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1 Introduction

People with restrictedmobility currently require significant infrastructural support in
order to perform activities of daily living (ADL), including things like manipulating
objects, opening doors, and other basic actions that able-bodied people often take
for granted. With the current state-of-the-art robotic arms, hands, and perception
systems, it is clear that robotic grasping systems could help reduce the dependency
severely disabled individuals have on live-in caretakers, and provide them with the
ability to actively interact with their environment.

However, the robotic grasping systems which show the greatest promise in per-
forming ADL tend to be highly complex, involving high degree of freedom manip-
ulators and precise control to achieve their objectives. It is therefore important to
present users with a high-level interface to these grasping systems that can operate
with relatively little training.

In previouswork [21–23],we have presented a shared-control online grasp planner
that collaboratively determines feasible grasps under the active direction of a user
through a low-bandwidth interface.We have demonstrated the efficacy of this system
using a variety of facial EMG-based devices inmoderately cluttered scenes.However,
this interface depends on the ability of the user to trigger relevant facial muscles
repeatably and reliably.
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In this work, we extend this system to an EEG-based system, which has a number
of advantages. Firstly, the neurological phenomena used in the system is a subcon-
scious reaction to visual stimuli, and therefore needs very little relevant user expertise
to operate. Secondly, the planner can take advantage of visual ambiguity between
functionally similar grasps to achieve fast convergence in the shared-control par-
adigm. The user acts as a filter for the planner, directing it to a desired approach
direction and filtering proposed candidates until a reasonable one is found. Three
users were able to use this system with minimal training to pick up a variety of
objects in a semi-cluttered scene.

2 Prior Work

Brain-Computer Interface (BCI) control over prosthetic and assistive manipulators
has been the subject of a great deal of research, through many different strategies and
input modalities. Recently there has been a resurgence of interest in this field. One
widely cited recent advance was reported by Vogel et al. [19], who showed that a
subjectwith aBrainGate cortically-implanted electrode can use a roboticmanipulator
to retrieve a drink container by controlling the end-effector location and the opening
and closing of the hand. However, this approach requires an invasive device capable
of recording a large number of high quality signals.

Noninvasive EEG systems have been demonstrated in a number of simpler tasks.
In [15], surface electrode signals related to eye gaze direction are used to control
2D arm position and EEG signals are used to detect eye blinks to control gripper
closing. In [9], hand opening/closing and elbow flexion/extension are controlled by
EEG signals.

The majority of previous work using EEG control concentrates on trajectory
control. However, it has been shown that users find BCI control easier using even
higher-level, goal-oriented paradigms [16]. We have begun to see work that attempts
to exploit higher-level abstractions to allow users to perform more complex tasks
with robotic arms. In [2], EEG signals were used to select targets for pick and place
operations for a small humanoid robot. In [20], the authors used EEG signals to
control pick and place operations of a 4-DOF Staubli robot. Bryan et al. [3] presented
preliminary work in extending this approach to a grasping pipeline on the PR2 robot.
In that work, a 3D perception pipeline is used to find and identify target objects for
grasping and EEG signals are used to choose between them.

Recently, some authors including [11, 12] have explored shared control paradigms
which integrate computer vision, intra-cortical EEG recording, and online planning
to perform reaching, grasping, and manipulation tasks. These works are promising,
but rely on the higher fidelity control available from implanted devices. In [4], the
planner presented in our work, which is focused on acquiring an appropriate grasp
of the object with arbitrarily complex hands, was integrated with a similar system.
In this work, we introduce an interface to the user which allows them to control
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higher level, more abstract goals with lower throughput devices, which could be
made complimentary to these other shared controlled paradigms.

3 Methods

3.1 Overview

We present here a prototype of an assistive grasping system which integrates a BCI
drivenuser interfacewith a perceptionpipeline, a lightweightmountablemanipulator,
in this case the 6-DOF Mico arm with a two-finger underactuated gripper [10], and
an online grasp planning system to allow a user to grasp an object in moderately
cluttered scenes. It decomposes the grasping task into a multi-step pipeline where
each step generates a visual representation of the options the user can take. Some
options which cannot be visually represented, such as returning to a previous state,
are presented as white text on a black background. At each stage, the online planning
system derives a set of reasonable possible actions and presents them to the user,
reducing the complex task of grasping an object in cluttered scenes to a series of
decision points that can be navigated with a low throughput, noisy input such as
an EEG headcap. Figure1 shows a healthy subject in our validation study using the
system to grasp a bottle of laundry detergent in a typical scene.

