Automatic registration of 2-D with 3—-D imagery in urban environments

loannis Stamos and Peter K. Allen [Submitted for publication to ICCV 2001]

Abstract

We are building a system that can automatically ac-
quire 3D range scans and 2D images to build geomet-
rically correct, texture mapped 3D models of urban en-
vironments. This paper deals with the problem of auto-
matically registering the 3D range scans with images ac-
quired at other times and with unknown camera calibra-
tion and location. The method involves the utilization
of parallelism and orthogonality constraints that natu-
rally exist in urban environments. We present results
for building a texture mapped 3-D model of an urban
building.

1 Introduction

This paper deals with the problem of automatic pose
estimation & calibration of a camera with respect to an
acquired geometric model of an urban scene. The pose—
estimation is part of a larger system which constructs
3-D solid CAD models from unregistered range images.
Our goal is to enhance the geometric model with pho-
tographic observations taken from a freely moving 2-D
camera by automatically recovering the camera’s posi-
tion and orientation with respect to the model of the
scene and by automatically calibrating the camera sen-
sor. We propose a method which provides a solution for
modeling buildings in urban environments.

Most systems which recreate photo-realistic models
of the environment by a combination of range and im-
age sensing [27, 23, 31, 25] solve the range to image
registration problem by fixing the relative position and
orientation of the camera with respect to the range sen-
sor (that is the two sensors are rigidly attached on the
same platform). The camera calibration is done off-
line by sensing scenes of known geometry. In this case,
the image to range registration problem is transformed
to a range to range registration problem. The major
drawbacks of this approach are A) Lack of 2-D sensing
flexibility, since the limitations of range sensor position-
ing (standoff distance, maximum distance) translate to
constraints on the camera placement, and B) Static ar-
rangement of sensors which means that the system can
not dynamically adjust to the requirements of each par-
ticular scene. Also, the fixed approach can not handle
the case of mapping of historical photographs on the
models, something our method is able to accomplish.

This paper provides a solution to the automated pose
determination of a camera with respect to a range sen-
sor without placing artificial objects in the scene and

without a static arrangement of the range-camera sys-
tem. This is done by solving the problem of automati-
cally matching 3-D & 2-D features from the range and
image data sets. Our approach involves the utilization
of parallelism and orthogonality constraints that nat-
urally exist in urban environments in order to extract
3-D rectangular structures from the range data and 2-D
rectangular structures from the 2-D images.

The problems of pose estimation and camera cal-
ibration are of fundamental importance in computer
vision and robotics research since their solution is re-
quired or coupled with stereo matching, structure from
motion, robot localization, object tracking and ob-
ject recognition algorithms. There are numerous ap-
proaches for the solution of pose estimation problem
from point correspondences [9, 19, 7, 21, 6, 24], or
from line correspondences [19, 17, 12, 5]. Work in au-
tomated matching of 3-D with 2-D features include
[13, 20, 10, 22, 4, 29, 14, 11, 16] whereas in [30] the
automated matching is possible when artificial markers
are placed in the scene.

2 Camera Model

The 2-D camera follows the perspective projection
model. The effective focal length of the camera is f
and the principal point is Pp = (ps,py). 3-D scene
points P; are projected on 2-D image points p;, and
3-D scene linear segments L = (P;, P;) are projected
on 2-D image linear segments 1 = (p;, p;). The 3-D to
2-D projection of the line segment L to the line segment
1 can be mathematically described as: 1 = P(L), where

P =P(R,T|f,Pp).

