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ABSTRACT

Solid Model Acquisition from Range Imagery

Michael K. Reed

Recently the use of three-dimensional computer models has greatly increased, i

because of the availability of fast, inexpensive graphics hardware and technologies s

VRML-ready Internet browsers. These models are often of existing objects and

typically built by hand using CAD software, an error-prone and labor-intensive proc

This thesis investigates methods by which these models may be automatically acq

processed, and utilized by using range data.

An incremental modeling method is described that builds accurate solid models of ob

from multiple range images. A hybrid of surface mesh and volumetric representatio

used to create a “water-tight” 3-D model at each step of the modeling process, allo

models to be built from a small number of range images. The method is able to m

scenes consisting of multiple, disconnected parts without imposing restrictions on

topology. The resulting models retain information that denotes each surface eleme

properly acquired or requiring additional sensing.

An important part of the model acquisition process is the determination of the next se

viewpoint. We introduce a planning method that computes visibility for model surface

determine occlusion-free sensor positions that ensure that model fidelity is impro

These sensor positions are computed in continuous space, allowing a more com

solution then planning methods that rely on spatial discretization.

These two processes are combined in a system capable of acquiring models of a

variety of shapes and scenes. Examples are shown using objects with features s

holes and disconnected parts, as well as scenes with large self-occlusions. Applicati

this work include graphics, manufacturing, robot navigation and architectural

modeling.
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1.0  An Introduction to the Problem

The use of 3-dimensional computer models has greatly increased recently, in part be

of the availability of fast, inexpensive graphics hardware and technologies such as VR

ready Internet browsers. These models are often of existing objects and are typically

by hand using CAD software, an error-prone and labor-intensive process. This t

describes methods by which these models may be automatically acquired using

sensors.

The use of range sensors has also been steadily increasing over recent years, an

data are now acquired from domains as far apart in scale as radar imaging of the M

surface and STM images of atoms in a lattice. More typically, the data are acquire

imaging objects less than a cubic meter in size, because of the limited dynamic ran

the currently-available commercial sensors. These images are processed by regis

into point sets that, although they contain a great quantity of information because of

sheer size, don’t contain much useful structure: they describe a set of samples
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geometry, but they do not describe the surfaces, boundaries, or topology of the s

object. Since most tasks require a higher-level model for any planning, analysi

reasoning, these points must be processed so that such operations as object reco

and CAM may proceed at a conceptual level convenient for humans.

1.1  Applications

In addition to the data-driven need for effective algorithms to process range data, the

also many applications that would benefit from accurate, automatic model acquis

particularly in tasks where creative freedom might be constrained by typical C

interfaces. There are still parts which are best designed using the tools of model mak

materials such as clay or wood, rather than with the mouse- and tablet-based

systems. It has been said that everyone would be using CAD systems if they wer

comfortable and easy to use as foam, clay, and pine” [Wohlers 1994]. Even if every

object was designed using computer modeling tools, there would still be many objec

which there are no appropriate computer models. Without models it is not possib

benefit from any of the advanced analysis, manufacturing, and process plan

capabilities of today’s CAD/CAM systems, or to use rapid prototyping systems to prod

part replicas. Applications in which 3-D solid or surface data must be acquired f

physical models or prototypes include:

• Virtual environment generation – Virtual worlds used in the entertainment

graphics communities will require many models of real-world objects. The m

realistic environments will require large numbers of accurate models.
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• Inspection and quality assurance – Automated part inspection tasks may b

by using CAD models rather than simpler metrology techniques. Samples

manufactured object may be digitized and compared against a nominal C

model, and a comparison carried out based on automatically or interact

identified part features.

• Reverse engineering – An effective means of reproducing existing parts qu

will allow designers to use hand-sculpted models to experiment with differ

shapes and designs. Alterations made to the physical or CAD models may th

realized using Rapid Prototyping (RP) technology to produce the part.

• Site modeling – A model of the architectural structures in a specific local

useful for a variety of tasks, including rover navigation. Rover-bas

rangefinders, in conjunction with a Global Positioning System receiver, may

used to acquire CAD models from which such tasks as collision avoidance

path planning may be carried out.

• 3D FAX – The ability to “transport” replicas of objects from one location

another opens a host of new application possibilities. To accomplish this

acquired model of an object is sent via modem to an RP machine in a rem

location, where it is physically realized.

1.2  An Introduction to a Solution

One way to find a solution to this problem is to see how it is solved in the natural wo

and it is not necessary to look any farther than our own behavior in object modeling. W
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people are given objects they have not seen before, their investigative behavior u

follows a particular pattern. First the object is examined from a particular viewpoin

which instant some representative model of the object has been composed in the pe

mind. Of course, this model cannot describe the object completely, since at least on

of the object remains unseen. The person then rotates the object a certain amoun

pauses again. The information from this next view must then be incorporated into

model as well. For certain types of objects, particularly 21/2- D parts (such as keys), a

person will only use two views (the two of maximal area), and will execute a very ra

rotation between them. We are, of course, ignoring a detailed account of the variatio

it is well known that the investigative behavior varies with the task. In the general c

however, this analysis holds.

From this description of behavior an analogous algorithm may be determined, as sho

figure 1-1. An initial model is acquired, integrated with any previously-built model, a

the next view is planned using information from the new model. This process iterates

a satisfactory model has been built. The underlying structure of this algorithm is th

active vision, in which sensing operations are interleaved with operations that plan

next sensor position [Bajcsy 1988] [Ballard 1991].

The key subtasks of modeling from range images are the following:

• acquisition – sensing the object to produce a range image.

• registration – aligning two or more distinct range images so that the ob

features they describe are in appropriate physical relationships.

• modeling – constructing a high-level representation from a set of range imag
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• integration – combining the information present in two or more distinct ran

images, including resolving ambiguities caused by conflicting data.

• planning – determining where to position the sensor to best acquire an imag

Although these necessary tasks have been fully identified, current systems are still

way from easily being able to automatically build a complete model of an arbitrary ob

or scene. Much of the problem remains in the modeling process itself: not only are

difficulties in computing a model that describes a single range image well, but comb

the models from distinct images taken from different viewpoints presents a major hu

Furthermore, solutions to the problem of planning appropriate sensor viewpoints still

significant drawbacks that limit their application.

acquire image

compute model from single view

integrate with previous model

plan next viewpoint

Figure 1-1. Overview of automated model acquisition based on active vision.
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1.3  Desiderata for Model Acquisition Systems

In [Curless & Levoy 1996] a set of desirable properties for surface reconstruction sys

is given. These properties, with the addition of some others, may act as a starting po

evaluating a system:

• No restrictions on topological type – No assumptions should be made a

whether the object is of a particular genus, or even if it consists of a sin

connected component.

• No holes in the reconstruction – The resulting model should be “watertig

even in situations where the entire surface of the object has not been imaged

corresponds to the definition of asolid model, which is discussed later in this

chapter. In places where the object’s surface has not been imaged, holes

model shouldnot be filled arbitrarily, but in some fashion that takes into accou

thereason it was not imaged, e.g. occlusion.

• Incremental incorporation of new data – The system should be able to updat

current model of the object after each sensing operation. This allows

incorporation of planning algorithms to determine an appropriate next se

position based on the current model.

• Robustness – The system should be robust in its representation and integrat

range data, some of which is nearly coincident due to repeated sampling o

same surfaces.
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• Time and space efficiency – Because each range image contains upwards o

points, and there are many range images to be incorporated, the methods s

be efficient in both time and memory usage.

• Order-independent modeling – The order in which a set of images are me

together should not affect the quality of the resulting model, therefore allow

parallelization.

• Utilization of all range data – Any redundant sampling of a surface should

used to increase the accuracy of the model, if possible.

• Representation of model surface quality – The system should be abl

distinguish model surfaces that are properly acquired from those that are no

later analysis and model use.

• Automation of viewpoint planning – In order to be able to acquire comp

scenes in varied environments, the system should be able to automat

determine sensor viewpoints during the model acquisition process.

How successfully each of these criteria is met by the methods presented in this the

discussed later in later chapters.

1.4  What Makes a Good Model?

We use the word “model” throughout this thesis, and therefore it is necessary to des

more precisely what is meant by that term. It should be noted that most modeling sys

are not capable of representing arbitrary shapes, but this in itself is not a detrime

certain situations. In this thesis we consider modeling objects that already exist: we a
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concerned with modeling, say, mathematical functions in two dimensions, or hypothe

objects with non-manifold topologies. Thus we can follow some of the lessons learne

the Computer-Aided Design community in their search for very robust, highly flex

modeling techniques for physical objects, calledsolid modeling1 [Requicha 1980]. The

most important lesson learned was that to be useful, the modeler must be able to rep

objectsunambiguously. That is, a model cannot represent two different physical object

the same time. This realization was due to shortcomings found in models produce

ambiguous systems based on wireframe or surface modelers. However, just as imp

to CAD advancements as the understanding of the ambiguity issue was the recog

that the modeler should beunableto represent objects that are not physically realizab

for example a cube with one face missing. It was this concept that allowed the mod

systems to drastically improve their robustness and efficiency (for details on this

[Requicha 1980] or [Mantyla 1988]). These benefits were realized because the mod

system would only have to deal with objects of dimensionality three and finite volu

and could make assumptions about the result of any operations on these objects

notably through Euler operators [Baumgart 1975]. This capability came at the pric

flexibility: many designers like to work with surfaces during design, but these surfa

violated the realizability constraint and therefore could not be constructed in isolatio

The advantages of solid modeling are not just that it permits robust operations: inde

greatest benefit is that it is informationally complete with in the geometry and

topology of the object represented. This allows algorithms to be written that analyz

1. The basic premise behind modern solid modeling is to use a manifold boundary surface to model a closed, b
subset of Euclidean 3-space.
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model to answer arbitrary geometric questions. In contrast, wireframe and su

modelers are both unable to answer basic geometric questions, such as point classifi

and also are not unambiguous in their modeling of a general object. It is for these re

that we require our system to produce solid models as a result.

The fact that we require this result adds significant difficulty to our modeling process

the CAD community learned, if a solid model is desired it is very important to disal

operations that deal with non-solid objects, since once the validity of a solid mod

violated it is nearly impossible to repair. Besides the validity requirements, there are

required quality issues as well. Typical violations of either of these are the follow

[ViewPoint Datalabs 1995]:

• Collision Errors – more than two surfaces sharing the same edge.

