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Abstract

We introduce two methods for the registration of

range images when a prior estimate of the transformation

between views is not available and the overlap between
images is relatively small. The methods are an extension

to the work of [6] and [5] and consists of 2 stages. First,

we find the initial estimated transformation by extract-

ing and matching 3D space curves from different scans

of the same object. If no salient features are available on

the object we use fiducial marks to find the initial trans-

formation. This allows us to alway find a satisfactory

and even highly accurate transformation independent of
the geometry of the object. Second, we apply a modified

Iterative Closest Points algorithm (ICP) to improve the

accuracy of registration. We define a weighted distance
function based on surface curvature which can reduce the

number of iterations and requires a less accurate initial

estimate of the transformation.

1 Introduction

We are building a system to automatically recover a

solid CAD model of an arbitrary object. This is an im-
portant problem with many applications including re-

verse engineering, generation of virtual reality and simu-

lation models, and 3-D Fax transmission of object mod-

els. Automatic reconstruction of models of real objects

involves 3 steps: 1) Data acquisition: In our case, range

imagery from a number of different viewpoints is ob-

t ained. 2) Registration of different views into a com-

mon coordinate system. 3) Integration of views to form

a complete (i.e. no open surface holes or dangling sur-

faces) watertight solid model.

In this system, an object is placed on a turntable

and a solid CAD model is produced automatically. The

data acquisition module includes a line scan range finder
which is attached to an IBM 7575 robot (see figure 1).
The object is scanned by moving the scanner along the
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Figure 1: Robot, Laser rangefinder and turntable

robot’s Z axis, and then the turntable is moved to obtain

another scan of the object from a different viewpoint.

We have previously described the method for build-

ing these models in [8, 9]. For each range scan, a mesh

surface is formed and “swept” to create a solid volume

model of both the imaged object surfaces and the oc-

cluded volume. This is done by applying an extrusion

operator to each triangular mesh element, sweeping it

along the vector of the rangefinder’s sensing axis, until

it comes in contact with a far bounding plane. The re-

sult is a 5-sided triangular prism. A regularized union

operation is applied to the set of prisms, which produces

a polyhedral solid consisting of three sets of surfaces: a
mesh-like surface from the acquired rwge data, a num-

ber of lateral faces equal to the number of vertices on the
boundary of the mesh derived from the sweeping oper-

ation, and a bounding surface that caps one end. Each

of these surfaces are tagged as “seen” or “occlusion” for

the sensor planning phase that follows.

Each successive sensing operation will result in new in-

formation that must be merged with the current model

being built, called the composite model. The merging
process itself starts by initializing the composite model

to be the entire bounded space of our modeling system.
The information determined by a newly acquired model
from a single viewpoint is incorporated into the com-
posite model by performing a regularized set intersec-

tion operation between the two. This paper focuses on

the problem of integrating these models when the range

scans come from arbitrary positions, necessitating a reg-

istration step to bring the different scans into alignment.
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2 Overview of Registration Methods

Most registration methods can be divided into 2 main

categories. The first avoids the registration problem al-

together by relying on the precisely calibrated mechan-

ical equipment to determine the motion transformation

between views. These methods assume that the inter-

view transformations provided by the data acquisition

apparatus are sufficiently accurate to properly register

the range views and do not need to be improved upon.

These methods are relatively simple to implement. For a

system using a turntable, the accuracy can be acceptable,

although recalibration is an ongoing problem. However,

a turntable approach will still usually leave the top and

bottom (support) surfaces of an object unscanned.

The second category involves methods that derive the

registration transformation between range images from

the information contained in the range image. Trans-

formation parameters are gradually updated and refined

until the range views are precisely registered. A feedback

function measuring the quality of the registration is used

(e.g [3]). This has been an active research area over the
last few years; a recent paper [7] gives an overview of

different methods in this category. These methods can

break the hardware limit and enable us to register dif-
ferent views scanned from arbitrary view points. For an

overview of previous work, the paper by Barequat and

Sharir [1] contains an extensive bibliography along with

the description of their method based on geometric hash-

ing.

