB and Grasp Dataset objects. We compared
the accuracy of the completion methods using: Jaccard
similarity, Hausdorff distance, and geodesic divergence.

A. General Completion Results

We first compared several general completion methods:
putting the partial view through marching cubes and Mesh-
lab’s Laplacian smoothing (Partial), mirroring completion[1]
(Mirror), our method (Ours). Our CNN was trained on the
484 objects from the YCB + Grasp Dataset and the weights
come from the point of peak performance on holdout models
(red line in Fig. 2(c)).

The Jaccard similarity was used to compare the final re-
sulting meshes from several completion strategies (Table II).



View Type Partial Mirror Ours
Training Views 0.3770 0.2905 0.0867
Holdout Views 0.4944 0.3366 0.0934

Holdout Models 0.3407 0.2801 0.1412

TABLE IV: Geodesic Divergence Results (Smaller is better).
This measures the Jenson-Shannon probabilistic divergence
between two meshes as described in Section V-A.

The completed meshes were voxelized at 803, and compared
with the ground truth. Our proposed method results in higher
similarity to the ground truth meshes than the partial and
mirroring approaches for all tested views.

The Hausdorff distance was computed with Meshlab’s[28]
implementation in both directions. Table III shows mean
values of the symmetric Hausdorff distance per completion
method. The CNN completions are significantly closer to the
ground truth than the partial and mirrored completions.

The completions are also compared using a measure of
geodesic divergence[29]. A probability density function is
computed for each mesh. The probability density functions
for each completion are compared with the ground truth mesh
using the Jenson-Shannon divergence. Table IV shows the
mean of the divergences for each completion method. Here,
our method outperforms all other completion methods.

Across all metrics, our method results in more accurate
completions than the other general completion approaches.

B. Comparison to Database Driven Methods

We evaluated a RANSAC-based approach[5] on the Train-
ing Views of the YCB dataset using the same metrics. This
corresponds to a highly constrained environment containing
only a very small number of objects which are known ahead
of time. It is not possible to load 484 objects into the
RANSAC framework, so a direct comparison to our method
involving the large number of objects we train on is not
possible. In fact, the inability of RANSAC-based methods to
scale to large databases of objects is one of the motivations of
our work. However, we compared our method to a very small
RANSAC using only 14 objects, and our method performs
comparably to the RANSAC approach even on objects in
its database, while having the additional abilities to train on
far more objects and generalize to novel objects: Jaccard
(Ours: 0.771, RANSAC: 0.8566), Hausdorff (Ours: 3.6,
RANSAC: 3.1), geodesic (Ours: 0.0867, RANSAC: 0.1245).
Our approach significantly outperforms the RANSAC ap-
proach when encountering an object that neither method
has seen before (Holdout Models): Jaccard (Ours: 0.6496,
RANSAC: 0.4063), Hausdorff (Ours: 5.9, RANSAC: 20.4),
geodesic (Ours: 0.1412, RANSAC: 0.4305). The RANSAC
based approach’s performance on the Holdout Models is also
worse than that of the mirrored or partial completion methods
on both the geodesic and Hausdorff metrics.

C. Simulation Based Grasp Comparison

To evaluate our framework’s ability to enable grasp plan-
ning, the system was tested in simulation using the same

View Error Completion Type
Partial Mirror Ours RANSAC

Training Joint (◦) 6.09◦ 4.20◦ 1.75◦ 1.83◦
View Pose (mm) 16.0 11.5 4.3 7.3

Holdout Joint (◦) 6.27◦ 4.05◦ 1.80◦ 1.69◦
View Pose (mm) 20.8 15.6 6.7 7.4

Holdout Joint (◦) 7.59◦ 5.82◦ 4.56◦ 6.86◦
Model Pose (mm) 18.3 15.0 13.2 29.25

TABLE V: Simulation results comparing planned to realized
grasps by Joint Error (mean differences per joint) and Pose
Error (mean difference in pose). Smaller is better.