3.2 Grasp Planning

This system uses the Online Eigengrasp Planner introduced by Ciocarlie et al. in [5].
This planner uses simulated annealing to generate grasp candidates by projecting
desired contacts points on to the target object to find grasps likely to result in a force
closed grasp. In order tomake this task computationally tractable, a reduced subspace
of the hand’s full configuration is sampled. In the case of the a simple gripper such
as that on the Mico, this may not be necessary, but the use of this planner makes the
computational cost of using a more complex hand nearly the same as this simpler
hand. Candidate grasps in near contact positions are refined to completed grasps by
kinematic simulation of closing the hand at a predefined set of joint velocities.

The resulting contacts are ranked by the maximum wrench perturbation force
they are capable of resisting, as described in [6], and the closeness of the alignment
between the hand and the object’s surface. If the quality metric is above 0.2 and
all of the dot products of the normal direction of the hand and object is above
0.8 for all of the contact points, the grasping pose is tested for reachability using
the PRM planner of MoveIt! [18]. When the scene is cluttered, the motion planner
for the reaching motion is slow and likely to fail. In order to make this problem
more computationally tractable, we cache previous solutions as grasps are planned.
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Fig. 1 The subject guiding the system through the active refinement phase. On the left side is the
robotic manipulator and three containers in the grasping scene. On the right is a subject using the
system through the B-Alert EEG cap, which is relatively unobtrusive and can be worn for long
periods of time. The options for the active refinement stage are presented on the monitor in front
of the subject in a grid to allow the subject to pick the one they intend to select during the serial
presentation. In this example, at least one of the grasps found in the database for the object was
reachable, and is highlighted in blue in the upper left corner of the grid. The user may choose to
execute the highlighted grasp, or to re-seed the planner with one of the other nine grasps and then
re-enter the active refinement phase with a new highlighted grasp

Whenever a previous solution ends near the new candidate grasp pose, we plan
from its end point to the new grasp candidate. Since the nature of our grasp planner
produces many nearby solutions, this makes the reachability filter significantly faster
and more robust. Grasps are ranked first by reachability, then by the grasp quality,
and finally by the maximal surface misalignment.

The neighbor generating function of the simulated annealing planner is biased
towards a configuration demonstrated by the user. By controlling this seed configu-
ration, the user controls the resulting set of candidates that will presented to them.
This allows the user to find a grasp for a particular purpose by iteratively picking the
grasp whose pose is nearest to the grasp that they are looking for.

3.3 One-of-Many Selection

TheEEG interface presented in this paper is based on an “interest” detectorwhich can
be used to provide a one-of-many selection between various options. This “interest”
signal paradigm is based on the work in [14]. The options are presented as a stream of
images, and the subject is primed to look for particular images that suit some criterion.
This paradigm is known as Rapid Serial Visual Presentation (RSVP). Spikes in
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Fig. 2 The grasp planning system compiles a set of images representing potential actions, for
example a set of grasps as seen in this image. The image options are tiled together to form the
summary pane seen on the left, which lets the user pick out the one that reflects their desire. The
images are then shuffled, with repetitions, into a stream that is serially presented to the user as
described in Sect. 3.3.3

EEG activity which correlate with “interest” are connected with the image that was
presented at the time the EEG activity was evoked, which is then used to derive the
user’s desired input.

Previous work with this paradigm has asked the subject to look for objects of a
particular category. In our system, the images represent actions that are suggested by
the grasp planner, which the subject may not have had previous experience with. In
this case, the subject must be given time to analyze the options and primed to find the
features which make their desired option visually distinct from similar options. In
Fig. 2, we illustrate the summary pane containing a grid of all of the options, which
are then shuffled and presented to the user. In Fig. 1, you can see the subject reviewing
the options in a summary pane before the serial presentation of them begins.