That means that the projection mapping P depends
on the relative position of the range and image sen-
sors (R, T) and on the internal calibration camera pa-
rameters (f, Pp). We assume that our image has been
corrected with respect to radial distortion effects. We
also assume that our range sensor provides accurate 3—
D positions of sampled 3-D points with respect to its
coordinate system.
2.1 Point and Line representation

We represent 2-D points and 2-D lines as antipodal-
points on the Gaussian sphere. In this manner we can
represent 2-D points at infinity!. Let COP be the cen-
ter of projection of our camera (figure 1). A 2-D point

1You can view those points as the of intersection of parallel
2—-D lines on the image plane.

e NZmxm

B
lineli, Y

X Image Plane

Camera coordinate system

Figure 1: Representing 2-D points and lines as
antipodal-points on the Gaussian sphere. A point is
represented by the pair of unit vectors 4+n; and a line
by the pair £n3 X ns.

pi can be represented by the 3-D unit vectors £n; (note
that there is a sign ambiguity). That means that 2-D
points map to pairs {(¢,0), (¢ + m,—0)} of antipodal
points on the Gaussian sphere. We can use a similar
representation for 2-D lines: the line 1;2 connecting the
points p; and p2 can be uniquely represented by the 3—
D unit vectors +N12 = +(n1 X nz) which correspond
to the normals of the plane < p1, pa2, COP >. There is
a one-to-one correspondence between 2—-D points and
antipodal-points on the Gaussian sphere. The same
holds for 2-D lines. Thus a 2-D point and a 2-D infi-
nite line can be represented by pairs of the form (¢, 8),
where 0 < ¢ < 27 and 0 < 0 < w/2. Note, that the
point COP does not need to be the exact center of pro-
jection.

3 Problem Formulation

Formally, our input consists of the pair (D(95), I(9))
of a scene’s S range scan D and set of images I. We
assume that both the camera & range sensors view the
same part of the real scene, so that the 3-D and 2-D
views have significant overlap (figure 2). The locations
of the cameras which produce the images I is unknown
and must be automatically recovered. Thus the output
is the pose P; = {R;, T;|Ppi, f;} which describes (a) the
transformation (rotation & translation) from the range—
sensor to each camera—sensor’s coordinate system and
(b) the mapping (internal camera parameters) from the
3-D camera frames of reference to the 2-D image frames
of reference.

The pose estimation involves the following seven
stages. In the first four the range and image data sets
are abstracted into salient 3-D and 2-D features. The
actual pose estimation is done in the last three stages.
In detail the stages are the following:

A) Extraction of two feature sets Fzp and Fyp (3-D
& 2-D linear segments from the range and image data-
sets) [26]. B) Grouping of the 3-D and 2-D feature sets
into clusters of parallel 3-D lines Lsp and converging
2-D lines ? Lyp (by exploiting global properties of the

2Those lines define vanishing points on the image space.

feature sets) [section 4]. C) Grouping of the 3-D and 2-
D line segments into higher level structures of 3-D and
2-D rectangles Rsp and Rap (by exploiting local prop-
erties of the feature sets) [section 5]. D) Extraction of
3-D and 2-D graphs G'sp and G3p of rectangles (by ex-
ploiting the repetitive pattern of scene and image rect-
angles) [section 5]. E) Computation of an initial pose
estimate Pp = {R, O|Pp, f} (rotation and internal cam-
era parameters) by utilizing the directions defined by
the sets of 3-D & 2-D clusters Lsp and Lap [section 6].
F) Automatic selection of a matched set of rectangular
features C? and computation of a pose P° = A(C°|Fy)
by running a pose estimator algorithm .4 on a number
of samples over the set of all possible matches of 3-D
& 2-D rectangles C = P(Rsp x Rap)® (computation
of a coarse pose estimate) [section 7]. G) Refinement
PR = R(P° Lsp, Lap) of the estimated pose P° by
using all available information computed so far (com-
putation of a fine pose estimate) [section 8].

The above formulation and algorithmic flow is based
on classic pose estimation frameworks (for instance see
[16]). The usage of vanishing points for estimating ro-
tation and internal camera calibration parameters is a
technique which has been successfully used in urban en-
vironments. Becker [2] solves for camera focal length,
principal point and distortion parameters by manually
clustering a set of image 2-D lines into major vanishing
point directions. He also solves for rotation, translation
with respect to a 3—D scene by manual correspondence
between two image and scene points. More recently,
Antone & Teller [1] developed a technique to solve for
the rotation between a set of 2-D images by automati-
cally extracting & matching vanishing directions across
all images in the set.