• Seam Errors – only one surface at an edge, i.e a hole in the model.

• Normal errors – a normal that does not point outward from the model.

• Edge errors – any colinear edges that are consecutive.

1.5  What Objects Can We Model?

Although it would be nice to have a system that places no limits on the type of objects

may be modeled, in practice such limits are necessary. They arise from many diff

sources and may be categorized asscene domain constraints, sensing constraints,and

modeling constraints.
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Scene domain constraints limit some property of any scene that is imaged. This

include the number of objects, their arrangement, or the type of objects that ma

present. For example, the system may be limited to acquiring just one object that is w

a certain size or is composed of only smooth surfaces, has no discontinuities,

polyhedral. Common constraints seen in the literature are that there is only one obj

the image and that it is of topological genus zero – that is, it has no holes. In our sy

we put no such constraints on the object: it may have flat or curved surface, holes, o

features, or be composed of disconnected parts. It may, in fact, be a scene compo

many objects, though in the rest of this thesis we shall use the terms “object” and “sc

interchangeably. We do, however, impose the constraint that the object or scene w

modeling may be fully imaged from each sensor location. This is possible only for sc

that have features viewable from the “outside” – i.e., from a spherical shell on whic

imaginary sensor might travel. This constraint rules out scenes that are modeled fro

“inside”, for example, a room that is imaged by multiple scans from the same ce

location.

Sensing constraints describe limits of the sensor such as depth of field, resolution

minimum standoff or distance to the surface. In addition, the resolution of the ima

provided by the sensor limits the size of the smallest features that are recoverable.

issues are discussed in Chapter 3 along with other topics related to the sensing mo

but it should be stated that the current system can resolve features as small as 2mm

Finally, modeling constraints describe what can or cannot be represented with

modeling system being used. For example, some modeling methods cannot model o
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with holes, or cannot model arbitrary mathematical functions. Because we are inter

in modeling only objects that already exist, we are not concerned with the latter drawb

Instead, we utilize boundary-representation solid modeling as described above.

Now that the types of constraints are understood, we can more adequately descri

capabilities of our system: it is capable of modeling a scene of one or many objects, w

may or may not overlap, each with curved or polygonal surfaces, through-holes, or

features. It will produce a polyhedral solid model that represents all object surfaces

have been imaged by the sensor. Where occlusion situations in the scene have pro

sensing, the resulting model surfaces are labelled as such so that they may be

distinguished from properly acquired surfaces.

It is just as important to describe the situations in which the system willnot be able to

produce a model as those in which it can. As mentioned above, the algorithms pres

here are only applicable in situations where the sensor has access to the exterior

scene or object; it is not capable of modeling an object from its interior, such as a r

from its center position. Because we are using non-contact sensors that have a min

sensing distance, calledstandoff, nothing can be reconstructed in the model that is n

farther than that distance from the sensor. Thus there are many objects with conca

that may not be fully acquired, e.g. a block with spirally-twisting through-hole. T

constraint applies to all such systems, and amounts to saying that all features that a

visible from the “outside” of the object cannot be reconstructed. The level of the ability

lack thereof) to image features on a surface is sensor-dependent, but the tech

presented here are generally applicable and independent of the sensor type: they wil
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with laser rangefinders, stereo cameras, and contact-based digitizing. One add

limitation on our system is that no part of the object may move relative to the w

coordinate frame.

1.6  Summary of Contributions

As will be discussed in the next chapter, there have been many systems that solve v

aspects of the model acquisition task. The techniques developed in this thesis contrib

the advancement of the state-of-the-art in the following ways:

• The method can acquire models of complex scenes including free-form

multi-part objects of arbitrary topological type.

• The final model is that of a “water-tight” solid, even if the entire object surfa

has not been sensed. Thus solid models may be produced in very few se

operations.

• Surfaces in the model are identified as properly-acquired object surfaces

those that require further sensing.

• The method allows incremental improvement of the model through additio

sensing.

• Sensor viewpoints are planned during the model acquisition process

computing solutions to visibility queries for model surfaces that requ

additional imaging.

• A full implementation of the method has been completed, and a numbe

objects and scenes have been acquired to test the system.
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1.7  Thesis Outline

This thesis describes both the problems involved in autonomously constructing mod

objects and a system that addresses these problems. The layout of the remainder of

is as follows:

• Chapter 2 discusses the previous work in modeling from observation.

• Chapter 3 discusses the problem of modeling from range imagery; it cover

first three stages shown in figure 1-1: range image acquisition, modeling,

integration.

• Chapter 4 describes the sensor planning issues and presents a solution to pl

the next view. This is the fourth stage in figure 1-1.

• Chapter 5 presents our conclusions and caveats, and describes future resea

this problem.

• The Appendix describes camera calibration methods for our sensor.
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2.0  Introduction

Although there has been considerable work done on various types of modeling fr

series of images, much of the work has been in the acquisition of models solely fo

purpose of solving the recognition task. The work surveyed here considers the probl

building a physical model that mirrors the topological and geometric relationships

sensed object. Thus, it includes all the systems that build objects for manufacturing

but excludes (because of limited utility) work that determines a non-geome

representation. For example, a system that builds only feature index structure

recognition does not create a generally applicable model. The data may be acquir

various sensors, including cameras, rangefinders, or Coordinate Measuring Mac

(CMM).
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2.1  Early Work

Some of the earliest research into this problem, even though it does not provide a ph

model, is included for historical reasons. Much of this work relied on edge detection

segmentation of intensity images, instead of the use of range data, because range

of good quality were unavailable. The idea of modeling by observation was u

discussion at least as early as [Winston 1970], the purpose of which was not to acq

physical model of an object but to determine a high-level structural description of

physical relationships among object parts. [Underwood & Coates 1975] also relied o

intensity image for reconstruction and could recover convex polyhedra by edge dete

and reasoning about topological information – that is, information about the relations

of the surfaces (planar faces) and edges. Models created from additional views

merged by a matching process that recognized the surfaces already incorporated

model and added only the unmodeled surfaces. [Potmesil 1982] was one of the first

to use range data to construct physical models from individual views and to addres

associated registration and integration issues. This method used bicubic patches to fi

of surface data acquired by a structured light technique: these patches were then in

into a quadtree to allow a hierarchical representation that permits analysis at diff

resolutions. The quadtrees from different views are registered by minimizing a dist

function that depends on the similar shapes in each quadtree. The transformed surfa

then merged using raycasting to determine a single integrated surface.

The majority of the systems that followed the earliest work either assume a com

sampling or use multiple views. In the first case, the method is concerned

constructing a surface that fits data from a single image, or that fits data from mu
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images that have already been combined into a single cloud of points. The multi-

methods work by processing a series of images and integrating them one at a time in

model, and are therefore able to be used with sensor planning systems. A technique

a hybrid between the two uses parametric shape models to represent recognizable

in the image.

2.2  Modeling from a Complete Sampling

The systems that perform modeling from a complete sampling benefit from

assumption that occlusions in the scene have been already been dealt with. Still, the

far from simple, and a significant issue is assuring that the part topology is prop

reconstructed. In one such system, [Hoppe 1994] describes a method that gene

mesh from a set of surface samples on the object to be modeled. The surface samp

assumed to cover the entire surface of the object, and are used as input to an algorith

determines an octree representation. Isosurface extraction is then performed on the

which produces a mesh as an approximation to the object surface. The mesh is

though not as dense as the sampling. This initial mesh is then decimated to redu

complexity by minimization of an energy function. The resulting set of mesh elemen

segmented by examining the angle between adjacent elements, and finally piec

smooth surfaces are fitted to the segments. A similar system was proposed by [F

Sander 1992].

Another system that uses octrees and a complete surface sampling is [Wheeler 19

this work, registered mesh surfaces are again used to populate an octree, this tim
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constructing a consensus surface that combines the data from different views. This s

is then used to compute the signed distance values in the octree. Marching cubes

used to extract the triangular mesh model. As with many other methods that use cons

surfaces (see [Turk & Levoy 1994] for example), the main issue is identifying crit

from which to construct the “optimal” consensus surface.

In the REFAB system [Thompsonet al. 1996], multiple scans of a 2-1/2 D part typical o

manufacturing are registered using a hypothesize-and-test technique between po

face matches in distinct images. The data is transformed into a common coordinate f

and the user then specifies the approximate location of the features of the part. The s

then finds the best fit for these features both in relation to the local data and am

themselves. These constraints result in a model that, although it is less likely to fit the

as well as possible, is more likely to model a real part appropriately.

There have been many systems that use a deformable mesh surface that is iterative

a complete point sampling. [McInerny & Terzopolous 1993] describe a system that u

triangular mesh to represent a tension spline surface. This mesh is fit to 3-D point

from range and CT images by applying a deforming force based on each mesh n

distance to the nearest 3-D sample point. The technique in [Chen & Medioni 1

similarly uses a triangular mesh to represent a “balloon”, with spring models used to

the surface smooth. This model is then “inflated” inside the point sampling until the m

surfaces contact come in contact with range data. More recently, [Shumet al. 1997]

propose the use of a weighted least-squares algorithm to integrate resampled range

simultaneously, thus determining an optimal global registration. Mesh models tha
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topologically homeomorphic to a sphere represent each range image, with integ

being formulated in terms of principle component analysis. One problem with eac

these systems is that the model is limited to be a single mesh surface of genus zero

2.3  Modeling from Multiple Views: Incremental Methods

The systems that use multiple views have additional complexity to be concerned wi

particular the data registration and merging process. In the multi-view reconstru

literature, there are two main approaches. In the first, a volumetric model of the works

acts as the initial model of the object; each subsequent sensing operation modifie

representation to account for space sensed as occupied or as empty. The other app

to model the data from each sensing operation with a surface, in which case the integ

method must be able to combine the surfaces from different views.

2.3.1  Volumetric Techniques

The methods that utilize a volumetric model of the workspace often use thevisual hullof

an object’s silhouette in an image (either intensity or range) to bound the space wh

model may occupy. [Martin & Aggarwal 1983] used the silhouette contour from a sin

intensity image to create a “volume segment” representation of each of the first two v

Additional views are then integrated by clipping the volume segment represent

against them. The concept of the visual hull may be extended to utilizing range

which provides the additional information of what the empty space is between the se

and the imaged object. Other work that relies on this includes the following: [Potm
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1986], which uses an octree representation to model both the objects in the scen

unacquired space; [Connolly & Stenstrom 1989], which applies edge detection

orthographic extrusion to build solid representations of intensity images; [Tarbo

Gottschlich 1995], which presents a method for automated visual inspection base

volumetric comparisons of acquired octree models; [Hooveret al. 1994], which illustrates

well the problems associated with attempting to infer the topology and compute

geometry from segmented regions. A discussion of the properties of these techniq

presented in [Laurentini 1993].