One major advantage of this paradigm is that it generalizes a single interaction
across all phases of the grasp planning pipeline. The systemonly needs to be trained to
recognize the “interest” signal for each subject. Afterwards, the subject’s interaction
with each phase is the same, and the system does not require phase-specific training.

3.3.1 EEG Input

Our current implementation uses a B-Alert X10 EEG system from Advanced Brain
Monitoring (Carlsbad, CA), which provides 9 electrodes positioned according to
the 10–20 system and a pair of reference channels. The EEG data is acquired at
256Hz, with 60Hz notch and 0.5Hz high-pass filters applied before any additional
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processing. The EEG interest metric is based on that described in [8, 14, 17], with
some additional normalization and post-processing.

More information on this systemcan be found online at themanufacturer’swebsite
[1]. As can be seen in Fig. 1, the cap and device are relativelyminimalistic, and can be
comfortably worn for an hour at a timewithout requiring rewetting or reseating of the
electrodes. With the advent of the OpenBCI project [13] and similar efforts towards
low cost, open hardware EEG devices, a low cost solution with similar capabilities
may be on the horizon.

3.3.2 EEG Interest Metric

The EEG interest metric is based on the one used in [8, 14, 17]. In essence, it assumes
that the P300 signal resulting from a particular image varies with a resolution of
100ms. For each block, it examines the time period from 100 to 1200ms after the
input stimulus as separate 100ms blocks, combined in a linear model:

ysn =
∑

i

wi xin y =
∑

n

vn ysn (1)

where each xin is the reading at a specific electrode i at some time period n, ysn is
the weighted total score over a single 100ms block and y is the combined score for
the 1100ms time period following the stimulus. The weights wi are learned from the
training data so as to maximize the difference between target and non-target images
in each time block using Fisher linear discriminant analysis [7]. Then, the weights
vn are determined by applying logistic regression on the training data.

In training, we additionally compute summary statistics for both target and non-
target images, which are used later to normalize the individual readings per trial.

3.3.3 Option Generation

To generate the RSVP sequence, the system randomly selects each option to appear
between three and seven times. The sequence is then randomly shuffled, with the
constraint that the same option does not appear in two consecutive image presenta-
tions. This method has, in experimental data, been sufficient to trigger the “oddball”
response that is necessary for the P300 signal.

If there are less than five options, the system will automatically fill in distractor
image options to make this constraint more feasible. The images are dependent on
the phase and attempt to minimize the visual difference between the distractor and
the original, so as to avoid unintentionally triggering the P300 signal. For example,
in the object selection state, the distractor options are of the scene with no objects
selected; whereas in the active refinement state they are images of the object with no
visible grasp.
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More formally, the grasp planner generates a set of options Q = T ∪ G, where T
is a set of strings representing textual options (e.g. “Rerun object recognition”), and
G is a set of potential grasp or object images. If |Q| < 5, the selection system then
adds 5 − |Q| distractor images d to result in Q′.

From Q′, we generate the sequence of images I as follows:

I = shuffle(Iq11, Iq12, . . . , Iq1c1 , Iq21, . . . , Iqkck ) (2)

where k = |Q′|, qi ∈ Q′ and c j ∼ U (3, 7) ∀ j ∈ [1, k].
The images are eachpresented at 4Hz, andpreliminaryEEGscores ei are assigned.

We then aggregate each of the n = ∑k
j=1 c j images by their option, and determine

whether or not the user has made a selection.
To test if the user has consciously selected any of the images, we sort the images

by their EEG scores, and then split it into a group of size x and n − x . We vary x so
as to maximize the change in the average measured EEG score:

x∗ = arg max
x∈[1,n]

(
1

n

n∑

i=1

ei − 1

n − x

n∑

i=x+1

ei

)
(3)

If x∗ > max(0.2n, 7), we determine that the user had not made a choice. In practice,
this is a highly reliable means of checking whether the user was paying attention and
attempting to make a selection.

If x∗ ≤ max(0.2n, 7), we compute a smoothed similarity score using the top x∗
positions.

3.3.4 Option Scoring

Theoptions are scoredusing a smoothed similaritymetric, represented as a symmetric
matrix S ∈ Rk×k , computed such that Sii = 1 and Si j = Sji ∈ [−1.0, 1.0].

