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Abstract— Highly underactuated and passively adaptive
robotic hands have shown great promise for robust performance
in unstructured settings. In order to fully realize this potential,
efficient tools are needed to analyze the execution of a grasp
when using this class of devices. Along this line, this paper
introduces a quasistatic analysis method for underactuated
hands. First, we predict whether initial contacts between the
fingers and the object are stable throughout the execution of
a grasp, or the fingers will slip as the hand closes. Second, we
compute the unbalanced forces applied to the object during the
grasping process. Finally, once the grasp is complete, we analyze
its stability as actuator forces are increased. These computations
are performed in 3D, allow arbitrary kinematic structure of the
fingers or geometry of the target object and take into account
frictional constraints. We discuss applications of this method
focusing on both on-line computation to execute a specific
grasping task and off-line optimization to increase the range of
grasps that can be performed using a given hand model.

I. INTRODUCTION AND RELATED WORK

Robots with the ability to operate in unstructured hu-

man environments are constantly evolving: the field has

seen significant breakthroughs in areas such as localization,

locomotion and navigation, visual servoing etc. However,

before such robots can be successfully deployed for real-

life applications, they must acquire the capability to interact

with their environment by grasping (and eventually manipu-

lating) surrounding objects. The ability to perform grasps of

common objects (such as mugs, books, etc.) in a robust and

repeatable manner, subject to realistic levels of sensing error

and noise, is still considered an open problem, and a potential

roadblock on the way to more complex applications.

A promising direction of research attempts to answer this

problem through better robotic hand design, focusing on two

key principles: underactuation and passive mechanical adap-

tation. The former is a well-established concept, traditionally

implemented via rigid coupling between joints [1], [2]. More

recent work has highlighted the advantages of combining

underactuation with passive compliance, allowing the hand to

adapt to the surface of the object at a mechanical, rather then

computational level. There are multiple ways of achieving

passive adaptation, such as breakaway transmission mecha-

nisms [3], four-bar linkages [4] or tendon-driven compliant

joints [5]; for a comprehensive review, we refer the reader

to [6]. Hands built using these methods have been shown to

be effective even in the presence of sensing errors, while
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the highly reduced number of actuators can decrease the

production cost and allow for faster design iterations.

While a complete optimization of the design parameters

is often intractable in the case of complex hand designs, the

apparent simplicity of highly underactuated hands suggests

that optimization efforts can yield a high reward. However,

it is crucial that any analysis methods take into account

the particular nature of underactuated adaptive mechanisms.

A number of such tools have been proposed. Birglen and

Gosselin [7] have optimized the design of underactuated

fingers to avoid the roll-back phenomenon where a finger

recoils from the surface of the object. Dollar and Howe [6]

have optimized the actuation and compliance forces of a

tendon-driven design. These studies have led to the con-

struction of remarkably efficient grippers. However, they

share a number of limitations, such as two-dimensional

frameworks, simplified friction models and highly simplified

geometry of the target object. Generally, optimization of a

highly underactuated, and thus deceptively simple hand, is a

complex problem; in other words, simple is hard!

In this paper we propose a quasistatic force analysis tool

for underactuated hands. We use a 3D framework with

frictional constraints which poses no restrictions on the

kinematics of the hand or the geometry of the grasped object.

We discuss its applications in areas such as hand design

optimization and grasp planning. It is important to note that

no analysis method can be exhaustive, encompassing all the

complex phenomena encountered during possible grasping

tasks. We also discuss the limitations of our approach and

possible ways to alleviate them. While robotic hand research

can not yet produce a provably optimal hand design for a

wide range of grasping tasks, it is our directional goal.

An important body of work has focused on the force gen-

eration capabilities of redundant or human-like tendon-driven

mechanisms; relevant examples include [8]–[11]. Force gen-

eration has also been studied extensively in the context of

fully actuated robotic hands, and a number of useful tools

have been proposed; see [12]–[15] and references therein for

details. However, highly underactuated and adaptive grasping

present a number of additional challenges, some of which we

attempt to tackle in our current work.