2.3.2  Techniques Utilizing Surface Models

Methods that reconstruct the object by using surface models have recently rec

attention because of their non-discretized representation. Based on polygons,

surfaces, splines, and other continuous-space primitives, these techniques also t

generate models that display more attractively. The 3-D Mosaic project [Hermanet al.

1984] [Herman 1985] models urban environments by analyzing a sequence of stereo

Junctions at edges in the image were matched to determine correspondence resulti

3D wire-frame and finally a polygonal representation. [Vemuri & Aggarwal 198

represent a set of points (registered using the method in [Vemuri & Aggarwal 1986

adaptively fitting tension splines to fixed-area patches of the surface, and assigning t

classification based on their curvature. A merging phase then takes place based o

curvature. [Parvin & Medioni 1992] extract planar and quadratic regions from a serie

range images and use them to build an adjacency graph. A match based on adja

constraints determines the transform between images and the representations are
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using boolean operations depending on the types of the surface primitives being me

plane-plane, plane-quadratic, and quadratic-quadratic merges are all handled sepa

[Wang & Wang 1994] utilize Kalman filtering as a means to build a hierarchical B-sp

model from multiple range images. Imaged data is treated as a set of ext

measurements, which the Kalman filter uses to determine the internal state of the m

The internal state is the set of control points for the B-spline patches that best mod

data.

[Seales & Faugeras 1994] uses a series of trinocular intensity images to determine a

occluding contours as well as a set of fixed edges of the object. The occluding contou

used to recover the surface, since they determine the surface normals at all points

silhouette. The fixed edges are used to determine the transformation from image to i

The points on the contours are fit with splines, which are then sliced using a p

orthogonal to a major axis of the splines at regular intervals. Mesh elements are

generated between slices, to complete a surface mesh of the entire object.

[Soucy & Laurendeau 1992] take a point-based approach to the merging problem

remove redundant data to improve the quality of the model. In this work, range image

merged using point-by-point intersections after applying a known inter-view transfo

Data points in two images are labelled as the same (and merged to one data point)

are close to each other (after applying the transformation) and they are both visible

same view. A quality metric is assigned to each data point that is related to the po

deviation in 3D position between all views in which it is present. When merging d

points, this value is used to weight the data point’s position so that when it is merged
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importance is given to more reliable information. The final point set is Delau

triangulated, with multi-resolution models being available by merging adjacent trian

of the highest resolution model.

One of the surface-based methods of particular interest is that of surface meshes, b

of their ability to flexibly represent many real-world objects at varying resolutions. O

such method is that of [Rutishauseret al. 1994]. In this system, simple triangulation i

built on each of several range images taken from different viewpoints. Th

triangulations only approximate the surfaces imaged, and not any discontinuity in

range data. The merging process consists of transforming the triangulations in

common coordinate and then re-triangulating the areas where there is overlap. The f

is done by a process analogous to the Iterative Closest Point (ICP) scheme [Besl & M

1992]. Retriangulation is performed using a nearest-neighbor approach: Each edge

one triangulation is compared to nearby points from the other triangulation. One o

points is selected to build a triangle with the edge, and then the process is repeated u

more triangles can be built. Another mesh-based system is the Zipper system [Tu

Levoy 1994], a variant of which is used for the Cyberware scanner, a commercial sy

for acquiring models of small parts (and more recently the producers of a whole-b

scanning system). The scanned object’s surfaces in the range images are triangulate

resolution of the sensor to produce one or more disjoint meshes, which are then a

using an ICP variant. The aligned meshes are then merged by “zippering” the overla

edges, which removes the redundant surfaces and clips the meshes to each other.

effective provided that there is overlap between the images. Similar methods are pres

in [Pito 1996], which uses knowledge of the sensor position to select the best m
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elements from two images and a hole-filling procedure to ensure gaps are not left

surface.

Recently [Curless & Levoy 1996] presented a system which combines the volumetric

surface-based techniques. A surface mesh constructed on the initial range image is u

a ray-casting operation to weight voxels in an octree. This octree is then used as in

an isosurface extraction algorithm. This system produces excellent results, but uses

number of scans (e.g. 70) to ensure complete coverage of the object’s surface.

2.3.3  Techniques using Primitives

A variant of the surface-based methods are those that build continuous-space volu

primitives, such as spheres or cylinders. [Ferrie & Levine 1987] uses a two-level appr

to determine the inter-frame transforms for a series of intensity images. After a sh

from-shading algorithm has been applied, principle curvatures on the object’s surfac

calculated. Local features are identified as neighborhoods of local maxima and minim

the principle curvatures. In the first level of this approach, these local features are us

determine the transform to bring the two depth maps into alignment. However, bec

this method can fail in the presence of large object movement, a global correspon

strategy is also employed. In a related work, the same authors are concerned onl

acquiring a simple model that may be used for general grasping or collision avoid

tasks [Ferrie & Levine 1988]. Surface descriptions, which may be cylinders or ellipso

are built from 3D point data derived from shape-from-shading techniques. After havi

transform applied to bring the primitive into a world coordinate frame, it may then
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combined with other partial models by removing redundant primitives and retaining

unique ones. There has been much work using volumetric primitives that are ab

describe a wide range of shapes. These primitive, calledgeons,are a set of shape

primitives that may be used (through parametrization) to construct a wide variet

single-part objects, and through composition to build more complex multi-part obje

The OPTICA system [Dickinsonet al. 1992] operates by using anaspect hierarchythat

describes the topology of a distinct view (oraspect) of one or more of the geon primitives

Each aspect may be a projection of a number of geons, and each component

hierarchy may be a part of more than one aspect. An associated probability m

describes the likelihood of a given aspect being a projection of a given geon, and si

matrices describe the relationships in the rest of the hierarchy. A segmented image i

to determine a graph of connected regions, which are then used in conjunction wit

aspect hierarchy to determine the most likely primitive. This technique was later appli

range images in [Dickinsonet al. 1997]. Similar qualitative primitives and view aspec

graphs are used in [Raja & Jain 1994] and [Wu & Levine 1994], both of which use ra

data instead of a single intensity image. Once the compete set of range data ha

acquired, and redundant data removed, simulated annealing is used to determine the

parameters, position, and orientation for each of the 7 geon types. A least-squares e

calculated for each, with the best fitting geon selected as the model. [Whaite & F

1992] describe a system that acquires data by using views all equidistant from the

sphere, i.e. there are no scaling issues. After each view’s data has been acquired (or

case synthesized), a superquadric model is computed from the data set. Areas of the

that do not have sufficiently many data points within a low error bound are then sele
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for more imaging. The use of superquadrics allows in some cases a high quality mo

be acquired in just one viewing operation due to high symmetry. This advantage ma

offset by the lack of expressive power of this representation. So far only simple sh

have been handled with this method.

2.3.4  Other Techniques and Domains

The use of models that combine information from temporally separate sensing opera

or allow for moving objects, is of much use to automated vehicles, which benefit f

having a single map containing the terrain they have passed over, are currently locat

and have sensed but have not yet traversed. [Kweon & Kanade 1990] uses a tech

called the locus method to build elevation maps from range images. By using a si

statistical model of the uncertainty of the range data, an uncertainty map is also gene

Feature-based and iconic matching is then used to compute the position and orien

changes so that the maps may be integrated. Overlapping points are handled by app

function to the points and the local uncertainty. In [Asadaet al. 1992], the range image is

segmented into unexplored, occluded, traversable, and obstacle regions. Trave

regions, which are expected to be relatively large, are matched with prev

segmentations and used to compute rotation parameters, while the translation m

estimated via sensors. Region-based matching is then done for the remaining obs

and any that are not found are classified as moving. A reliability weight is calculated

each point in the image, and the augmented images are merged to a single terrain m
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Combined use of a CMM and intensity images is an idea that has been used in s

systems. This type of integration can be though of as a manufacturing-specific variat

work bringing together vision and touch for recognition tasks, as in [Allen 1987]. [Sobet

al. 1995] uses a segmented intensity image to guide a high accuracy CMM, allowin

control of the delicate CMM probe so that it is introduced and manipulated on the

correctly.

Due to the extreme differences in the data acquired from our sensor and X-RAY o

modalities, we also do not survey the reconstruction literature from biomed

applications, although many of the techniques described here have been applied

field. For further discussion of techniques that have been applied to the medical field

[Kalvin 1992] [Stytzet al. 1991].
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Chapter 3 3-D Modeling from Range Images
ration
3.0  Introduction

In this chapter, we discuss the issues relevant to the acquisition, modeling, and integ

of range images:

• How and under what constraints are the images formed?

• How is an image modeled?

• How are the images or models registered into the same coordinate frame?

• How is the information from different images integrated?