The Iterative Closest Points (ICP) algorithm[2], [5]

is a well known method that is used to register images

with significant overlap. The ICP algorithm starts from

an initial configuration of two views and iteratively finds

their best correspondence. This algorithm is proven to

converge but it can get trapped in a local minimum, The

convergence of the this algorithm towards the global min-
imum is known to depend largely on the initial configura-

tion. In our problem, the views we are trying to register

may be quite distant from each other, with little over-

lap, and this can cause problems in determining a good

initial estimate of the transformation between views. Be-

low, we describe 2 methods we have used to to find the
initial estimate and a modification to the ICP algorithm

that can help the system find a better registration.

3 Finding Initial Transformation

Our method is a 2-step feature-based registration al-

gorithm. In step 1 we derive the initial transformation
from the features in the range data, such as points, edges
and curvatures. Then, in step 2, we apply our modified
ICP algorithm based on [5]. We note that the second

step is optional, since with objects with salient features,
the output of step 1 may be accurate enough.
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The method we use is based on the work of Feldman

and Ayache [4] and Gueziec and Ayache [6]. This ap-

proach makes use of intrinsic features extracted from the
range data such as space curves and that an intrinsic ref-

erence frame can be associated with each point along the
curve.

Our work in automatically building CAD models has
tried to reduce the number of views needed to capture

an object’s shape. Reducing the number of scans (and

associated data set size) can cause a problem: the scans
that need to be registered are scanned from relatively far

away view points. Thus, many regions in one range scan

are not visible in the other scans. So instead of picking

up registration points randomly, we choose points that
have a gradient over a threshold. Because points with a

high gradient usually belong to the edges or contour of

the object, they can form salient feature points. These

points can then be joined by curves to get a highly struc-

tural description of the range data. Further, these char-

acteristic curves are stable with respect to rigid transfor-

mations, and can tolerate partial occlusion due to their
local nature - this is very important in our case.

Our approach involves the use of polygonal curves
formed by locally joining distinguished point on the sur-

face of a mesh. We first find edge points from the range

data, and then filter out any isolated points. The re-
maining local points are grouped into curves, keeping

only these points which form a curve of more than P
points. In the experiments below, we chose P = 15.

Once we have a set of linked edge points, we can fit

them to a 3-D space curve using a cubic polynomial ap-
proximation:

{

y=az3+bz2+cz+d
(1)

z=ez3+jx2+gZ+h

In a parametric representation, the above equation

can be written as

w = ti + (at3 +~tz +ct+d)j + (et3 +jt2 +gt+h)k (2)

Using this curve approximation, we can compute the

curvature and torsion of each point Pi (z, y, z) using the

cubic polynomial approximation.
Denoting differentiation with respect to u by a dot (ti)

the curvature ~, and torsion ~ of Pi are

where u = i + (3at2 + 2bt + c)j + (3et2 + 2ft + g)k,
s = Iti[.

Having represented a curve as a cubic polynomial ap-

proximation, we now wish to compute a rigid transfor-
mation which will match curves in 2 different views. For-
mally, our problem can be stated as follows: We are given

a set of target (stationary) curves ill in target view and a

6



set of source curves S in the source view which needs to

be transformed. We wish to find a rigid transformation

of S which will minimize the distance between ill and S.

An intrinsic reference frame can be associated with

each point along the curve (the Frenet frame). Given a

pair of points (miP, Sjq), where point miP belongs curve
mi, and point Sjq belongs to curve Sj, a unique rigid

transformation D = (R, T) can be defined. Because we

can associate Frenet Frames (t, n, b) with each point, the

rotation R that brings the two frames aligned is given

simply by the outer product of the 2 frames orthogonal

basis vectors: R = (t, n, b) (tt, n/,b/)T. For the transla-

tional component, suppose that o is the origin in the

global reference frame, and that Osjq denotes the vector
from o to Sjg while o~ip is the vector from o to miP, then

T = mmiP– R(osjg).
We define the NearestPoint(CurveSet, p) as a func-

tion where C’urveSet is a set of 3D space curves, and

p is a point. It will return a point in CurveSet which

is closest to p. Then, we start the following matching

process.

1.

2.

3.

4.

5.

6.

A subset of k significant points on the curve sj is

selected according to a stable criterion. In our case,
points of curvature extrema are used.

Choose one point sj~ from the k significant points,
find a point miP in the target curve set ill which has

a similar curvature and torsion values.