II. UNDERACTUATED GRASP ANALYSIS

A complete grasping process is commonly considered to

have two phases: pre-grasp, where the initial shape of the

hand as well as its location relative to the object are decided,

and the execution of the grasp, when the fingers are closed

until stable contact with the object is achieved. In this study

we focus on highly underactuated hand models, where the
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number of joints far exceeds the number of actuators. As

mentioned above, recent studies have shown surprising levels

of performance when using a single actuator for multiple

fingers and up to 15 joints [16]. In such cases, there is limited

flexibility in choosing the pre-grasp (and for single-actuator

hands this phase is bypassed altogether). The finger closing

stage assumes central importance, as the hand is expected to

passively conform to the target object.

A key aspect of this process is that different fingers, as

well as different links within a finger, make contact with the

object at different times. With a fully actuated robot equipped

with ideal sensors this phenomenon can be detected and the

motor forces modulated so that the hand continues to close

without applying any force at these contacts. In our case,

the hand lacks the actuation mechanism needed to perform

precise modulation of contact forces. As a result, while the

hand continues to close, the links that have already made

contact are applying some level of force to the object. We

will refer to this as the unbalanced force, which has the

following effects on the grasping process:

• if the unbalanced force exceeds the level that can be

supported by friction between the target object and the

surface that it’s resting on, the object can be pushed away

before the hand can fully enclose it.

• early contacts between the hand and the object might

be unstable: the fingers can slip on the object surface.

While in some cases this process can ultimately result in a

stable grasp, it can also lead to the rollback phenomenon

discussed in [7]. Our current analysis tags these cases as

failures and only grasps where no slip occurs during the

process are considered reliable enough for execution.

• after all the contacts have been established, actuator force

is increased to the desired level for a stable grasp. However,

when the object is lifted, any unbalanced forces in the

hand-object system are no longer supported by friction

between the object and the environment and will cause

the hand to reconfigure itself. We thus seek grasps that

minimize the amount of unbalanced force applied after all

contacts have been established and the actuator force has

reached the desired level for grasping.

It is important to note that the process presented above can

prune out a number of configurations that, although unstable,

can ultimately result in stable grasps (either through finger

slip or hand re-configuration after object lift). In essence,

our analysis method aims to identify underactuated grasps

that are most likely to be stable throughout their execution.

Intuitively, these grasps are the best candidates for reliable

task completion. Furthermore, the ideal hand design should

offer a wide range of stable postures over a variety of

target objects. In the following section we will describe our

formulation for performing this analysis.

III. QUASISTATIC COMPUTATION OF

UNBALANCED FORCE

Consider an underactuated robotic hand with d actuators

for m joints; in practice we focus on cases were d ≪ m. The

force generation characteristics of the hand will depend on

Parameter Definition

m number of joints

θ ∈ Rm joint angle values

K ∈ Rm×m diagonal joint spring stiffnesses

τ ∈ Rm joint forces

p number of contacts

c ∈ R3p column vector of contact forces

Jc(θ) Jacobian of contact locations

d number of actuators

α ∈ Rd actuator forces

A(θ) ∈ Rm×d matrix relating actuator to joint forces

TABLE I

NOMENCLATURE

the chosen underactuation method. Using the nomenclature

presented in Table I, the applied joint forces are a function

of the actuator forces, and possibly of the joint angle values,

or τ = f(α,θ). In the rest of this paper, we focus on

the case where force transmission is achieved through a

tendon network using known insertion points, and passive

adaptation is achieved through compliant joints modeled as

linear springs of known stiffnesses. However, our formulation

can be extended to other actuation mechanisms by changing

the formulation of the function f used for computing τ .

Ignoring inertial effects, the system is in equilibrium if the

joint forces due to actuation and joint springs are balanced

by contact forces. Overall equilibrium is thus satisfied by:

JT
c c = f(α,θ) = A(θ)α + Kθ (1)

Our goals, as outlined in Section II, are to a) determine

the existence of a set of legal contact forces that satisfy

the equilibrium condition and b) compute the total force

that the hand will apply on the object. In general, the

system in (1) in undetermined. However, we must also

add friction constraints on the contact forces, and, in case

these constraints can be met, compute the solution that adds

minimum energy to the system.