Our belief is that vanishing points are a great source
of information that can be used in the context of urban
scenes. The rotation that can be computed by matching
scene directions with image vanishing points is a critical
amount of information which can simplify the task of
automatically computing the translation of the camera
with respect to the scene.

The following sections describe all steps in more de-
tail.

4 Line clustering

Previously we have developed robust methods for
generating 3-D and 2-D line-sets from 3—D and 2-D im-
agery [26]. In this paper, matched 2-D & 3-D clusters
of lines are used for recovering rotation and for camera
internal self-calibration. In the 2-D domain the extrac-
tion of vanishing points provides a natural clustering of
lines into sets which correspond to parallel 3-D lines
whereas in the 3-D domain the clustering into sets of
parallel 3-D lines is direct. First we describe our van-

3P(A) is the power set of a set A.

3-D depth map of the scene

s

Viewing .
Direction .

,’Viewing Direction

X

Range Sensor’s
Coordinate
System

Coordinate Transformation

Figure 2: The pose estimation problem. The 3—D model
of the scene is represented in the coordinate system of
the range sensor. The image taken from the 2-D camera
needs to be registered with the 3-D model.

ishing point extraction algorithm and then the classifi-
cation of 3-D lines. The end result is sets of 2-D lines
which meet at vanishing points and sets of 3-D paral-
lel lines which produce the extracted vanishing points

(figure 4).
4.1 Vanishing Point Extraction

The most characteristic property of perspective pro-
jection is the fact that a set of parallel 3-D lines is
mapped to a set of 2—D lines which intersect at a com-
mon point on the image plane. This point of intersec-
tion can be a point at infinity when the corresponding
3-D direction is parallel to the image plane. In order
to handle all possible points of intersection (even points
at infinity) we need to adopt the representation for 2-D
points and 2-D lines described in section 2.1. Then, the
intersection of two 2-D lines 132 and 1}, is the point v
which is mapped to the antipodal points N2 x N,
on the Gaussian sphere and can be represented by a pair
(6,0).

There are many methods for the automatic com-
putation of the major image vanishing points (see
[1, 3, 28, 18]). Our approach involves the computation
of all pairwise intersections between the extracted image
lines and the creation of a 2-D histogram of those inter-
sections. The histogram is defined over the 2-D domain
of the discretized surface of the Gaussian sphere. Then
a search for the peaks of the histogram is performed.
Each peak corresponds to directions towards which a
large number of 2-D lines converge.

The end result is a set of major vanishing points
VP = {v1,...,v,}, where VP, = (¢;,0;)*. Each van-
ishing point is supported by a set of 2-D lines and the

4The latitude-longitude representation depends on the as-
sumed center of projection COP.

desired clustering Lap = {Lz2p,,...,L2p,} has been
accomplished. If the number of major vanishing points
Nyps is known a-priori (in urban environments this num-
ber is almost always three) then we can select the N,,,
largest clusters from the set Lap as our result and so
L2D = {LQDI, ey LZDNups} and VP = {Ul, ey Uvas}'
Extracting the number NV, ,, is an easy task (it is equiv-
elant to identifying the major modes of the 1-D his-
togram of directions of 2-D lines on the plane [18]).
4.2 Clustering of 3—D lines

The clustering of the extracted 3-D lines into sets
of parallel lines is an easier task than the extraction of
vanishing points. We are using a classic unsupervised
nearest neighbor clustering algorithm [15]. The N,
(section 4.1) larger clusters of 3-D lines provide the de-
sired grouping of 3-D lines into clusters of parallel lines
Lsp = {Lsp,s---, LSDNU,,S} along with the average 3-D
direction of each cluster Ugp = {V3p,, ..., Vapy,,. 1.