As mentioned previously, desirable properties for a modeling system include:

• No restrictions on topological type

• No holes in the reconstruction

• Incremental incorporation of new data

• Robustness

• Time and space efficiency
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• Order independent modeling

• Utilization of all range data

• Representation of model surface quality

This chapter describes in detail the modeling process and how it meets the above c

In section 3.1 an overview of our algorithm is given. Each of the following sectio

discusses a component of our modeling algorithm: section 3.2, range image acquis

section 3.3, range image preprocessing; section 3.4, surface modeling; section 3.5

construction; section 3.6 surface annotation or “tagging”; section 3.7, model integra

Section 3.8 describes a nonuniform dilation technique as a solution to issues particu

our modeling method. The final section shows some results of modeling different ob

3.1  Modeling using Meshes and Volumes

One of the central components of this thesis is an algorithm that creates asingle-view

modelfrom a range image which represents all imaged surfaces and occlusion inform

in the current sensor and scene configuration. This is done by representing the data

mesh surface, which is then extruded in the imaging direction to form a solid. Each m

created by our method includes information about the space occluded from the sens

important difference from systems that only model sensed surfaces. Thisocclusion volume

is a key component of our sensor planning process because it allows the system to

about what has not been properly sensed. Integration of models from different viewp

is done via set intersection, which produces acomposite modelthat represents all known

information about the object or scene.
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In the following sections we discuss in detail the steps in the model-making algori

which are shown in figure 3-1. Model construction consists of the first three stages i

process displayed to the left in the figure, and is shown in expanded detail on the

side. These steps include acquiring and processing a range image from a sp

viewpoint, modeling this data with a mesh surface, constructing a solid from this sur

and integrating this model into acomposite modelwhich describes the scene as imaged

more than one view.

acquire range data

preprocess range data

create surface model

dilate surface mesh

annotate solid model

apply set intersection

create solid from surface

Figure 3-1. Details (right) related to modeling in the overall model acquisition process (left).

acquire image

compute model from single

integrate with previous model

plan next viewpoint
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3.2  Range Image Acquisition

Range images may be acquired by using a variety of different techniques, such as

sensing, stereo cameras, or laser rangefinders based on time-of-flight or triangu

Each method has its own sensing parameters that affect the speed and density

sampling and the size and shape of the distribution of error. In this work, a triangula

based laser rangefinder (shown in figure 3-2) is attached to a robotic arm to acqu

rectangular range image. However, in order to properly interpret the data in these im

it is necessary to understand its significance and the types of errors that are encou

This, in turn, requires an understanding of some of the basic workings of l

rangefinders, which are described here. For an in-depth discussion of other range im

devices, their manufacturers and performance, see [Besl 1988] [Jarvis 1993].

Figure 3-2. Experimental setup showing triangulation-based laser rangefinder
attached to SCARA manipulator (at right). The turntable is used to rotate parts to
present different orientations to the scanner.
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3.2.1  Rangefinder Camera Characteristics

The main issues that need to be considered when analyzing the laser rangefinder

geometry and its behavior when it is acquiring a single point. These two issues affect

the accuracy of each acquired data point and the interpretation of the final scanned im

The rangefinder used most often in the reconstruction literature is an active triangula

based sensor that emits a small-cross-section beam that is detected by a CCD sen1. In

order to accelerate the image acquisition process, the beam is scanned using a r

mirror (see figure 3-3). The attributes of the beam such as its wavelength, energy

1. There are many different implementations of the triangulation-based laser rangefinder, but they all use similar
ples. Described here is the “synchronous scanner”, which is also used in the experiments for this thesis. Wher
ences exist from other types of laser rangefinders they are noted.

Figure 3-3. Rangefinder internals. The solid line represents the emitted beam, the
dashed line represents the returned laser light. There are four fixed mirrors and one
rotating mirror (at the center).

CCD

Rangefinder Coordinate
System

z

x
0,0

La
se

r

Rotating
Mirror
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emission (mirror) angleθ are used, along with the reflected illuminant’s sensed posit

on the CCD and knowledge about the emitter-detector baseline separation, to dete

the sensed surface’s distance from the rangefinder and position on the X axis. Th

data acquired from the rangefinder are a function of the emission angle; that is

(EQ 3-1)

as shown in figure 3-4. One point to note here is that the (x,z) pairs, which are order

θ, may have more than one z value for the same x, and in fact may not be st

increasing in x at all. This may be evident from the fact that sharp depth discontinu

may cause the beam to be incident to a surface with a smaller x value. However, any

from a scan on a surface that may be represented as a continuous function

rangefinder’s X coordinate will have strictly increasing x values.

The nominal behavior of the rangefinder as it acquires each point is shown in figure

The surface is assumed to be matte, and therefore follows a Lambertian reflectance m

The emitted beam, which is continuous in intensity across its diameter, is received

f θ( ) x z( , )=

rangefinder

background

object

increasingθ

Figure 3-4. Rangefinder scanning: sensed data are ordered according to increasingΘ.
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detector with lower intensity and a larger cross-sectional diameter. Detector electr

take the discretized signal and estimate the point on the detector of highest inte

However, this estimation becomes difficult if the angle of the surface is high with res

to the emitter or if there are sharp edges in the scene. In the former case, the emitted

spreads out across the surface and no longer represents a sample from a smal

section beam (see figure 3-6). The response at the detector becomes lower in intens

Figure 3-5. Laser rangefinder nominal behavior: acquiring a point on a smooth
surface oriented towards the sensor.

object surface

emitter (laser)
detector (C

CD)
in

te
ns

ity

beam cross-section

emitter

detector

Figure 3-6. Behavior of laser rangefinder with surfaces of high inclination.

object surface

emitter (laser)
detector (CCD)
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beam cross-section

emitter

detector
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more distributed across the surface of the CCD, resulting in poor localization of the p

with respect to the sensor’s baseline. In the latter case, where there are sharp

discontinuities in the scene, the beam may be incident to more than one surface due

finite width of the beam, as in figure 3-7. This will cause two peaks in the signal at

detector, each representing the reflection from one surface. If the peaks overlap, it m

impossible to distinguish between them, in which case the point reported by the s

will be on the line defined by the two actual points, halfway between them. These p

have been appropriately called “mixed pixels” in [Pito 1997].

One final situation where the sensor does not produce a correct sample from the

surface is if the incident beam is hidden from the detector by scene occlusion, as sho

figure 3-8. As we shall demonstrate later on in this chapter, our system is robust to

types of errors.

Figure 3-7. Behavior of laser rangefinder at sharp depth discontinuities: emitted
laser beam is incident on two surfaces, causing multiple peaks in detected signal.

emitter (laser)
detector (CCD)

in
te

ns
ity

beam cross-section

emitter

detector

object surface
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It is important to be able to characterize the spatial distribution of the points acquired

the sensor. To do this, it is first necessary to discuss the shadowing effect caused by

light sources. A point light source produces from any object it illuminates a shadow c

theumbra(see figure 3-9). The umbra is found on all the surfaces of the object that ar

Figure 3-8. Behavior of laser rangefinder during beam occlusion: the point of
contact between the emitted laser and the object surface is occluded from the
detector.

emitter (laser)
detector (CCD)

in
te

ns
ity

beam cross-section

emitter

detector

object surface

Source

Object

Umbra

Figure 3-9. Effect of point light source illuminating a surface, showing umbra in grey.
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directly illuminated, and also everything behind the object that is occluded from

source by the illuminated surfaces. Because the rangefinder’s scanned beam em

from a single point in the x-z plane, the sensed data describes both the object’s illumi

surfaces as well as the umbra of the object in this plane. There can be no data ac

from within the umbra of the sensor/object pair in the scanning plane. This relation

between sensor and data does not, however, continue into the third dimension. Bec

robot arm is used to step the rangefinder linearly along its y axis, the resulting sampl

not from the point-source umbra in 3 dimensions. Instead, it more closely resembles

acquired from serial-slice techniques – i.e., the occlusions caused by the linear mov

of the sensor in this direction are orthographic. There is a characterization of a si

sensor using a passive camera instead of the active rangefinder called a linear push

camera [Hartley & Gupta 1994], commonly used for satellite imagery such as SP

HRV camera (see figure 3-10). This may be compared with our experimental setup, s

in figure 3-2.

z

x

y camera coordinate system

perspective axis

axis of satellite
motion (orthographic)

θ

(x,y,z)

Figure 3-10. Linear pushbroom camera model.
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This has a great effect on the shape of the volume of occlusion in a single image: in

of being a cone formed by a single point (a sensor location) and the extremal bound

of the imaged object, it is more prism-like in shape (figure 3-11). The sharp edge o

prism is the path of travel of the sensor.

3.3  Early Image Processing Applied to Range Images

In light of the above problems that may appear in range images, it is necessary to co

techniques to improve their quality and usefulness. Range images may be imp

through a combination of filtering, averaging between images, and interpolation. Ea

these operations makes a different contribution to the quality of the final image: filte

removes spike noise, an averaging process improves accuracy, and interpolation

gaps in the sampling due to the detector occlusion situations discussed in section 3

Figure 3-11. The volume of occlusion for a view of a triangular face modeled by the
perspective projection umbra (top, as for a point sensor) and by a hybrid
orthographic/perspective projection umbra (bottom, as for our sensor).
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Spike noise may occur in scenes that have surfaces with high reflectance. In these c

the orientation of such a surface causes the emitted laser to be reflected with a

higher intensity than the surfaces nearby, the rangefinder will report an erroneous

value at that point. However, these cases are easily identified because they are ty

only a sample in width: the high reflectance of the surface causes this type of noise

localized. Because the samples which have spike noise can be clearly recognized, it

necessary to apply a filter to the entire range image to remove them. Instead, selec

modifying only the noisy sample with the result of a median filter to the surround

samples allows the noise to be removed while retaining the quality of the remainder o

image.

In order to improve the accuracy of the image in the presence of systematic errors c

by quantization and noise, the same image may be acquired multiple times and ave

This is only possible, of course, in situations where the scene is static and the sen

able to repeat exactly the geometry of its mirror configuration during sampling. If th

the case, then at each mirror angleθ, the 3-D point Xθ may be computed fromN samples

(Xθ,1 ...Xθ,N) by

(EQ 3-2)

The benefit here comes from the reduction in the variance of the noise, which transla

a reduction in the error of the sampled point if a Gaussian error model is assumed1 and the

1. It is known that rangefinder error is not strictly Gaussian, as it is dependent on features in the scene. Howeve
holds for much of the acquired data, and for the purposes of examining the error it serves as a useful model.

Xθ
1
N
---- Xθ i,

i 1=

N

∑=
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noise has a mean of zero. If the standard deviation of the error associated with Xθ is σ,

then after N samples the standard deviation in the mean becomes1

(EQ 3-3)

Thus the accuracy is proportional to .

As previously described in figure 3-7, if the object surface is not a function of

rangefinder’s emission angleθ, i.e., there is a depth discontinuity, there may be “mixe

pixels” which appear between two surfaces separated by a sharp discontinuity. Howe

is clear that the surface between this point and its neighbors is alwaysexternal to the

actual surface of the object. Because of this and the fact that in this work set intersec

used as a method of integrating views, these false surfaces (and therefore the poin

determine them) have no ill effect on the modeling process. In fact, because the su

constructed on these points may be clearly identified due to surface normal compar

they are a key indicator used in planning the next view. In systems that do not us

intersection as an integration method, these surfaces must not be included in the mo

significant disadvantage. One caveat: such surfaces are always adjacent to

discontinuities in the range image, which in turn are places particularly vulnerabl

sampling errors that adversely affect the final model. A method to detect and accou

these errors is presented in section 3.9.