A. Friction Constraints

In order to model friction constraints, we start from the

linearized formulation introduced in [17] and further dis-

cussed in [18], which we briefly review here. Consider first a

single contact i where the total contact force is ci ∈ R3, the

surface normal is n̂i and the magnitude of the normal force

is ni ≥ 0. In the case of Coulomb friction, the tangential

forces at the contact are limited by ni and the friction

coefficient µi. From a geometric standpoint, the tangential

friction component of the contact force has to lie inside

a ”friction circle” of radius µini. This constraint can be

linearly approximated by expressing the frictional component

of the contact force as a weighted linear combination of k

discrete vectors on the boundary of the friction circle:

ci = [n̂i Di] [ni βi]
T

(2)

Here the columns of the matrix Di ∈ R3×k are the k vectors

that sample the friction circle and βi =
[

β1

i , β2

i , ..., βk
i

]
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is the vector of weights (in practice we use k = 8).

Additionally, all the weights must be positive, and their sum

is bounded by the magnitude of normal force:

[µi − e] [ni βi]
T

≥ 0 (3)

ni,βi ≥ 0 (4)

where e = [1, 1, ..., 1] ∈ Rk.

Constraints (2) through (4) refer to a single contact i. We

now assemble them in matrix form for the complete system:

c = Dβ (5)

β, Fβ ≥ 0 (6)

where the vector of unknowns β contains the entries [ni βi]
T

in block column form, the matrix D contains the entries

[n̂i Di] in block diagonal form and the matrix F contains

the entries [µi − e] also in block diagonal form.

We note that this model can be directly extended to

consider complex frictional phenomena, such as soft finger

contacts. In addition to tangential friction, such contacts can

also apply frictional torque. Instead of a contact force we

therefore have a contact wrench, whose frictional component

is bounded to lie inside a “friction ellipsoid” [19]. This effect

can be captured by linearizing the friction ellipsoid as shown

in [20], and using the appropriate entries in the Di matrices.

B. Optimization Problem

Even with contact constraints, the system can still allow an

indeterminate number of solutions and we must choose the

one that adds minimum energy to the system. We therefore

compute the solution that minimizes the magnitude of the

resultant wrench applied to the external object. For a contact

i, we consider the matrix Ri ∈ R6×3 which transforms

contact forces into 6D object wrenches (considering both the

force and the torque produced on the object). The sum of the

resulting object wrenches gives us the total object wrench o:

o = SRDβ (7)

where R contains the entries Ri in block diagonal form

and S ∈ R6×6p is a summation matrix of the form

[I6, I6, ..., I6]. The complete transform from the unknown

contact force magnitudes β to the resultant object wrench o

can be encapsulated in the grasp map matrix G = SRD.

We can finally formulate the complete contact problem:

minimize oT o = βT GT Gβ subject to :

JT
c Dβ = JT

t Aα + Kθ

β, Fβ ≥ 0

This is a standard Quadratic Program, with linear con-

straints. The matrix that defines the quadratic (and only)

component of the objective function is positive semidefinite

by definition, as it is the product of the matrix G and its

transpose. Therefore, the optimization problem is convex, so

whenever the conditions are feasible, a global minimum can

be determined. In this study, we used the Mosek [21] package

to solve all the optimization problems of this form.

Algorithm 1 Grasp analysis algorithm.

maxUnbal = 0

repeat

close fingers incrementally until a new contact is made

formulate contact force quadratic program

unbal = Optimize(quadratic program)

if program unfeasible or unbal > unbalThreshold then

return unstableGrasp

maxUnbal = MAX(unbal, maxUnbal)

until all fingers stopped

set desired level of actuation forces

formulate contact force quadratic program

finalUnbal = Optimize(quadratic program)

if program unfeasible then

return unstableGrasp

graspQuality = f(maxUnbal, finalUnbal)

return graspQuality

There are three possible results to the optimization prob-

lem presented above:

• the problem is unfeasible; this indicates that no legal

contact forces exist that can balance the system. The

fingers will slip on the surface of the object.

• the problem is feasible and a non-zero global optimum is

found; the contacts are stable but some level of unbalanced

force is applied to the object. If this force is not balanced

externally (i.e. by interactions between the target object

and another surface in the environment), the hand will have

to reconfigure itself.

• the problem is feasible and the global optimum is zero; the

contacts are stable and contact forces balance each other

on the object producing a null resulting wrench. The hand-

object system is stable in its current configuration.