5 Extracting 3—D & 2-D rectangles

Recapping the previous section, the extraction of the
global properties of the 3-D & 2-D data-sets (section 4)
results in: 1) Clusters of 3-D lines Lgp and directions
of those clusters Usp (section 4.2) and 2) Clusters of
2-D lines Lop and their corresponding vanishing points
VP (section 4.1). Those global properties will be used
for the calculation of the camera rotation and for the
internal camera calibration as will be shown in section
6. However, global properties alone are not enough for
the translation calculation between the range and image
sensor (section 7). Calculating the translation requires
the exact matching of local 3-D and 2-D features (either
points of lines, see related work section). Since 3-D
points are hard to localize in the 3-D data set and since
we have already developed a method for the reliable and
accurate extraction of 3-D lines [26] we will match 2-D
with 3-D linear features. In order to reduce the search-
space of possible matches we move up in the feature
hierarchy and group the 3—D and 2-D lines into graphs
of rectangular & quadrangular structures.

The geometry of the projection of a 3-D rectangle
on a 2-D image quadrangle is shown in figure 3. 3-D
rectangles which are formed by pairs of lines of direc-
tions (Vier, Vhor) have corresponding 2-D quadrangles
which are formed by pairs of 2-D lines which converge
to the vanishing points (vyer, vpor). That means that
in order to extract corresponding 3-D rectangles & 2-D
quadrangles we need to utilize the extracted clusters of
3-D & 2-D lines.

For the following discussion we will call one of the
two scene directions vertical (V,.,) and the other one
horizontal (Vj,.). We assume that the vertical direc-
tion is oriented from the bottom to the top of the scene
whereas the horizontal from left to right. Analogously
we call vy, and vy, the vanishing points which corre-
spond to the directions V., and Vjor.

We can formulate the 3-D and 2-D rectangle extrac-

tion problem as follows:
The input is two pairs of 3—D directions Ve, Vior €¢ Usp
and 2-D vanishing points vyep, Vpor € VP along with
the 3-D Lsp,,Lsp, ¢Lasp (section 4.2) and 2-D
Lap,, Lap, €Lap (section 4.1) clusters that support
them. The output is a set of 3-D rectangles & 2-
D quadrangles Rszp and R;p and two corresponding
graphs G'sp and Gop describing the spatial relationship
among structures in R3p and Rap respectively.

Following, this notation a 3-D rectangle is a planar
3-D structure whose sides can be tagged as l;, or lgoun
if are parallel to the Vj,, direction and as ljcp¢ or l54n¢
if are parallel to the Vy., direction (figure 3). Also we
can define three relationships between rectangles which
lie on the same scene plane: right of, top of and in or
out of. Thus a 3-D rectangle can be viewed as a tuple
with the following properties:

Rec;q4: the rectangle’s identification number,

Plane;y: the rectangle’s plane identification number,
size = (Syer, Shor): vertical & horizontal extent,

lgir: the 3-D line defining the dir side of the rectangle,
Pair: & pointer to the closest dir rectangle,

Pout: & pointer to the smallest rectangle enclosing Rec;q
and

Pin: a set of pointers to all rectangles enclosed by Rec;4.
The variable dir can take one of the four values up, le ft,
down or right. The pointers py;,, Pout and pin can take
the values Rec;q or nill when there is no rectangle to
point to.

The exact same representation can be used for the 2—
D quadrangles ®. In order to use the same notation and
define spatial relationships between 2-D quadrangles we
need to transform them to 2-D rectangles. This can
be done if we rotate the two vanishing points v,., and
vhor (and similarly transform all 2-D lines which they
support them) such that they are parallel to the image
plane.

The rectangle-extraction problem is a search of pat-
terns of 3-D lines and patterns of 2-D lines which have
the structure shown in figure 3. After such patterns
are detected the tuples defining each rectangle are be-
ing computed. The pointers pg;,» describe the spatial
relationship between rectangles and are thus describing
the graphs G'sp and Gap. Normally, our input consists
of lines which do not define complete four—sided rectan-
gles. That is why we allow the representation and ex-
traction of incomplete rectangles which are supported
by less than four sides.