1. Var Xθ( ) Var
1
N
---- Xθ i,

i 1=

N

∑( )
1

N
2

------- Var Xθ i,( )
i 1=

N

∑ 1

N
2

-------Nσ2 σ2

N
------= = = =

σm Var Xθ( ) σ
N

--------= =

1 N⁄
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Finally, there is the problem of missing data points – that is, those surfaces from whic

emitted beam is occluded from the CCD detector by other surfaces in the scene,

figure 3-8. First, note that because of the short baseline used in most modern

rangefinders (see [Besl 1988]), these are relatively rare occurrences. In addition, if a

of-flight sensor is used rather than one based on triangulation, these situations m

avoided entirely. However, an effective solution is to interpolate a point composed o

convex combination of the (correctly-sampled) points on either side of the occlu

sample (see figure 3-12). It is not possible for an object surface to be external t

surfaces created by these points: if there was such a surface, it would not have

occluded and would have been correctly sampled. Again, such occlusions and the su

created by these points denote regions of sharp depth discontinuity in the range i

where surfaces have not been properly acquired. These are a key part of the view pla

process, and are described later in this chapter.

emitter (laser)
detector (CCD)

Figure 3-12. Filling of unsensed sample due to scene occlusion: As shown in figure 3-
8, the sample (marked as a cross) was not acquired. It is filled in as the convex
combination of the samples on either side of it. No object surface can extend beyond
this point, because it would then be visible to the detector.

object surface



41

n be

mesh

ontain

, on,

dels.

solid

til the

model

tire

other

that

lusion

be

e mesh

uch

er

e by

sh

. Our

of the

or (and
3.4  Modeling a Surface from a Range Image

After applying the low-level image processing, the points in the range image may the

used as the vertices in a mesh following a simple connectivity. However, since the

determined by a single range image is in essence a surface model, it does not c

information that permits spatial addressability (the ability to classify points as inside

or outside the model), which is necessary for many tasks and is inherent in solid mo

Although a mesh that completely covers an object may be used to determine a

model, in most incremental modeling techniques the mesh can not be closed un

entire object has been scanned. Thus, methods that only use the mesh as a surface

require a large number of overlapping scans, will work only with objects whose en

surface is visible to the sensor, and will preclude the use of a planning method or any

procedure that requires a solid model during the acquisition process.

A solution to this problem is to build a solid model from each scanning operation, one

incorporates both the information about the model’s sensed surfaces and the occ

information in the form of the occlusion volume. When building the mesh that will

used to represent a surface from a range image, it is necessary to determine what th

connectivity will be. In this regard our work differs from other mesh-based methods s

as mesh zippering [Turk & Levoy 1994] and other re-meshing techniques [Rutishauset

al. 1994] [Pito 1996], which retain only elements that lie directly on an imaged surfac

removing elements that containocclusion edges. These edges are discernible in the me

by their orientation or because their lengths exceed some threshold (figure 3-13)

system retains these elements, since they denote the boundary between surfaces

object that have been imaged by the sensor and the space occluded from the sens
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space
therefore in need of further imaging). These elements must be handled with care, be

they have the potential to violate certain assumptions made during the model constru

process, which are discussed in section 3.9.

As an example of this process, consider the hypothetical object shown at the to

figure 3-14. A range image is sampled from the CAD model using the indicated sen

direction. The surface model shown in the middle of figure 3-14 is typical of m

surface-based methods; no occlusion edges are represented, and although it is pos

attach low “confidence” values to the edges of the two surfaces, it is not possib

determine occupancy information in the space between them. These methods us

these surfaces because it allows the assumption that the resulting mesh is a

approximation to actual surfaces on the object, and therefore simplifies proces

However, it is clear that scene information is represented by the occlusion element

that discarding them is not desirable. The mesh shown at the bottom of figure

represents both the imaged surfaces of the object and the boundary of occluded

between the imaged surfaces.

Figure 3-13. Example of occlusion edges between sampled points on a surface.

occlusion
edge

surface
samples

object

rangefinder
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3.5  Sweeping the Mesh to Construct a Solid

To form a solid model from the sampled range data, the mesh surfaceM is “swept” to

form a solid modelS of both the imaged object surfaces and the occluded volume.

algorithm may be stated concisely as:

(EQ 3-4)

An extrusion operator is applied to each triangular mesh elementm, orthographically

along the vector of the rangefinder’s sensing axis, until it comes in contact with a

bounding plane. The result is the 5-sided solid of a triangular prism (figure 3-15). A u

operation is applied to the set of prisms, which produces a polyhedral solid consisti

three sets of surfaces: a mesh-like surface from the acquired range data, a num

lateral faces equal to the number of vertices on the boundary of the mesh derived fro

Figure 3-14. Mesh surface models. Rendering of CAD model of a typical 2-1/2 D
part, shown with a sensing direction (top). Surface mesh from synthetic range data of
CAD part (middle). This mesh does not include any elements that contain occlusion
edges. Surface mesh generated from synthetic range data, including elements
composed of occlusion edges (bottom).

S Extrude m( )∪= m∀ M∈,
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sweeping operation, and a bounding surface that caps one end. We call this solid asingle-

view model.

As an example of the sweeping process, consider again the hypothetical part shown

top of figure 3-14. Sweeping its mesh (shown at the bottom of figure 3-14) results in

solid shown in figure 3-18. In the following example, shown in figure 3-17, we sh

results from real range data of a toy bear. The range image shown includes samples

background, which are removed unless they support the geometry of the surfac

bounds the volume of occlusion. The solid is shown with its edges visible to be

visualize the shape of the acquired surface; to permit this the example is at one-quar

resolution typically used.

Figure 3-15. Example of a mesh sweep operation (left to right): Mesh surface, mesh
surface with one element swept, and mesh surface with all elements swept and
unioned. The sensing direction is from the left.

Figure 3-16. Solid formed by sweeping the mesh shown at bottom of figure 3-14 in
the sensing direction.



45

ay, it

odel.

of the

many

st to

del

f zero

hese

latter

able to

tiple

native
Because of the large number of set operations required to construct a model in this w

may appear that simpler methods may suffice in the construction of the single-view m

For example, it has been proposed that we use a cutting plane to “cap” the open end

mesh surface, thus forming a closed solid. However, there are several reasons why

of the simpler methods are not an improvement. First, our method is extremely robu

errors in the input mesh surface. It will still produce a topologically-correct solid mo

even if there are mesh vertices that are identical (which creates mesh elements o

area), and also if the mesh is not a 2-manifold surface, i.e. it is self-intersecting. T

problems occur commonly in surfaces created from range images, and at least in the

case may be expensive to detect and remove. Second, this algorithm is highly amen

parallelization, and in fact its current implementation takes advantage of mul

processors to partition the task and achieve faster processing times. Finally, alter

Figure 3-17. Solid model from a single range image. Left: 64x50 range image of toy
bear. Right: solid model, showing density of surface elements.
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techniques introduce their own numerical issues, which, in combination with their us

non-manifold modeling prevents the use of robust modeling techniques, for exam

cutting a surface with a planar sheet in an attempt to form a solid.

3.6  Surface Type Identification

It is important to be able to differentiate between the properly imaged surfaces and

due to occlusion or solid construction during later model analysis and sensor plannin

do this we attach tags to each surface in the model based on which of these two se

surface belongs to: later in the modeling process these tags may be retrieved and u

analyze the model.

All surface elements in the model that were present in the mesh before sweeping an

meet certain geometric criteria are tagged as “imaged surface”. These elements de

surfaces of the object that were imaged properly and do not need to be imaged agai

criteria determine if the surface was properly imaged by the sensor, and consist

threshold angle and an edge length. The threshold angle compares the normal

surface element with the direction of the rangefinder’s laser: if these vectors are clo

anti-parallel, i.e. the angle between them is 180°, it is likely that the sensor correctly

imaged the surface there. However, as the vectors approach orthogonal, the sampl

to spread out and thus the surface is not as well acquired. The edge length serves a

purpose, and is used in conjunction with the threshold angle to increase the selectiv

the process. In the modeling examples shown at the end of this chapter, typical valu

the threshold angle and the edge length are 80° and 6mm.
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All the remaining surfaces that were not identified as “imaged surface” should be ta

as “occluded surface” so that they may be used to drive a later planning process.

include surfaces that were not imaged properly by the sensor, as well as those tha

due to the solid construction process described in the previous section. For examp

large capping surface that bounds the model’s “far side” (from the viewpoint of the sen

will be among the surfaces tagged “occluded surface”. An illustrative example of

tagging process is shown in figure 3-18 for the single-view model constructed in figu

16. Shown in figure 3-19 is the result of tagging the model in figure 3-17: red surf

denote those that are tagged as occluded.

It should be noted that this tagging procedure must be done to each model from a

sensor position individually: large faces often get split into smaller ones during

merging process, and their surface type will not then be differentiable by their e

lengths alone. After the tagging process the solid may be merged with models from

sensor positions, or it may first be used as input to a mesh optimization routine to re

the number of elements.

Figure 3-18. Tagged single-view model: tags for hidden surfaces are shown with dotted arcs.

Tagged “imaged surface”

Tagged “occluded surface”
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3.7  Merging Single-View Models

Each successive sensing operation will result in new information that must be regis

and merged with the current model being built, called thecomposite model. Registration in

our system is done by calibration of the rangefinder, robot and turntable, which prod

satisfactory results for our purposes. Automated model registration techniques also

that may provide a higher degree of registration accuracy [Pito 1997] [Dorai & Jain 19

As mentioned previously, merging of mesh-based surface models has been done

clipping and re-triangulation methods that also perform some vertex averaging [Tu

Levoy 1994] [Rutishauseret al. 1994]. These methods are necessary because the m

surface models are not closed, so specialized techniques to operate on non-ma

surfaces of approximately continuous vertex density are needed. However,

specialized methods have robustness and accuracy issues that are largely unexplor

Figure 3-19. Result of tagging the single-view bear model: red surfaces denote those
tagged as occluded, white surfaces are those tagged as imaged.
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will only result in a closed model when the entire object’s surface has been compl

imaged, an impossibility for many parts.