Before proceeding to applications of this method, we

must note that alternative formulations of contact friction

constraints are also possible. Anitescu and Potra [17] use

the same linearized model applied here, but cast it as a

Linear Complementarity Problem solvable using Lemke’s

algorithm. Buss et al. [13] use an exact quadratic friction

model formulated as positive semi-definiteness constraints.

Han et al. [15] extend this approach and solve it using

Linear Matrix Inequations. The formulation presented here

enables straightforward control over the minimized objective

function, but using different approaches, such as the ones

above, might also be feasible. We intend to explore these

possibilities as part of our future studies.

C. Grasp Execution Analysis

We can now present the analysis method applied to a

complete grasp execution. The goal is, for a given start-

ing position and finger closing direction, to predict if the

outcome is a successful grasp and, if so, to also assign

it a numerical quality metric. A step-by-step execution is

presented in Algorithm 1.

We note that, in the presented form, our algorithm does

not provide an exact formulation of the grasp quality metric,
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but rather suggests that it can be computed as a function of

both the maximum level of unbalanced force created while

closing the fingers and the unbalanced force of the final

grasp, after actuator forces have been set to the desired levels.

An ideal grasp will minimize both of these values. However,

the weight placed on each of these goals can be adapted to

the particular characteristics of the hand and the environment.

In the results presented in the following sections, we chose

to use only the final unbalanced force as the returned quality

metric; other choices are also possible.

The final grasps can also be pruned according to other

quality metrics, such as the widely used Grasp Wrench Space

(GWS) ǫ metric proposed by Ferrari and Canny [22]. In

our implementation, we prune all final grasps that have an ǫ

value below 0.05. This metric builds the GWS by considering

only contact frictional constraints. The presence of additional

underactuation constraints would require further pruning of

the GWS; as such, the ǫ value we currently use can be

considered an upper bound for the true GWS quality of an

underactuated grasp.

IV. APPLICATIONS AND RESULTS

To showcase the analysis method introduced above, we

propose two applications. The first one focuses on existing

hand designs: given an underactuated hand and an object

to be grasped, it can be used to quickly prune a very large

number of possible grasps and keep only the best candidates

for stable execution. Our current results are presented in a

simulated environment using a full dynamics engine with

inertial effects to provide baseline performance and ground

truth. The second application aims at an earlier stage of the

hand design process: our method can be used to efficiently

quantify the capabilities of a hand design over a wide range

of objects and grasping scenarios. This enables the analysis

of design choices and optimization parameters before the

final design is set and the hand is constructed.

A. Grasp Planning

Grasp planning is a common problem in robotic hand

research (for review see [23], [24]), usually formulated as

follows: given a hand and a target object, find a hand

configuration and location relative to the object in order to

ensure a stable grasp. As we discussed in Section II, in the

case of underactuated hands, the number of starting configu-

rations is limited, but the process of passive adaptation during

execution is complex. Here we apply our analysis method to

evaluate these configurations and decide if they are likely to

result in a stable grasp.

In our implementation we used a model of the SDM

Hand introduced by Dollar and Howe [5]. This hand uses a

single actuator to drive eight joints that articulate four fingers,

relying almost exclusively on passive adaptation for grasping

a wide range of objects. Our planning method, implemented

using the publicly available GraspIt! simulation engine [25],

goes through the following stages:

• create a large number (between 150 and 1000) of possible

grasping positions for each object in our test set. Figure 1

Fig. 1. Set of five objects (glass, flask, mug, phone and toy airplane) used
in our tests. The glass also shows a number of possible grasps generated
by aligning the hand with its bounding box. For each possible grasp, the
approach direction (shown by the arrows) was parallel to one axis of the
bounding box. The rotation of the hand around the approach direction (not
shown here) was set by aligning the hand with the other axes of the box.

shows the objects in our set, and exemplifies the sampling

process for creating candidate grasps. This was done by

aligning the hand with the bounding box of each object and

advancing towards the object until first contact is made.

• analyze each possible grasping position using the qua-

sistatic analysis algorithm presented in Section III-C. Sort

the grasps in order of the quality metric.

• use GraspIt!’s dynamics engine to simulate the execution

of a grasp candidate in order to provide ground truth

and a computational performance baseline. This engine,

presented in [18], uses a time step integration method to

compute body velocities and accelerations in response to

actuator and contact forces. If the dynamic execution of a

grasp results in the object firmly held in the hand against

gravity, the grasp is deemed to be successful.