We can then construct the weighted score vector W as

Wq =
x∗∑

i=0

Sqi q (4)

where qi is the option corresponding to Ii , and return

q∗ = argmax
q∈Q′ Wq (5)

This scoring method introduces a bias towards groups of similar options, and
in essence allows a near-miss selection to nonetheless help select the desired
option. From our experiments, this is particularly helpful with subjects who are less
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experienced with the system, as they often make minor mistakes during the selection
process.

We note that this is equivalent to a simple voting scheme if S = Ik×k , i.e. the
identity matrix of size k. Thus, for options where there is no obvious similarity
metric, such as textual or distractor options, we use the corresponding rows and
columns from the identity as default.

3.4 Grasping Pipeline

There are four states that the user progresses through when attempting to formulate a
grasp, Object Selection, Grasp Selection, Grasp Refinement, and Confirmation. The
pathway is illustrated in Fig. 3.

3.4.1 Object Selection State

In this stage, an object recognition system is used to retrieve models from a database
that fit the scene. An image representing selection of each object is generated as
shown in the “summary pane” in Fig. 4a, with the target object highlighted green
in each potential selection. Between the various images only the highlighted object
changes. An additional state is presented that allows the user to run the recognition
system again. If fewer than eight objects are detected, additional distractor images of
the scene with no highlighted object are generated to act as distractor images which
help establish the background level of EEG activity. The user is instructed to just
look for the object they want to grasp as the image stream is shown. In this state,
the similarity matrix is the identity matrix over the viable options, as the objects are
highly dissimilar.

3.4.2 Grasp Selection and Refinement State

Once the object is selected, the system moves into the grasp selection state. The
user’s interaction with the grasp selection state and refinement states are very similar.
Examples of the “summary pane” for these phases are shown in Fig. 4b, c.

In the grasp selection state, the set of preplanned grasps is retrieved and placed
in an arbitrary order. Each of the grasps is visually distinct, and supplies the planner
with an approach angle to start with. One additional text option is presented, which
sends the user back to the object selection stage. When any grasp is detected as a
valid selection, the system enters the grasp refinement state, setting the seed grasp gs
to the one just selected. If fewer than eight grasps are available, images of the object
without a visible grasp are used as distractors.

In the grasp refinement state, the online planner begins populating the grasp list
with more grasps that are similar to gs . After allowing the planner to run for fifteen
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Fig. 3 A diagram outlining the EEG RSVP-driven grasping pipeline. In each phase, a series of
images is generated representing the available options, as described in Sect. 3.4. A summary pane
of the image options generated at each phase is presented in more detail in Fig. 4a–d

seconds, the available grasps are presented to the user. In most cases, this will be
a list of at least ten potential grasps. As each grasp is generated, it is checked for
reachability– while even non-reachable grasps are sent to the user, the grasp refine-
ment state cannot be exited until a reachable grasp has been selected. The highest
quality reachable grasp gp is highlighted in blue in the user interface (Fig. 4c), so
that the user has feedback as to what the planner is deciding between.
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(a) Object Selection State (b) Grasp Selection State

(c) Grasp Refinement State (d) Confirmation State

Fig. 4 a The three objects visible in the planning screen are presented to the user, with the object
to be selected highlighted in green. The scene is overlaid with the pointcloud data from the Kinect,
so that the user can verify that the objects have been recognized and positioned correctly within the
scene. b The initial set of pre-computed grasps from a database. The user may choose to go back to
the previous phase and choose a different object, or to seed the online grasp planner using one of
the available grasps. c An updated set of grasps in the active refinement state, generated from grasp
number 8 from Fig. 4b. The selected grasp gs is reachable and highlighted in blue. Note that the
generated grasps are visually distinct, but still have small groups of functionally identical grasps.
d There are effectively only two options in the confirmation state, which acts as a final check to
determine whether the selected grasp gs is the one that the user would like to execute

Once the user selects a grasp, the planner updates gs to the new grasp’s hand state
and approach vector. If the updated gs = gp, then the user exits grasp refinement and
enters the confirmation state.