In our method we generate a solid from each viewpoint which allows us to use a me

method based on set intersection. As described in the first chapter, solid modeling sy

allow highly robust algorithms for set operations on solids, and our algorithm ta

advantage of this. This is of critical importance in this application for the followi

reasons: the high density of the range images (and therefore the small size of many

mesh elements), the many long and thin lateral surfaces, and most importantly the fa

many of these models will have overlapping surfaces that are extremely close to

other. In the implementation of the modeling component, we use an intersection ope

provided by Spatial Technology’s geometric modeling system, ACIS.

The merging process itself starts by initializing the composite model to be the e

bounded space of our modeling system. The information determined by a newly acq

model from a single viewpoint is incorporated into the composite model by performin

regularized set intersection operation between the two. The intersection operation m

able to correctly propagate the surface-type tags from surfaces in the models throu

the composite model. Because a surface element on the boundary of the resul

volumetric intersection will be present on the boundary of either one or both of

intersected volumes, there are two cases to consider. In the case that the surface

boundary of the result is found in only one of the two intersected volumes, the sur

type tag may be directly copied from the original volume to which the surface belon

In the case where the two volumes have overlapping surfaces, we use the following r
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decide what the tag for the surface on the result volume will be: if the tags for the

overlapping surfaces are the same, then that tag is copied to the result surface. If th

different then the tag “imaged surface” is given priority, since it must be true that

surface was imaged in one of the two solids.

As an example of the merging process, let’s again consider the toy bear model, but a

that we have two tagged single-view models already constructed, as at the left of figu

20. These two models, shown from above, were constructed from range images take

the bear rotated 90° between them. As before, surfaces tagged “occluded” are show

red, while “imaged” surfaces are shown with their edges visible. The right of the fig

shows the result of set intersection on the two models, i.e. the composite model. No

model surfaces derived from those tagged “occluded” retain their tags, even if the

split during the intersection process.

Reconstruction methods based on mesh surface integration and averaging are

thought to be better than methods based on set intersection because the averaging

produce more accurate results. In our method, although intersection is used durin

merging phase of the model-building process, during the range image acquis

averaging methods may still be used to improve the quality of the mesh surface. If,

this has been done, there are still differences in the location of the same surface s

different views, they are more likely to be the effect of incorrect registration rather t

sensing errors. In this case, averaging will produce a model that may or may not be

accurate, in effect blurring the features or surfaces in the vicinity of the ver

Additionally, registration errors may prevent a closed surface from being formed w
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using mesh surface integration methods, in contrast to our method which will pro

solid models even in the presence of significant registration error. Nevertheless, me

that utilize averaging during integration provide a convenient solution to the artifacts

sometimes affect set intersection based methods.

Figure 3-20. Example of the merging process on two single-view models of the toy bear. The top
row shows two single-view models, with “occluded” surfaces shown in red and “imaged”
surfaces shown with edges visible. Applying set intersection to these two models results in the
model shown at the bottom of the figure.
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3.8  Experimental Results: Modeling from Predetermined Viewpoints

The examples shown here illustrate the modeling process. Shown are models cons

from four, three, and two views taken from equivalent rotations on a turntable: there

on-line planning of the sensor positions. The models have a relatively uniform sampli

their surfaces, except at the regions where there was overlap between two or more

single-view models (and therefore overlap of the range images as well). In these p

there tends to be a greater concentration of faces due to the effects of intersectin

surfaces.

The acquisition of range data is performed by a Servo-Robot laser rangefinder attac

an IBM SCARA robot, with the object to be imaged being placed on a motorized rota

stage (see figure 3-2). The rangefinder acquires a single scan line of data at a tim

plane perpendicular to the robot’s z axis. After each scan line has been acquired, the

steps the rangefinder a small distance in along its z axis. The result of the scanning p

is a rectangular range image of the object from a particular viewpoint, the directio

which is controlled by rotating the turntable.

3.8.1  Hip Prosthetic

The first example is of the construction of a prosthetic hip model from four range ima

with turntable rotations of 90° (figure 3-21). The solids constructed from each of the fo

range images are shown, along with a photograph of the prosthetic and a wire-f

rendering of the final model. Of note are the many small parallel ridges in this ob
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which, although not visible in the final reconstruction, were acquired and can be se

the third single-view model.

Some features of interest in the final reconstruction are the regions of increased s

element density, which appear in narrow, curved paths on the surface of the model.

regions are due to overlap in the intersection of single-image models, where

boundaries are created during the intersection process to accommodate the surfaces

models. Also of interest are the regions where there are “patches” of smaller surface

the surrounding areas. These occur where two single-image models have surface

overlap each other, again causing increased tessellation.

Figure 3-21. Hip prosthetic model, acquired in four views.



54

ain,

solids

ph of

cted

as not

space

on the

ay be

bear

into
3.8.2  Toy Bear

The example shown in figure 3-22 is a reconstruction of a toy bear in four views. Ag

90° turntable rotations were executed between images. The top row shows the four

constructed from each of the range images, while the bottom row shows a photogra

the object next to the acquired model. In this case, none of the four views were dire

perpendicular to the side of the bear, and hence the empty space under the bear w

acquired. This can be seen in the reconstruction as model surfaces that fill in the

between the bear’s legs. Again, due to overlapping views, there are some surfaces

model that are more highly faceted than the surrounding regions. These regions m

acquired either by imaging from more appropriate sensor locations, or by turning the

on its side to image its stomach, then using a registration algorithm to bring this view

alignment, as demonstrated in [Yang and Allen 1998].

Figure 3-22. Models of the toy bear in four views. The solid models from four distinct
range images are shown, as is the wireframe of the composite model next to a
photograph of the actual object.
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3.8.3  Video Game Controller

In figure 3-23 we show the model of a hand-held video-game controller modeled in

views, with 120° rotations of the turntable. This part consists of polygonal and cur

surfaces at varying levels of detail, including buttons on its front surface that are 2m

height.

3.8.4  Propeller Blade

The final model demonstrated in this chapter is a propeller blade, modeled in two v

shown in figure 3-24. The propeller blade is very thin along the surface of the blade, a

Figure 3-23. Model of the video game controller in three views. Solid models from
each of three views are shown at top, bottom left is photograph of actual part, bottom
right is wireframe of acquired model.
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topologically of genus 1 (there is a hole through the base of the prop). This examp

particularly interesting because it shows that this method can model objects that a

acquirable using methods that rely on mesh overlap: no mesh overlap of the opp

view of the blade surface is possible due to the extremely thin surface there, and

those methods that rely on it will fail. This situation will occur whenever a part ha

feature whose width approaches the sampling interval, a common event with ma

parts such as gears or propellers. Finally, the deep through-hole in its base ma

impossible to acquire surface data there, so any method based on acquiring direct s

samples will be unable to produce a solid model. Our method, however, construct

solid model and properly acquires the topology of the part.

Figure 3-24. Model of propeller blade in two views. Solid models from each view are
shown at top, bottom left is photograph of actual prop, bottom right is wireframe of
acquired model.
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3.8.5  Analysis

The modeling system described is capable of acquiring objects at a very high lev

detail. One measure of this is the number of polygonal faces used in the final models

is shown for each of the above parts in Table 3-1.

Because of the subjective nature of comparisons between objects it is difficult to com

with an algorithmic means by which to measure the accuracy of the modeling proces

our experience, the best way is to use the model to produce a RP solid which m

directly compared to the object. Using this method, many modeling problems tha

nearly invisible when examining the model graphically become immediately appa

However, as a step in the quantitative direction, we compute the volumetric differ

between the video-game controller and its model. This is a reasonably complex part

flat and curved surfaces and fine detail. Using a water displacement test, the con

measures approximately 215ml, while the model displaces 210ml. This comp

favorably with a model volume, computed using computational geometry techniques1, of

199ml. The difference between the two displacement measurements is 2%. We not

that volume calculations may be readily performed on solid models, as may calcula

of higher-order moments, but not on surface models.

TABLE 3-1. Count of polygonal surface elements for each model

Model # views # polygons

hip 4 17228

bear 4 17335

game controller 3 20301

prop 2 17758

1. See [O’Rourke 1994] for a discussion of this method.
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The performance of this model building process on a Silicon Graphics Onyx II using

processors is as follows. The mesh construction, dilation and extrusion to a solid

approximately four minutes for each 110x128 rectangular range image, slightly les

those images where more background is visible. Merging solids using the set interse

operator takes approximately two minutes per model.

3.9  Interaction of Sampling Sensors and Set Intersection Methods

It is important to note that our method utilizes not only mesh elements from the ima

object surfaces, but also elements that describe the boundary between image

occluded space in the scene. These latter surfaces, because they represent occlus

not physical surface information, may be arbitrarily far from true surfaces in the sc

This fact is a critically important one, because this behavior violates an assumption t

a requirement for using set intersection as a method of view integration, whether it b

intensity, rangefinding, or other sensing methods: that the space bounded by the

representing any single view of the object must be a superset of the space occupied

actual imaged object. Thus, it must never be the case that the solid constructed f

single view does not contain regions or features present in the actual object. If

happens, due to the semantics of set intersection, that region or feature will never b

to be acquired, no matter how many other single-view models properly represent it.

Unfortunately, this assumption is violated if the scene is modeled using the points from

range image directly as vertices in a mesh surface. This is because the modeled s

error, i.e., the distance by which the mesh surface may deviate from the true surfa
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related to the distance between adjacent vertices in the mesh, and thus the sa

interval, angle, and distance of the surface with respect to the sensor are all relate

figure 3-25). As shown in the example of figure 3-26, a surface constructed from

sensed points may drastically underestimate the surface of the object, and therefo

solid formed by the swept surface may not include some parts of the original ob

Again, methods based on set intersection require that the object is never underesti

as once a part of an object is removed during the intersection process, it may nev

recovered.

It is due to this phenomenon that previous model-construction techniques using

representations discard mesh elements that have a large separation between v

However, we propose another solution to this problem, in which the initial mes

nonuniformly dilated so that it correctly represents thelargest object that could have

produced the point sampling given by the range image. In order to accomplish this

must be able to identify those elements of the mesh surface that may be interior t

re 3-25. Sensing behavior of a typical range
nner in 2D. Scanned points are shown as circles,
the sensor’s energy emission is shown as dotted

s.