5.1 Algorithm outline

The 3-D rectangle and 2-D quadrangle algorithms
are almost identical. They differ in the following man-
ner: 2-D case: Quadrangles (instead of rectangles)

5The Plane;q is not needed in this case since all 2-D structures
lie on the image plane.

Range Sensor coordinate system

right -
up
‘EN/UOWH Vanishing Point:
Vyer

X Image Plane

Camera coordinate system

Figure 3: 3-D rectangle formed by lines parallel to the
scene directions V¢, and Vj,, and its corresponding 2-
D quadrangle formed by 2-D lines which meet at the
image vanishing points vy, and vpep.

need to be extracted (see figure 3). However, with van-
ishing points already computed it is possible to undo
the perspective effect and map quadrangles to rectan-
gles. 3—D case: A check for coplanarity of the linear
segments that form the borders of the rectangle is re-
quired.

We present an algorithm that can be applied in both
2-D and 3-D cases. The vertical and horizontal lines
are directed according to the V., and V},, orientations
(figure 3). Thus each line can be represented as a pair
of points (Pstart, Peng). The major steps of the algo-
rithm are the following: A) Traverse all vertical lines
(PVitart, PVeng) and record its closest horizontal lines
(PHgiart,, PHena,)- The distance between a vertical
and a horizontal line is defined as the distance between
their closest endpoints. Horizontal lines whose distance
is greater than mazg (used supplied threshold) are not
considered as candidates for closeness. B) Traverse the
horizontal lines and check for patterns of four, three or
two sided rectangles by utilizing the spatial relationships
extracted in the previous step. C) Compute the graphs
that describe the spatial relationships among rectangles.

Concluding, we have formulated and solved the
problem of extracting 3-D & 2-D rectangles from
pairs of 3-D directions (Vyer, Vaor) € Ugp (section 4.2)
and their matching pairs of 2-D vanishing points
(Vyert, Vnor) € VP (section 4.1). The output of this
module is pairs of sets of 3-D and 2-D rectangles
(Rsp,, R2p,). In section 7 we will describe how we uti-
lize the extracted sets of rectangles for the computation
of a coarse pose estimate.

6 Initial pose estimation

The rotation computation is based on the fact that
the relative orientation between two 3—D coordinate sys-
tems O and O’ can be computed if two matching direc-
tions between the two systems are known. In this case
there is a closed-form solution for the rotation [8] and

we can write R = R(ny,nf|n2, n}), where n; and n} are
corresponding orientations expressed in the coordinate
systems O and O’.

In scenes containing a plethora of 3-D lines (such
as scenes of urban structures) it is possible to extract
major 3-D directions with respect to the coordinate-
systems of the range and image sensors. Those are the
directions of clusters of parallel 3-D lines in the scenes
(expressed in the coordinate system of the range sensor)
and their corresponding vanishing point directions (ex-
pressed in the coordinate system of the image sensor) as
shown in figure 4. We assume at this point that we have
computed the camera center of projection (descibed at
the end of the section).

In more detail, the direction of the 3-D lines which
produce the vanishing point v; (figure 4) is the unit vec-
tor n; = (v; — COP)/||(vi — COP)||, expressed in the
coordinate system of the camera sensor (section 4.1).
This direction can be matched with a scene direction
n; which is expressed in the coordinate system of the
range sensor and which has been provided by the 3-D
clustering module (section 4.2). So, the rotation com-
putation is reduced to the problem of finding two pairs
of matching 3-D directions & 2-D vanishing points

(n{,n;) e Usp x VP.

Finally, three such pairs can be used for the internal
calibration of the camera sensor (see [3, 2]).
.

Range Sensor coordinate system
Vv

/ 3D lines of direction n,

N2

3D lines of direction n} 0
1

\\\)

N2

““77 Center of Projection

T e
Vanishing Point 2W2) . v

—
Vanishing Point 1 (V1)

Image Plane

Camera coordinate system

Figure 4: Two vanishing points. The 2-D lines which
correspond to parallel 3-D lines of direction n; intersect
at a common vanishing point V; on the image plane.