Our first test was intended to provide a baseline perfor-

mance measure: for each object, we tested all candidate

grasps using the dynamic engine. The percentage of suc-

cessful grasps over the entire set of objects was 17% (the

complete results for each object are shown in Table II,

third column). The result shows that this hand is indeed an

effective grasping device, but a random choice of approach

direction yields an unsatisfactory success rate. Furthermore,

the average time for complete dynamic analysis of all the

grasp candidates was 20 minutes per object, restricting its

applicability in on-line grasping scenarios.

In contrast, the quasistatic analysis algorithm is signifi-

cantly faster. In our experiments, totaling more than 1500

grasps over 5 objects, the time required for quasistatic

analysis of a stable grasp ranged between 100 and 200

milliseconds. Bad grasps are evaluated even quicker, as either

finger slip or a high level of unbalanced force lead to an

early exit with an unstableGrasp label. In general, the time

required for analyzing a complete set of candidate grasps

densely sampled along the object bounding box ranged

between 16 and 75 seconds. All of our experiments were

performed on a commodity desktop workstation equipped

with a 2.13GHz Intel Core2 CPU.

After this analysis was done, we selected the 10 most sta-

ble grasps from the ordered list of candidates. One exception

was the flask, for which only 8 stable grasps were found
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Object #G %G-S #QS %QS-S QS-time

Flask 542 13% 8 100% 45.18s
Plane 849 9% 10 90% 75.14s
Mug 337 14% 10 90% 29.56s

Phone 177 44% 10 100% 16.17s
Glass 220 39% 10 80% 36.9s

#G: total number of grasp candidates generated

%G-S:
percentage of candidates from this list that result
in a stable grasp

#QS:
number of best candidates taken from the list
ordered through quasistatic analysis

%QS-S: percentage of those that result in a stable grasp

QS-time:
time required to perform the quasistatic analysis
and return the best candidates

TABLE II

QUASISTATIC ANALYSIS FOR GRASP PLANNING.

(this is intuitively explained by the conic shape of this object

which makes it difficult for this hand model to hold against

gravity). This subset was then tested using the dynamic

engine. Our complete results are presented in Table II. We

note that the quasistatic approach provides an efficient and

reliable method of pruning down a very large number of

possible grasps to a small number of reliable candidates.

For application in real life environments, this method

places a number of requirements on the sensing capabilities

of the system. One possibility is to acquire a model of, or

recognize, the object to be grasped. The method presented

above can then be applied to find reliable grasps for execu-

tion. Another possible option would use tactile sensors and

proprioception to analyze the grasp currently being executed.

Both of these options require extensive sensing, which runs

against the stated motto of simplicity and low-cost designs.

An interesting alternative is to optimize the hand off-line

so that a wider range of grasps can be executed with

increased robustness. We believe that replacing grasp-specific

on-line computation with off-line hand design optimization

can prove a fruitful direction for improving robotic grasp

performance. We explore this option in the following section.

B. Hand Design Optimization

We used the quasistatic analysis presented here to investi-

gate how grasping performance can be improved by changing

hand design parameters. Using a model of the SDM Hand,

we focused on two such parameters: the actuator torque ratio

between the proximal and distal joints of each finger and

the spring stiffness ratio between the same joints. These

parameters are determinant for the behavior of the hand, as

they affect both the posture of the hand before touching an

object and the forces transmitted after contact is made. In

particular, we investigated all possible combinations ranging

from 0.2 to 1.0 (in steps of 0.2) for the torque ratio and from

0.1 to 1.0 (in steps of 0.1) for the stiffness ratio.