Figure 3-26. 2-D example of a mesh s
determined directly from the sensed points
surface is shown as thin line connecting the
points, the solid formed by sweeping the mesh is
as the darkened region.

rangefinder

background

object
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space occupied by the sensed object. It is precisely those surfaces that represe

boundary between imaged and unimaged surface that may contribute to this proble

“missing” the object surface, and as noted above these elements have already

identified and tagged as “occluded surface”. Therefore it is possible to procee

extending those surfaces so that they are guaranteed to be “outside” the actual

surface.

Once the surface element that requires modification has been identified, the direct

which the vertices will be moved must be determined. There are several different wa

decide this; among the choices are:

• In a direction orthogonal to the sensor’s emission angle at that point

• In a direction parallel to the sensor’s baseline

• In a direction found by examining an interpolating function derived from t

surrounding data

object

mesh surface

sensor’s rays of emission

new position

Figure 3-27. Dilation of mesh surface. Shown is detail of a “missed” object surface
leading to the situation in figure 3-26: A remedy is to move the sensed point along the
arrow from its original position to the new position.
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Each of these methods will behave appropriately in many instances, but will fail u

certain conditions. In the system presented in this thesis, we identify one of the elem

vertices and move it along the sensor’s baseline until it approaches the position whe

nearest sample would have been. To differentiate between positive and negative mot

the baseline, the normalized dot product of the surface element’s normal with

baseline’s positive direction vector is used. An example of this process is show

figure 3-27: the vertex of an element is moved so that it approaches the next adj

sensing emission and therefore must be “outside” any sensed object. Because the s

resolution, and therefore the magnitude of the displacement of the vertex, depends

sensed distance from the sensor, it is important to have a sensor model from w

parameters such as beam angle between adjacent samples may be calculat

alternative to this technique is to insert a new vertex in the mesh at the appropriate

This method has the advantage of allowing the new vertex to be tagged for fu

identification in the merging or planning processes. The effect of the nonuniform dila

process on the 2-D example is shown in figure 3-28, and is shown for real range data

following section.It should be noted that the magnitudes of these displacements are

(< 1mm) for the range images in this thesis: they are not visible with the naked eye in

of the models from single views, but the effect of this process is readily visible in the

model, as shown in figure 3-29, a view of the previously-shown model of the bear toy.

left image of figure 3-29 shows the backside of the bear model when no such process

applied to the mesh, and thus the swept surface is computed directly from the s

points. As can be seen, there are considerable artifacts that not only poorly represe

actual surface of the object but also generate undesirable local geometry. In contra
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right image in the figure shows the same portion of the model when it was built using

dilation process. The surfaces here have a much more uniform appearance, and als

accurately model the object.

Figure 3-28. Effect of nonuniformly dilating mesh on swept solid. The vertices of the
(two) occlusion surfaces are moved until they coincide with the rays of the sensor’s
nearest adjacent sensing ray, in the direction shown by the arrows. The area
resulting from the swept surface is shown in grey and is clearly a superset of the
actual object.

“occluded surface”
“occluded
surface”

Figure 3-29. Bear model detail showing effect of dilation process on model-building.
Left: model built using sensed points directly as vertices in mesh from each view.
Right: model built using dilation process on mesh of each range image prior to sweep
operation.
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4.0  Introduction

The model construction process described so far includes no planning of se

viewpoints; the turntable supporting the object is rotated equally from one image to

next. This chapter describes how to automatically plan the next viewpoint during

model acquisition process. Planning the next sensor viewpoint is carried out bet

modeling operations, so that new scene information is always being incorporated in

composite model. The composite model is used to drive the planning process.

The planning process presented here operates by reasoning about occlusion, whi

been strongly associated with viewpoint planning in the research literature for some

By using the occluded volume as a cue to determine the next sensor position, and b

making sure that the sensor is not blocked by any of the object’s surfaces, this algo

guarantees that previously-unsensed scene information will be acquired for the

modeling operation.



64

go

what

ay be

set of

ensing

llows

two

re to

the

ition,

tems

or is

The

me is

ene’s

rface
4.1  Background

Sensor planning is its own field of study, with a correspondingly large body of work to

with it. Solutions to the sensor planning problem depend on the task, and this is

narrows the amount of previous work referenced here. Traditional sensor planning m

divided into two classes:Static Sensor PlanningandDynamic Sensor Planning. The Static

Sensor Planning problem is that of computing a set of sensor locations for viewing a

features given a model of a stationary object or scene, a sensor model, and a set of s

constraints. The Dynamic Sensor Planning problem is more complicated in that it a

the objects to move along known trajectories. For more information on these

problems, see [Abrams 1997] [Abramset al. 1993] [Tarabaniset al. 1995b] [Sedas-Gersey

1993].

The planning problem in the object reconstruction task, however, corresponds mo

what is calledactive visionthan to classical sensor planning. Active vision is based on

idea that alternating between sensing and modification of the sensor’s pos

orientation, and other parameters will result in increased capabilities for vision sys

[Ballard 1991] [Shmuel & Werman 1990]. It is assumed that a model of the sens

known, along with knowledge of the ways in which that sensor may be positioned.

object or scene is assumed to be stationary, and in practice a maximal bounding volu

often assumed. All planning knowledge is determined by the current state of the sc

model and the known attributes of the sensor.

These methods use such information about the current model as quality of fit, su

normal, and extremal boundary shape, as well as knowledge about what isnot known
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about the model, such as the volume of occlusion. A discussion of the problem an

analysis of strategies for perceptual behavior can be found in [Bajcsy 1988], w

categorizes active vision strategies into two classes: bottom-up strategies are driven

data without a pre-specified task, while top-down strategies rely on a known task to g

the sensing process. The search for information is described in terms of an estimatio

control problem, with procedures that determine the number of views required to pro

an estimate of a certain quality. Another solution discussed is that of deriving a rule w

determines when enough data have been acquired.

There are three basic techniques which provide the basis for the majority of the view

planning methods used. In the first, ray casting is applied to the model to find how mu

the occluded surface will be imaged for every sensor position: the sensor position

images the most occlusions is selected. This requires tessellating a viewing sph

discretize the sensing positions and computing a ray-cast image from each of them

the disadvantages of high computational cost and the fact that some solutions w

missed. The second method collects a histogram of normals of the surfaces that com

the occlusions, scaled by surface area. The peak in the histogram denotes the norma

greatest area of occluded surface, and an anti-parallel vector is then selected f

sensing direction. This technique isnot sufficient because it does not take into accou

known self-occlusion of the model’s surfaces, and therefore may result in a sensor po

that acquires no new information.

[Connolly 1985] describes two view planning algorithms that take a partial octree m

as input. The first, dubbed thePlanetarium Algorithm, evenly tessellates a viewing spher
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surrounding the object. Recall that an octree consists of nodes labelled empty (the

state), occupied, and unseen. At each vertex in the tessellation, the area of unseen

nodes for an origin-centric viewing direction is calculated from a hidden-line view of

model. The vertex of the tessellation with the highest value is used as the next vie

position, since it will eliminate the most unknown area. The second algorithm calcu

the number of faces of the octree that have one of the six possible orientations. Only

that separate unseen and empty nodes are considered; in effect this results in a calc

of the normals of the surfaces making up the occluded volume. The next sensor dire

is chosen from the highest number of faces for each of the x, y, and z directions.

method has the advantage of being computable in time proportional to the unseen s

area of the object, which decreases with each view, as opposed to requiring evalua

every point on a view sphere at each iteration.

[Maver & Bajcsy 1990] use surfaces denoting scene occlusions for planning the next

After scanning the data once, the occlusions are modeled by polygons orthogonal

viewing direction. For each polygon, a direction is computed such that the polygon ma

completely imaged from that direction, provided there is no self-occlusion there. T

direction angles are then inserted into a histogram, with the result that maximal pea

the histogram represent viewing angles that will image the most occluded areas.

The error of fit of a model to range data from a surface has also been used [Wha

Ferrie 1990] [Whaite & Ferrie 1992]. In this case, a superellipsoid is fitted to a surface

is assumed to be a segment from a larger data set. An error function is computed fo

data point based on the square of the distance from the point to the model surface
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planning component is uses the fact that maximum improvement in the model ca

achieved by performing sensing operations on the parts of the model with the hig

error. Therefore, from the errors an estimate can be made of which sensing operatio

result in the greatest relative improvement.

[Kutulakos 1994] describes a method of shape recovery that uses only intensity im

from a continuously moving camera. The extremal boundary is extracted from each i

and its deformation between images is used to construct local surface information. T

done at some point on the extremal boundary by moving the camera in a circle o

plane perpendicular to the boundary and coincident with that surface point,

measuring the change in the shape of the boundary. The curvature of local surfa

determined and then this local region is expanded by repeating the process on the

on the edge of this region. This work is unique in that it uses only the silhouette o

object to drive the planning process and also because it is one of the few works tha

continuous motion for reconstruction rather than discrete views. his method will h

difficulties when applied to objects with certain types of concavities.

As discussed in the previous section, the work presented in [Sobh 1995] integrates

and CMM data to acquire a CAD model of an object. 2D vision acquires attributes o

object to be sensed, which are then used as input to a sensing agent. The ag

implemented as a finite state machine which monitors the position of the CMM probe

respect to the part. The probe is guided from a distant position to one that is actually o

feature to be sensed, where it then carries out the measuring process at the resolu

the CMM. The ordering of the sensing operation is defined by a recursive definitio
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parts that assumes that part features completely enclose one another and do not ove

assumption that holds for the machining features of many 2-1/2 D parts.

Recent work by Pito [Pito 1995] removes the need to ray-cast from every possible s

location by determining a subset of positions that would improve the current model.

is done by extending the border elements of a mesh surface model a short distance

viewing direction, in a sense modeling limited parts of the scene occlusion. T

elements are then used to determine which sensor locations might improve the mo

ray-casting operation is then performed on the model from those sensor locatio

determine which provides the best coverage of these elements. This greatly reduc

amount of ray-casting that needs to be done, particularly when most of the objec

already been imaged, but it is not clear how well these extended surfaces model

occlusion at any but the local level.