7 Coarse Pose Estimation

So far, we have computed the rotation and internal
camera calibration parameters of the camera by utiliz-
ing major vanishing points and 3-D directions in the
scene. The last part of the pose computation module is
the calculation of the camera translation with respect to
the range sensor by matching local 3-D & 2-D features
between the range and image data sets.

In section 6 3—D scene directions are matched with
2-D image vanishing points in order to solve for the

camera rotation. If we have N such matches (nf, n;) of

scene and image directions then there are M = (];])

pairs of the form ((nj, n;), (n},n;)). In section 5 we
described a method to compute 3-D & 2-D rectangles
(Rsp,, R2p,) from clusters of 3-D and 2-D lines, and
pairs of the form ((n{,n;), (n}, nj)), where ni, n3 ¢Usp
(section 4.2) and n;,nje VP (section 4.1). Since we
have M such pairs, we can compute M pairs of sets of
3-D & 2-D rectangles (Rap,, R2p,) and so the set

S = 'P(Rg[)l X RQDI) U... U’P(RgDM X RQDM)G

describes the space of every possible matching configu-
ration between 3-D and 2-D rectangles.

Exploring every possible combination of matches is
an intractable problem since we need to consider an ex-
ponentially large number of possibilities. In order to
solve the problem we follow the RANSAC framework
introduced in [9]. Instead of considering all possible
matches we are randomly sampling the search space
(Rng X RQDI) U (R3D2 X R2D2) U...u (RgDM X RQDM)
of 3-D and 2-D rectangular structures. Each sample
Cransac consists of a fixed number n,qn5q4c Of pairs of
3-D and 2-D rectangles, where n,4ns54c 18 the mini-
mum number of matches that can produce a reliable
pose-estimate. Every sample C)gpnsqc produces a pose
estimate which is being verified and a matching score
Qnaten 18 computed, and we select as correct the match
which produces the maximum. The pose estimation al-
gorithm A from a set of matched 3-D and 2-D lines
(we can view each rectangle as a set of four lines) is
described in detail in [17, 26]. In the implementation of
the RANSAC procedure the pose estimator A optimizes
only with respect to the translation since the rotation
is already known to us.

If we want to ensure with probability Pr that at
least one of our random selections corresponds to a valid
match then the maximum number of steps is

Nmax = log(l - Pr)/log(l - b)

where b is the probability of randomly selecting a sam-
ple of nransac correct matches (we set Npgnsae = 2
for the experiments presented in this paper) [9]. If
we assume that in our scene there are K pairs of 3-D
and 2-D rectangles that can be correctly matched then
b= ([(/L)n”””“ and L = |(R3D1 X R2D1) U (R3D2 X
R3p,)U...U(R3p,, X Ra2p,,)| is the number of all pos-
sible pairs of 3-D and 2-D rectangles. Since K is un-
known to us we underestimate it (and thus underesti-
mate b) by setting K to equal nygnsqc. Note that the
lower the probability of correct matches b the larger the
number of required steps Ny qz-

6P (A) is the powerset of a set A.

At the core of the RANSAC algorithm the set of pro-
jected 3-D rectangles is being compared to the set of
extracted 2-D quadrangles assuming a pose produced
by a sampled set Cygnsqc- Our algorithm sets the score
@ mater, 1o equal the number of 3-D rectangles which
map (when projected to the image) to an extracted 2-
D quadrangle (larger is better). What remains to be
defined is how do we decide when two 2-D rectangles
are close with respect to each other 7. This decision is
based on an adaptive threshold which depends on the
relative size of pairs of rectangles.

8 TFinal Pose Estimation

The coarse estimate computed in the previous section
is very important because it provides an initial solution
which can be subsequently refined. The refinement in-
volves the projection of all 3-D lines of the extracted
clusters Lgp on the 2-D image assuming the coarse
pose estimate P° and so a set of projected 3-D lines
P(Lsp) is formed. Each individual projected cluster is
compared with the groups of extracted 2-D lines Lap
and new line matches among the 3-D and 2-D data
sets are verified. The increased number of line matches
results in better pose estimation.