The benchmark test consisted of 2000 possible grasps

distributed evenly across the 5 models in our test set. For

each torque and stiffness combination, we tested all the can-

didate grasps and reported the number of them that are stable

throughout their execution. To enable direct comparison
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Fig. 2. The effect of hand design parameters on the likelihood of obtaining
a stable grasp. For each combination of joint torque and stiffness ratios, the
color indicates the number of stable grasps obtained from a fixed set of
candidate grasps; a darker color means a higher number of stable grasps.
For each object, the results were normalised to a scale of 0 to 1 by dividing
by the maximum number of grasps found for that object.

across different objects, each set of results was normalized to

a scale of 0 to 1 through division by the maximum number

of grasps found for that object. Figure 2 shows these results

for each of the five objects, as well as their average over

the entire set. The contour maps reveal which areas of the

optimization range offer the best performance; in particular

they suggest a torque ratio of 0.6 and a stiffness ratio of

0.3. The overall resemblance between the patterns suggests

that the global optimum of the average profile is a good

compromise, likely to work well on all objects. However, the

patterns exhibit enough variation to illustrate the importance

of performing this analysis over a large set of models,

spanning a wide range of shapes and grasping scenarios.

We also note that our torque ratio is in agreement with the

optimal value found in the optimization studies that led to

the construction of the SDM Hand [6].

The focus of the present study is the analysis method itself

rather than a particular design choice or optimization task.

We therefore chose only one of the many aspects of a hand

model that can be analyzed in similar fashion. These include

kinematic chain design, link lengths and shapes, number of

fingers, etc. In this light, the computational performance of

the analysis method becomes a key aspect: a more efficient

algorithm will allow for more design iterations, investigating

more parameters over a larger domain. The analysis pre-

sented here consisted of a total of 20,000 grasps for each

object (400 candidates for each of the 50 combinations of

force and torque ratios); the typical time spent per object was
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15 minutes. This performance level suggests the possibility

of scaling up to significantly larger test sets.

In recent work, we have introduced and validated a large

corpus (n = 1, 814) of 3D models annotated with pre-

computed grasp information for a number of dexterous hand

models [26]. These results have underlined the advantage

of using a large knowledge base for on-line grasp planning;

we conjecture that this approach can also prove useful in

the case of hand design. Using a computationally efficient

analysis method, such as the one presented here, a given

hand model can be benchmarked across this entire set of

models, quantifying its overall performance and identifying

the range of shapes that are particularly difficult to grasp.

V. CONCLUSION AND FUTURE WORK

In this paper we have introduced a quasistatic analysis tool

for highly underactuated hands performing grasping tasks. At

its core, our method attempts to compute the contact forces

that satisfy the static equilibrium conditions, given a hand

configuration and a set of contacts with the grasped object.

If such forces do not exist, the configuration is reported to be

unstable as the fingers will slip on the surface of the object.

If the equilibrium constraints are feasible, we compute the

resultant wrench applied to the target object. The magnitude

of this wrench provides a measure of the stability of the

hand-object system, and implicitly of the grasp.

The equilibrium conditions are solved through formulation

as a convex Quadratic Program with linear constraints. This

enables us to consider arbitrary hand kinematics, friction

constraints and complex 3D object geometry. In addition,

this method is computationally efficient and can be used to

analyze hundreds of grasps in less then a minute. Therefore,

it is well suited for two applications that we have presented.

The first one is grasp planning, where a large number of

possible grasps must be evaluated quickly to select the best

candidates for reliable execution. The second application is

hand design, where the effect of changing parameter values

can be quantified efficiently by evaluating hand performance

over a large number of simulated grasp scenarios.

Due to the complex interactions between multiple bodies

under various constraints, modeling grasp execution in gen-

eral, and underactuated grasping in particular, are challenging

tasks. Current analysis tools can not claim to take into

account all of its aspects in a computationally efficient

way, and our approach is no exception. In particular, our

algorithm discards a number of configurations that it detects

are unstable, but which could ultimately result in stable

grasps. The planning results we have presented show that,

while our method reliably identifies a number of viable grasp

candidates, it also eliminates a significant number of other

grasps that could also be executed successfully. In future

work, we would like to address these cases, beginning with

quasistatic simulation of finger slip conditions.

Complementing improvements to the analysis tool itself,

we would like to expand on the two applications that we

have presented initial results for. Our planning algorithm can

be extended to identify grasps that not only have a high

chance of successful execution, but are also robust to hand

positioning errors. Hand design applications are potentially

limitless, as a large number of design parameters can be

improved through optimization methods analogous to the

one presented here. Our ultimate goal is to realize the hand

design equivalent of a constructive proof in mathematics: to

show that a hand exists that can provably perform a given

set of grasping tasks, and in the process to also show how

to perform these tasks, in a repeatable and robust manner.
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