In this phase, we also take advantage of visual ambiguity. We compute the simi-
larity matrix S as follows:

Si j = 〈ûi , û j 〉 = cos θi j (6)

where ûi and û j are the approach directions for the grasps under consideration.
As per usual, for distractor images and text, we set all of the rows and columns

representing non-grasp options to the default identity matrix.
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This reduces the number of ambiguous selections that occur when the user has no
strong preference among a subset of very similar grasps, which is a fairly common
outcome under experimental conditions.

Furthermore, within any 20◦ cone, we allow only five grasps to be added to the
option set.Whenmore than five are found, the oldest grasp (least-recently-generated)
is penalized and moved to the end of the list, behind grasps with a more different
approach direction. This forces some heterogeneity to remain in the grasps that are
presented to the user, while additionally allowing the user to “walk” the grasping
point and direction to a new approach direction, even if it is not presented in any of
the previous options.

In the confirmation state, the user is shown an image corresponding to the selected
grasp gs , alongwith a set of distractor images presenting just the target object without
a grasp. The user also has the text option “GoBack-Replan”, which returns the user to
the object selection phase. Selecting the grasp again confirms the grasp for execution
and sends the desired grasp to the robot.

3.4.3 Execution State

In the execution state, the user is presented with only three text options: “Restart
Execution”, which restarts the execution if it has failed, telling the robot to return
to its home position and attempt to grasp again; “Stop Execution”, which stops the
robot from continuing the execution and returns to the confirmation state, and a set
of distractor images which say “Distractor Image.”

4 Experiment

We have validated this system on three subjects, asking them to lift each of three
objects visible in Fig. 5: a shaving gel bottle, a detergent bottle, and a shampoo bottle.
The three objects are placed arbitrarily within the field of view of the Kinect camera,
such that they do not fully occlude each other. In each case, we have verified that the
object is within the reachable working area of the Mico arm, so there is at least one
feasible grasp.

The subject is given the opportunity to inspect the scene, and is then asked to lift
each of the objects three times from either the top, from the side, or at their own
discretion. All testing was approved by the Institutional Review Board of Columbia
University under Protocol IRB-AAAJ6951.

The experimental setup can be seen in Fig. 1, and a video of a subject going
through the pipeline is available online.1

1http://isrrvideo.wc.aeturnalus.com/.
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Fig. 5 A typical grasp of the shampoo bottle from the side in the cluttered scene. Note that the
hand is just able to fit between the other objects to grasp the desired target. Note that the ability to
plan this grasp in such a restricted environment is an indication that this system is very successful
at handling the cluttered scene

4.1 Training

To demonstrate the various stages in the pipeline, the user is shown the system
running under keyboard control, where each option can be selected by pressing its
corresponding key. We allow the subject to walk through the stages of the grasping
procedure as many times as they ask, (always less than five), while explaining what
is being visualized at each step.

The EEG classifier weights described in Eq.1 must be retrained each time the
headset is placed on the user’s head. This process takes approximately ten to fifteen
minutes, and also serves to help familiarize the user with the RSVP paradigm.

During the training phase, the user is shown a “block” of 42 images. 40 of these
images are selected uniformly from a set of fifteen object models similar to those
presented during the object selection phase, while the remaining two are marked as
“target” images and selected from a set of four images of bowls. Unlike the object
selection phase, however, these object images are presented one at a time, without
the other objects visible. There is also no “summary pane”, as the images would be
too small to practically see. Instead, the subject is shown the set of four potential
target images.

In each block, the subject is told that there will be exactly two target images,
and is asked to search for them in the sequence. After a block of images has been
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Table 1 Experimental results from three subjects

Grasp Subject Misselections Refinement
iterations

Time(s)

Detergent bottle
top

1 0 1 120

2 2 3 150

3 1 2 135

Detergent bottle
side

1 0 1 120

2 1 2 135

3 0 1 120

Detergent bottle
choice

1 0 10 270

2 0 2 135

3 3 5 180

Shampoo bottle top 1 0 1 135

2 0 1 120

3 0 1 150

Shampoo bottle
side

1 0 1 120

2 1 1 135

3 0 2 135

Shampoo bottle
choice

1 1 1 210

2 1 3 120

3 0 1 150

Shaving gel top 1 0 2 180

2 1 1 120

3 0 2 135

Shaving gel side 1 1 2 135

2 0 1 120

3 0 2 150

Shaving gel choice 1 0 2 120

2 0 1 120

3 0 2 180

presented, the user is also shown the location of the two target images in the sequence
and, separately, where the classifier placed those images in a list sorted by detected
interest level.
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The user is presented blocks at a self-paced rate until at least 20 blocks have been
presented, and the user is able to consistently place the two target images in the top
three sort positions. The latter condition is usually fulfilled before the former.