9 Results

Figures 5 and 6 show results for the automatic pose
estimation between range and image data for an ur-
ban building. Two dense range scans that cover two
different views of building are shown in figures ba and
5b. In figures 5¢ and 5d the clustering of the automat-
ically extracted 3-D lines is presented along with the
computed 3-D rectangles. The three major vanishing
points and clusters of 2-D lines are shown in figures 6a
and 6b. The automatically computed principal point of
the cameras is also shown; it is the point of intersection
of vanishing point directions on the image. The next
set of figures (6¢,6d) displays the results of 2-D rectan-
gle extraction and the outcome of the coarse pose esti-
mation algorithm. The extracted 2-D rectangles (red)
are shown overlaid with the projection (green) of those
3-D rectangles which produce the maximum matching
score Qmatch (Qmaten 18 9 for the first view and 8 for
the second view). The final pose (section 8) is visu-
ally verified in figures 6e and 6f where the extracted
3-D lines shown in figures 5c and bd respectively are
projected on the 2-D images assuming the final pose
(shown in green). The extracted 2-D lines are shown in
red. As you can see the projected 3-D lines are very well
aligned with the 2-D data-sets, which means that both
the registration and the feature extraction algorithms
produce accurate results. Finally, the images 6g and 6h
present the texture-mapped 3-D models using the com-
puted calibration parameters and pose estimate on the

"Note that 2-D quadrangles are transformed to 2-D rectangles
when we extract the vanishing points which produce them.

two views of the model. The texture map, also visu-
ally verifies the accuracy of our method. The final pose
estimates are T = (3.71,-2.93,12.29)T (in meters),
R = {175.65° (0.017,0.99,0.01)7 (angle-axis represen-
tation) for the first view and T = (1.35, —2.5,10.10)7,
R = {178.86°,(0.0,0.99,0.01)7 for the second.

10 Summary

We have developed a method to accurately register
a range with an image data set in urban environments.
We are exploiting the parallelism and orthogonality con-
straints that naturally exist in such environments in or-
der to match extracted sets of rectangular structures.
The usage of a RANSAC technique for the computa-
tion of an optimal match between the data-sets is fea-
sible due to the reduction of the search space from the
set of 3-D and 2-D lines to the set of 3-D and 2-D
rectangles.

References
[1] M. E. Antone and S. Teller. Automatic recovery of
relative camera rotations for urban scenes. In CVPR,

pages 282-289, Hilton Head, NC, July 2000.

[2] S. C. Becker. Vision—assisted modeling from model-
based wvideo representations. PhD thesis, MIT, Feb.
1997.

[3] B. Caprile and V. Torre. Using vanishing points for
camera calibration. ICCV, 4:127-140, 1990.

[4] T. Cass. Polynomial-time geometric matching for ob-

ject recognition. IJCV, 21(1-2):37-61, 1997.

[5] S. Christy and R. Horaud. Iterative pose computation
from line correspondences. CVIU, 73(1):137-144, Jan-
uary 1999.

[6] D. F. DeMenthon and L. S. Davis. Model-based object
pose in 25 lines of code. IJCV, 15:123-141, June 1995.

[7] M. Dhome, M. Richetin, J.-T. Lapresté, and G. Rives.
Determinatin of the attitude of 3—d objects from a single
perspective view. PAMI, 11(12):1265-1278, December
1989.

[8] O. Faugeras. Three—Dimensional Computer Vision.

The MIT Press, 1996.
[9] M. A. Fischler and R. C. Bolles. Random sample con-

sensus: A paradigm for model fitting with applications
to image analysis and automated cartography. Graphics

and Image Processing, 24(6):381-395, June 1981.

[10] T. Gandhi and O. Camps. Robust feature selection for
object recognition using uncertain 2D image data. In

CVPR, pages 281-287, Seattle, WA, 1994.