Completion
Method

Grasp Success
Rate (%)

Joint Error
(degrees)

Completion
Time (s)

Partial 71.43 9.156◦ 0.545
Mirror 73.33 8.067◦ 1.883
Ours 93.33 7.276◦ 2.426

TABLE VI: Grasp Success Rate shows percentage of suc-
cessful grasps. Joint Error shows the mean difference in
degrees between the planned and executed grasp joint values.
Completion Time shows how long the method required.

completions from Sec V-A. GraspIt! was used to plan over
24,000 grasps on all of the completions of the objects. In
order to simulate a real-world grasp execution, the comple-
tion was removed from GraspIt! and the ground truth object
was inserted in its place. Then the hand was placed 20cm
backed off from the ground truth object along the approach
direction of the grasp. The spread angle of the fingers was set,
and the hand was moved along the approach direction of the
planned grasp either until contact was made or the grasp pose
was reached. At this point, the fingers closed to the planned
joint values, and continued until either contact occurred or
joint limits were reached. Visualizations of the simulation
results for the entire YCB and Grasp Datasets are available
at http://shapecompletiongrasping.cs.columbia.edu

Table V shows the differences between the planned and
realized joint states as well as the difference in pose of the
base of the end effector between the planned and realized
grasps. Using our method caused the end effector to end up
closer to its intended location in terms of both joint space
and the palm’s cartesian position.

D. Performance on Real Hardware

The system was used in an end-to-end manner with a Bar-
rett Hand and StaubliTX60 Arm to execute grasps planned
via the aforementioned completion methods for 15 YCB
objects. For each object, we ran the arm once per completion
method. Results in Table VI show our method enabled a 20%
improvement over the general shape completion methods in
terms of grasp success rate, and resulted in executed grasps
closer to the planned grasps shown by the lower joint error.

E. Crowded Scene Completion

Scenes often contain objects that are not to be manipulated
and only require completion in order to be avoided. In
this case, our CNN output can be run directly through



(a) Planned Grasp (b) Accidental Collision

(c) Unfilled Planning Scene (d) Filled Planning Scene

Fig. 4: The arm fails to execute the planned grasp (a),
resulting in collision (b). The collision with the non-target
object occurred due to a poor planning scene (c). Our fast
mesh method can fill the planning scene so this configuration
is marked invalid (d).

marching cubes without post-processing to quickly create
a mesh. Fig. 4 highlights the benefit of reasoning about
non target objects. Our system has the ability to quickly fill
occluded regions of the scene, and selectively spend more
time generating detailed completions on specific objects to
be manipulated. Average scene completion times from 15
runs of crowded scenes are Scene Segmentation (0.119s),
Target Object Completion (2.136s), and Non Target Object
Completion (0.142s).

VI. CONCLUSION

This work utilizes a CNN to complete and mesh an object
observed from a single point of view, and then plan grasps
on the completed object. The completion system is fast, with
completions available in a matter of milliseconds, and post
processed completions suitable for grasp planning available
in several seconds. The dataset and code are open source
and available for other researchers to use. It has also been
demonstrated that our completions are better than more naive
approaches in terms of a variety of metrics including those
specific to grasp planning. In addition, grasps planned on
completions generated using our method are more often
successful and result in executed grasps closer to the intended
hand configuration than grasps planned on completions from
the other methods.

REFERENCES

[1] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal,
N. Bergström, D. Kragic, and A. Morales, “Mind the gap-robotic
grasping under incomplete observation,” in ICRA. IEEE, 2011, pp.
686–693.

[2] A. H. Quispe, B. Milville, M. A. Gutiérrez, C. Erdogan, M. Stilman,
H. Christensen, and H. B. Amor, “Exploiting symmetries and extru-
sions for grasping household objects,” in ICRA, 2015, pp. 3702–3708.

[3] D. Schiebener, A. Schmidt, N. Vahrenkamp, and T. Asfour, “Heuristic
3d object shape completion based on symmetry and scene context,”
in IROS. IEEE, 2016, pp. 74–81.

[4] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, “A dataset
for improved rgbd-based object detection and pose estimation for
warehouse pick-and-place,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 1179–1185, 2016.