Compute the rigid transformation D for (miP, Sjg)
point pair, and apply D to all points in curve s-j.

Compute the distance dj between sj and A4 where

dj = ~ lNearestPoint(M, Sjq) – Dsjq 12/lsj1, (4)

9

where Sjq E Sj and ISj I is the number of points in

curve sj.

If the distance dj is below a threshold, we consider

this transformation is a candidate transformation

and put it into the candidate bin.

go to step (1) until all significant, points in all curves

in S have been tested.

For every transformation matrix Dk in the candi-

date bin, apply it to every curve Sj in S , compute

the global distance gk

gk = ~ lNearestPoint(M, Sjq) – D~sjq 12/N (5)
~>9

where N is the number of points in the source curve
set S. The final transformation Dfinal is the one

which results in the least global average distance
between M and S.
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In the experiments using this method, we found that

the accuracy of this method is, like most curvature based
methods, object dependent. For objects without salient

features, we can use the method described in the next

section.

4 Registration Using Fiducial Marks
and Modified ICP Algorithm

The curvature-based method is not guaranteed to con-
verge to a global minimum if there are no salient features

on the surface of the object. In these cases, we can place

fiducial marks on the object. These marks provide very

good visual checkpoints to see how good the registration

is. We use long thin pins as the registration points. We

plant these pins on the object in a way so that they can

be seen from many viewpoints, and they are distributed

asymmetrically.

Because the pins are long and thin, we can easily dis-

tinguish them by using an edge detector on the range

data. Having identified each pin in 2 different images, we
can match them uniquely based upon their asymmetrical

distance measures. This sets up a l-to-l correspondence

between the registration pins from 2 different views, and
from this we can compute the transformation D.

Once we find an initial transformation as described

above, we can use the ICP algorithm to improve the fit.

We first give an overview of Turk and Levoy’s ICP

algorithm, which was used in their program called Zip-

per [5]. It can quickly register pairs of triangular meshes
representing the range images. Formally, given a pair of

meshes, A and B, Zipper finds the nearest position ai on
Mesh A to each vertex of Mesh B. To achieve a higher

accuracy, position ai is not limited to the position of a
vertex, it may be anywhere on a C’” continuous surface

- that means ai may be a vertex of a triangular mesh

element, may be a point within a triangular mesh ele-

ment or it may lie on a triangular mesh edge. Zipper

calculates the rigid transformation that minimizes the

distance between the pairs of points. The procedure will

iterate until convergence.

The algorithm adds a distance threshold to the basic

ICP method described by Besl and McKay [2] to avoid
matching any point P of one scan to a remote part of

another scan, which is not likely to correspond to P. In
practice, the distance threshold is set to twice the spac-

ing s between range points. So for some high-resolution

scans, it requires the error of the initial configuration

to be within 1 mm. We tested several greater distance
thresholds (4s, 6s, etc.), all with unsatisfactory results.

First, it took longer for every iteration, because it tried

to find out the nearest points in a larger space. Second
and more import ant, it tended to erroneously achieve
excessive overlaps between the target and source scan.
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A way to improve this algorithm is to use the local

curvature value as a guide in selecting matching points

as suggested in [4]. Thus, we can increase the distance

threshold without the risk of possible excessive overlaps

in the result, since we are using curvature as well as

distance to measure match fidelity.

This improvement can also reduce the number of iter-

ations for the algorithm to converge because the distance

threshold is increased, it can find out relatively-remote

matching points in one step which may take several steps

if a smaller distance threshold is used. To avoid possi-

ble oscillation around the convergence point we use a

decreasing clistance threshold during every iteration,

To use this method, it is necessary to measure the

curvature values of every point in the scan, not just high

gradient points along space curves. We estimate first

and second derivatives using discrete operators and from

these estimates, we can compute the fundamental forms

of the surface, which describe the local curvature at each

point on the surface. From the fundamental forms we can

compute the principal curvatures at each point on the

surface. In practice, we only use the maximum principal

curvature as the curvature value of the point.

Now that every point is associated with a curvature

value, we can use the following weighted distance func-

tion to define the closest point:

Dis =
lcp —Kq
— IP-QI

Kq
(6)

here, P, Q are 2 points on 2 different scans respectively,

and Kp, Kq are their CUNatUIT ValU&+.