4.2 Results

The results of this experiment are summarized in Table1. In all cases, the subjects
were successful in selecting reasonable grasps that lifted the object. However, the
system did not always detect the option that the subject wanted correctly. In the table,
the third column describes the number of misselections, which represents the number
of times that the user inadvertently selected an option. Because the pipeline allows
stepping back through each phase, this is not fatal, though it does result in a longer
task duration (shown in the fifth column in fifteen-second increments). Detected
selections of known “distractor” images are not considered misselections, as they do
not elicit any actual action that changes the state of the system. The fourth column
describes the number of iterations of the “grasp refinement” stage the user stepped
through in order to find an acceptable grasp.

When grasping the detergent bottle, Subject 1 chose to attempt to grasp the handle
of the object starting from a top grasp, eliciting the “walking” behavior described
in Sect. 3.4.2. This necessitated a correspondingly large number of iterations of the
refinement state.

The largest number of misselections came from the users accidentally selecting
the option to rerun object detection in the “object selection” phase. Misselections of
the wrong grasp during the “grasp refinement” stage when the user actually wanted
to accept the current best grasp (gs , above) and continue to the confirmation state
also occurred, but these mistakes were quickly recoverable because similar grasps
were very likely to be present in the next set of presented grasps.

5 Conclusions

These results are encouraging, and demonstrate that a relatively fast and effective
pipeline based off of only EEG data is workable. The experiment revealed some
issues, specifically in terms of how images are generated when representing abstract
concepts (e.g. text-based image options, and the “selected” grasp in the “grasp refine-
ment” stage).

The most common misselection was the command to redo the object detection
during the “object selection” phase. This is probably because the difference between
the images representing object selections and the text option image is large and
somewhat startling, which elicits a reaction from the subject. A similar issue was
seen in the initial attempt to use the system with Subject 2, who selected the blue
image option every time it was presented in the “grasp refinement” stage, until the
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brightness of the backgroundwas reducedby50%.After thismodification, the subject
had no trouble making the correct selection in the “grasp refinement” stage. Subject
2 sometimes had trouble making the correct selection in the “confirmation” stage,
possibly because the distractor images were too similar, which makes the task too
different from the one that the classification system is trained on.

There is an enormous space of design parameters that can be explored to poten-
tially resolve some of these issues to produce a more robust system. One option
would be adapting the thresholds used by the classifier based on the content of the
image options. Another option would be to modify the training set of images to be
more similar to the images presented in the task stage. While the current training
regime has proven to be somewhat generalizable, it may not be adequately represen-
tative of the responses that are elicited by large stimuli like the blue background of
the “selected image.” Finally, some calibration procedure for modifying the images
based on the responses they elicit from the user may need to be incorporated into the
training regime.

The extension of the online Human-in-the-Loop planner to this EEG based image
streaming paradigm has just begun. In its current implementation, the subject deci-
sions are elicited at fixed points of the pipeline. Future work will move towards
attempting to integrate the EEG data in a more real-time strategy, perhaps being
fully embedded into the augmented reality environment. Although this system is
primarily designed as a component of an assistive robotic manipulation platform,
the real time system would be useful even for able-bodied users as a fast, passive
filter for eliciting feedback from the user.

Finally, another approach to be explored in the future may be to combine this
method with the sEMG method from [21]. This multimodal strategy would incor-
porate an EEG-based classifier for directing the planner towards the user’s prefer-
ences while a facial EMG input is used to signal discrete decisions. Such a system
would address the shortcomings of each individual modality – allowing the system
to quickly filter reasonable options, where accuracy may be less important so long
as it is somewhat conservative, while making the final selections, which affect the
state of the robot and may result in inappropriate or potentially damaging behaviors,
more robust.
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