[5] C. Papazov and D. Burschka, “An efficient ransac for 3d object
recognition in noisy and occluded scenes,” in Asian Conference on
Computer Vision. Springer, 2010, pp. 135–148.

[6] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige,
N. Navab, and V. Lepetit, “Multimodal templates for real-time de-
tection of texture-less objects in heavily cluttered scenes,” in ICCV),
2011. IEEE, 2011, pp. 858–865.

[7] Z. Wu, S. Song, A. Khosla, X. Tang, and J. Xiao, “3D shapenets for
2.5D object recognition and next-best-view prediction,” arXiv preprint
arXiv:1406.5670, 2014.

[8] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3d shapenets: A deep representation for volumetric shapes,” in CVPR,
2015, pp. 1912–1920.

[9] M. Firman, O. Mac Aodha, S. Julier, and G. J. Brostow, “Structured
prediction of unobserved voxels from a single depth image,” in CVPR,
2016, pp. 5431–5440.

[10] J. Rock, T. Gupta, J. Thorsen, J. Gwak, D. Shin, and D. Hoiem,
“Completing 3d object shape from one depth image,” in CVPR, 2015,
pp. 2484–2493.

[11] S. Tulsiani, A. Kar, J. Carreira, and J. Malik, “Learning category-
specific deformable 3d models for object reconstruction,” IEEE trans-
actions on pattern analysis and machine intelligence, 2016.

[12] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3d-r2n2: A
unified approach for single and multi-view 3d object reconstruction,”
in ECCV. Springer, 2016, pp. 628–644.

[13] Y. Li, A. Dai, L. Guibas, and M. Nießner, “Database-assisted object
retrieval for real-time 3d reconstruction,” in Computer Graphics Fo-
rum, vol. 34, no. 2. Wiley Online Library, 2015, pp. 435–446.

[14] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0:
A cloud-based network of 3d objects for robust grasp planning using
a multi-armed bandit model with correlated rewards,” in ICRA, 2016.
IEEE, 2016, pp. 1957–1964.

[15] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia
grasp database,” in ICRA. IEEE, 2009, pp. 1710–1716.

[16] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered
robotic grasps via deep learning,” in IROS, 2015, pp. 4415–4420.

[17] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in Advanced Robotics (ICAR), 2015 Inter-
national Conference on. IEEE, 2015, pp. 510–517.

[18] D. Kappler, J. Bohg, and S. Schaal, “Leveraging big data for grasp
planning,” in ICRA. IEEE, 2015, pp. 4304–4311.

[19] P. Min, “Binvox, a 3d mesh voxelizer,” 2004.
[20] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,

an open-source multi-robot simulator,” in IROS, vol. 3. IEEE, 2004,
pp. 2149–2154.

[21] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” arXiv
preprint arXiv:1502.01852, 2015.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the 13th AISTATS,
2010, pp. 249–256.

[24] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in ICRA, Shanghai, China, May 9-13 2011.

[25] V. Lempitsky, “Surface extraction from binary volumes with higher-
order smoothness,” in Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1197–1204.

[26] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic
grasping,” IEEE R&A Magazine, vol. 11, no. 4, pp. 110–122, 2004.

[27] I. A. Sucan and S. Chitta, “Moveit!” http://moveit.ros.org, 2013.
[28] P. Cignoni, M. Corsini, and G. Ranzuglia, “Meshlab: an open-source

3d mesh processing system,” Ercim news, vol. 73, pp. 45–46, 2008.
[29] A. B. Hamza and H. Krim, “Geodesic object representation and

recognition,” in International conference on discrete geometry for
computer imagery. Springer, 2003, pp. 378–387.


	INTRODUCTION
	Related Work
	Training
	Data Generation
	Model Architecture and Training
	Training Results

	Runtime
	Experimental Results
	General Completion Results
	Comparison to Database Driven Methods
	Simulation Based Grasp Comparison
	Performance on Real Hardware
	Crowded Scene Completion

	Conclusion
	References