In practice, because one point P‘s closest point is a

3D space point on a Co continuous surface, its curvature

value is the interpolation of the values of its neighbor-

hood vertexes. We pre-compute the curvature value at

every vertex on the target surface and interpolate the

curvature for any interior point on the triangular mesh

element.
Having a set of correctly matched points, which is the

most challenging task in the ICP, we can use a minimiza-

tion function to find the rigid transformation which will

minimize the least-squared distance between the points

pairs.

5 Experimental Results

An eye-in-hand system (shown in Fig 1) was used

for the acquisition of the range images. It consists of

an rangefinder attached to a IBM 7575 robot. The

rangefinder can move along the vertical axis while scan-
ning. A precision turntable was used to accurately rotate

the object so that sampling from different view points
can be achieved.
In the experiments below, it is important to separate
out resolution issues of the scanner itself, the set inter-
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Figure 2: Initial composite model of toy Bear, integrat-

ing 4 turntable views, as seen from 2 distinct viewpoints,

Note the incorrect abdomen area due to occlusion of the

range finder by each of the 4 legs of the bear.

section method of building solid models, and the regis-

tration procedure which is the focus of this paper. While

the registration procedure works very well, there are still

artifacts in the models introduced by the scanner, and
removing these is a separate problem.

In the first experiment, we took 5 scans of a toy polar

bear. The first 4 scans were obtained by rotating the

bear on a precision turntable by 90 degree intervals. We

integrated the first 4 scans to generate the initial model

shown in figure 2 using our swept-mesh/set-intersection

method of building closed volumes [9]. However the ab-

domen of the bear was not modeled correctly since it
was occluded in all 4 of the 90 degree scans. The fifth

scan was taken after we manually flipped the bear on

the turntable so the bottom of the bear was facing the
range finder, as shown in figure 3.

Figure 4a shows the registration points computed
from the bottom view, and figure 4b shows the approxi-

mated space curves after filtering. Fig 5 shows the final

model in both mesh and volume representations. After

registration via our method, the bottom view is inte-

grated with the initial model (shown in Fig 2) to produce
that model. As we see, the abdomen is modeled accu-
rately in this model, which greatly improves the quality

of the model.
Our next experiment object is a mug (shown in Fig

6), this is a challenging object because of the thin wall
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Figure

Figure3: Bottom view oftoy Bear

4: a) Registration points derived from curvature

measures and b) space curve generated by linking curva-

ture points.

in the upper part of the mug, and the small diameter of

the handle which can make misregistration very obvious.

We took five scans including one top view. We first used

the feature-based method described in section 2 to derive

the initial transformation, then applied our modified ICP
algorithm to improve the accuracy. Fig 7 shows the final

integrated model. The thin wall of the mug is modeled

accurately, as is the handle.

In the next experiment the object to be registered

is a tape dispenser, with smooth surfaces and a lack

of feature points to allow curvature based registration.

We placed 3 long pins on the tape dispenser as fiducial

markers. Every pin is about 15 mm in length with a di-

ameter of 0.7mm. 5 scans were taken, including one top

view. Fig 8 shows the initial configuration of the 2 views,

the top view (darker one) should be transformed to be

aligned with the front view (lighter one). The trans-
formation applied to the top view was derived from the

method described in Section 4 and Fig 9 shows the final
model which is the integration of the 5 views. The long
thin sticks with a diameter less than 1 mm are accurately

modeled and can still be seen in the model.

6 Conclusion
In this paper, we presented 2 methods for the problem
of registering multiple range data scans in order to ac-

curately build a solid 3D CAD model. Our experiments
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Figure 6: A picture of the Mug
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Figure 7: Integrated Model of the Mug

Figure 8: Two views of tape dispenser model

ist ration, overlaid on each other
before reg-
Figure 9: Final model after integration of all 5 views

31
showed that both methods achieved a satisfactory accu-

racy. Depending upon the availability of salient features
in the object, we may apply the appropriate method.

This has become an important component in our auto-

matic 3D modeling system. The system allows a user to
build a 3D CAD model without the need for user regis-

tration of images.

Future work on the project includes experiments with
reducing noise in range data, because curvature values

are known to be sensitive to noise. In addition, we are
experimenting with a form of super-resolution for range

image scanning to remove small sensor artifacts in each

scan.
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