[11] G. Hausler and D. Ritter. Feature—based object recog-
nition and localization in 3D-Space, using a single video
image. CVIU, 73(1):64-81, 1999.

[12] R. Horaud, F. Dornaika, B. Lamiroy, and S. Christy.
Object pose: The link between weak perspective, para-

perspective, and full perspective. IJCV, 22(2):173-189,
1997.

Figure 6: Results. a,b) 2-D images and clusters of 2-D lines, where different colors correspond to different vanishing

points. c¢,d) Extracted 2-D quadrangles (shown in red) and @q¢ch matched 3—-D rectangles projected on images

after coarse pose estimation (shown in green). e,f) Projected 3-D lines on the images after final pose estimation
(shown in green). The extracted 2-D lines are shown in red. g,h) Images texture-mapped on 3-D model assuming
final pose.

Figure 5: a,b) Range scans of scene. c¢,d) Clusters of 3-D
lines (color encodes different directions) and extracted
3-D rectangles (rectangles are rendered as solids of dif-
ferent color for clarity).

[13]

[17]

[18]

[21]

[22]

(23]

[24]

[25]

D. Huttenlocher and S. Ullman. Recognizing solid ob-
jects by alignment with an image. IJCV, 5(7):195-212,
1990.

D. W. Jacobs. Matching 3-d models to 2-d images.
1JCV, 21(1-2):123-153, 1997.

A. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice-Hall, 1988.

F. Jurie. Solution of the simultaneous pose and corre-
spondence problem using gaussian error model. CVIU,

73(3):357-373, March 1999.

R. Kumar and A. R. Hanson. Robust methods for
estimating pose and a sensitivity analysis. CVGIP,
60(3):313-342, Nov. 1994.

D. Liebowitz and A. Zisserman. Metric rectification for
persepective images of planes. In CVPR, pages 482—
488, Santa Barbar, CA, 1998.

Y. Liu, T. S. Huang, and O. D. Faugeras. Determina-
tion of camera location from 2-D to 3-D line and point

correspondences. PAMI, 12(1):28-37, Jan. 1990.

D. Lowe. Robust model-based motion tracking through
the integration of search and estimation. 1jev,

8(2):113-122, 1992.
D. Oberkampf, D. DeMenthon, and L. Davis. lterative

pose estimation using coplanar feature points. CVGIP,

63(3), May 1996.

C. Olson. Time and space efficient pose clustering. In

CVPR, pages 251-258, Seattle, WA, 1994.
K. Pulli, H. Abi-Rached, T. Duchamp, L. G. Shapiro,

and W. Stuetzle. Acquisition and visualization of col-

ored 3-D objects. In ICPR, Australia, 1998.

L. Quan and Z. Lan. Linear n—point camera pose de-

termination. PAMI, 21(7), July 1999.
V. Sequiera, K. Ng, E. Wolfart, J. Concalves, and

D. Hogg. Automated reconstruction of 3D models from
real environments. ISPRS Journal of Photogrammetry

& Remote Sensing, 54:1-22, 1999.

I. Stamos and P. K. Allen. 3-D model construction
using range and image data. In CVPR, Hilton Head,
SC, July 2000.

Visual Information Technology Group, Canada, 2000.
http://www.vitdit.nrc.ca/VIT html.

L.-L. Wang and W.-H. Tsai. Computing camera pa-
rameters using vanishing—line information from a rect-

angular parallelepiped. M VA, 3:129-141, 1990.

W. Wells. Statistical approaches to feature-based ob-
ject recognition. IJCV, 21(1-2):63-98, 1997.

Y. Yu. Modeling and Editing Real Scenes with Image-
Based Techniques. PhD thesis, UC Berkeley, 2000.

H. Zhao and R. Shibasaki. A system for reconstructing
urban 3D objects using ground-based range and CCD
sensors. In Urban Multi-Media/3D Mapping workshop,
Inst. of Industr. Sc., The Univ. of Tokyo, 1999.