4.2  Strategies for Viewpoint Planning

Before describing our algorithm for planning in detail, it is important to consider exa

what the benefits from planning are, and how they effect the use of a planner in a mod

system. Certainly two primary benefits of planning are to avoid unnecessary se

operations and to ensure that certain types of features are acquired. However, the

cost to planning: it requires analysis of the model and expensive calculations, so

important to avoid planning views if it is not necessary. Determining precisely whenis

necessary is beyond the scope of this work, but it is important enough to merit a cu

examination here.
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First, consider what happens when modeling is done without planning: the first

sensing operations from random or pre-set viewpoints will result in acquiring much

information. This is because there is so much unexplored space in the scene that no

what method is chosen, new viewpoints will usually result in “good” sensor position

In addition to this, it is also interesting to note that the area of surfaces tagged “occl

surface” does not always decrease with each additional view. Particularly in the firs

sensing operations, the area of these types of surfaces may increase, due

arrangement of the objects in the scene.

Because set intersection is used to merge the models from different views, the total m

volume will always decrease over time and converge at the actual object vol

assuming distinct sensor viewpoints are used. But what about the surface area

model, in particular the area of surfaces labelled as occluded? The graph in figur

shows the effect on the total area of “occluded surface” during a typical sensing pro

At the beginning of the sensing process, this area may increase or decrease with

additional view. However, as the model surfaces become more accurate, and the rem

“occluded surface” becomes closer to the proper surface, each additional se

operation will replace “occluded surface” by “imaged surface”, and thus the reduction

tend towards monotonicity.

The underlying principle is that for the initial views it makes no sense to do any plann

Instead, a certain number of sensing operations should be done at equidista

equiangular positions, so as to acquire an initial model. The number of these i

viewpoints may vary with the task and depend on the amount of scene occlusion. O
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preliminary model has been built from these sensing operations, a planning algo

should be used to determine appropriate viewpoints.

4.3  Using Constraints to Plan for Occluded Viewpoints

The planning component presented here is based on previous work on the sensor pl

problem in our laboratory [Tarabaniset al. 1995] [Tarabaniset al. 1995b]. The planner

used in this work is able to reason about occlusion to compute valid, occlusion

viewpoints for a specific surface on the model. Once an unoccluded sensor position f

specified surface has been determined, the surface may be sensed, modeled, and in

with the composite model. Thus, the method presented here is target-driven and perf

in continuous space. As the incremental modeling process proceeds, regions that r

additional sensing can be guaranteed to have an occlusion-free view from the sensor

exists. Other viewing constraints – such as sensor field of view, resolution, and sta

distance – may also be included in the sensor planning, as is shown below.

Figure 4-1. Change in area of occluded surface as more views are taken.
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The process operates by considering the entire workspace as the potential location

next sensor placement, and then constraining this volume until a solution for the

viewpoint is found. The constraints are represented as closed, bounded sets which m

combined to form a plan via set operators. An overview of the process is show

figure 4-2.

There are three constraints that we shall consider: sensor imaging constraints,

occlusion constraints, and sensor placement constraints. Sensor imaging constrai

limitations on the imaging process due to the sensor’s modality or implementation

example, if the sensor must be in front of the target in order to image it – as most se

select targets

compute sensor imaging
constraints

compute scene occlusion
constraints

find model self-occlusions

compute visibility volume

intersect visibility volume with
sensor placement constraint

discretize sensor space and
determine next sensor position

Figure 4-2. Overview of the sensor planning process.

acquire image

compute model from single

integrate with previous model

plan next viewpoint
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must, except penetrating modalities such as x-ray – this will constrain the resulting pl

be in the half-space in front of the surface. Similarly, if the sensor must be within a ce

angle of inclination with respect to the surface, this will further constrain the result. Sc

occlusion constraints are those due to the fact that parts of the current composite

block some locations in space from viewing the target surface. Finally, sensor place

constraints limit the range of positions in which the sensor may be placed. For se

attached to 6-degree-of-freedom manipulators, this may be the entire works

However, for the majority of implemented systems, and in particular those using

rangefinders, this constraint is a hemispherical or cylindrical surface. Each of t

constraints may be represented as a volume, calledVimaging, Vocclusion, and Vplacement

respectively.

The planning process constructs avisibility volumeVtarget that describes the set of all senso

positions that have an unoccluded view of the target for a specified model.Vtarget is

determined entirely by volumes representing the sensor imaging and scene occ

constraints. It can be computed by determiningVimaging, which may be thought of as the

visibility volume for the case where there are no occlusions, and subtractingVocclusion, the

volume containing the set of sensor positions occluded from the target by model sur

SinceVocclusionis the union of allOi, the volume that is occluded from the target by mod

surfacei, we have:

(EQ 4-1)

Once this visibility volume has been computed, it is only necessary to include the vo

representing the placement constraint to determine the plan:

V target V imaging Oi
i∀ i target≠,
∪–=
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4.4  Selecting Target Surfaces

We must be able to select a subset of the targets for planning purposes if there are

than one, as is the case here. It is computationally undesirable to plan for all pos

targets, especially since the iterative nature of this method assures the acquisition

relevant targets by the time the modeling is completed. This implies that it is better to

for some targets rather than others, and this is in part due to the contiguous nature

surfaces tagged “occluded”. These surfaces are on the boundary between image

occluded space, and hence tend to have large area. When acquiring an image that c

a particular surface, much of the surrounding surfaces are also acquired. It therefore

sense to consider those parts of the model with a high density of occluded surfac

course, “occluded” model surface area is not strictly related to actual unimaged o

surface area, as the counter-example of figure 4-3 shows. However, because

Vplan V target= Vplacement∩

Figure 4-3. Unimaged model surface is not necessarily related to unimaged object
surface. On the left, a small unimaged model surface corresponding to a large
unimaged object surface. On the right, a large unimaged model surface
corresponding to a small unimaged model surface.

object boundary
model boundary“unimaged” model surface
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majority of cases “occluded” surfaces lie close to the boundaries of true surfaces,

worst delimit unexplored volume in the workspace, using them to guide exploration

sound strategy.

A good target is one that has large area and is compact in the sense that its vis

volume is as small as possible. This can be assured if the polygonal target surface

close to being a regular convex polygon as possible, i.e., with all sides the same leng

the case of the system described here, where the surface elements are triangul

means that small aspect ratios are favorable. The reason this is important is that ele

such as these have visibility volumes that have close to a minimal surface area fo

corresponding target surface area, and hence are less likely to be occluded by

features.

For a target to be properly acquired, it needs to satisfy certain detectability condit

Most notably, it must be large enough so that it is sampled to the effective resolutio

the rangefinder. Note that this assumes that the target behaves like a true imaged

surface, even though it is in fact part of an occlusion situation in the scene. By treat

like a true surface, we are in effect saying that by scanning it at the stated resolutio

will either resolve the underlying surface or, if not, at least acquire new information a

other occlusions there.

For a target to satisfy this detectability constraint, it must be of such a size and orient

that it can be sampled by the sensor. To guarantee this, it is necessary to ensure t

imaged cross-section of the feature subtends an angleφ ≥ 2θ (where θ is the beam

deflection between samples) when imaged by the sensor, as shown in figure 4-4. T
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turn, means that different-sized targets will have different-shaped volumes for

detectability.

4.5  Computing Sensor Imaging Constraints

As mentioned previously, sensor imaging constraints limit the possible visibility volu

by considering the sensor’s ability to image a particular target surface. This constra

itself represented as a volumeVimagingwhich describes the sensor locations from which

sensor can effectively image the target surface. The factors that contribute to the im

constraints are the modality of the sensor and the geometric parameters describ

ability to acquire images, such as breakdown angleα (the maximum inclination of the

sensor with respect to a surface), depth of field, standoff (which describes the close

sensor may be to the target), and its far plane and resolution (both of which limi

farthest distance the sensor may be from the target). Each of these parameters aff

Figure 4-4. Constraints on sensor imaging due to projected target area. In the
rangefinder’s two-dimensional scanning plane, the target appears as a line segment L
(left). In order to guarantee that a target is acquired there must be three samples
over the width of the line segment, implying that the target subtends an angleφ ≥
2θ.

φ

θ
θ

laser emission
target extremes line-of-sigh

L

L

target

scanning
plane
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shape of a volume representing this constraint: some variations for a rectangular targ

shown in figure 4-5. In this figure,Vimaging is shown for three hypothetical sensors and

rectangular target surface. In each of the three images, the grey volume describes the

positions from which the sensor can appropriately acquire the target. Thus, in the

image, from every point in the grey volume the sensor may acquire an image and s

within the breakdown angle of 20°. The second example (middle of figure 4-5) show

Vimaging for a greater breakdown angle, which gives the volume a fatter shape. In additi

standoff distance has been modeled by removing all sensor positions that are closer

center of the target than the standoff parameter of 15mm. This standoff would

important to consider if the sensor we were modeling could not acquire data at c

ranges than this. The last example, at the right of figure 4-5, showsVimaging for a sensor with

a breakdown angle of 40° and a standoff of 25mm.

Figure 4-5. Variation in the shape of the volume representing imaging constraints
with respect to breakdown angle α and standoff (in mm). Depth of field and
resolution are assumed infinite; the target is the small dark polygon to the left of the
volume.

α: 20

standoff: 0

α: 30

standoff: 15

α: 40

standoff: 25
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An assumption made when computingVimaging is that the sensor is able to find th

appropriate orientation to acquire the target: we do not explicitly compute an orienta

constraint. This means that the final plan assumes that the field-of-view of the sen

wide enough to completely acquire any targets planned for. In our implementation,

assumed that the sensor’s field-of-view covers the entire workspace, so the field-of-v

guaranteed to be wide enough.

The volumeVimaging may be generated from a polygonal target surface by performing

extrusion operator on the surface, in the direction of the surface normal, with a draft a

equal to the breakdown angleα. This computation may be done in time proportional to t

number of edges in the target, and thus consumes very little computational resourc

more sophisticated model of the sensor is used, this computation may become

significant.

4.6  Computing Occlusion Constraints

The occlusion constraints further restrict the positioning of the sensor for a specified t

by disallowing all positions in space from which the target is occluded by any part of

environment. Since the current composite model describes all that is known abou

layout of the environment at a particular moment in the modeling process, it is the sur

in the composite model that must be checked to see if they occlude the sensor fro

target. For each model surfacei that potentially occludes the target, a volumeOi is

constructed that represents the space that is disallowed for the sensor. To descr

entire space from which it is not possible to see the target, it suffices to compute:
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(EQ 4-3)

– that is, the boolean union of these volumes over all surfaces in the composite m

comprises the space from which it is not possible to see the target, and hence captu

occlusion constraints.

It remains to be shown how to decide which model surfaces occlude the target, and h

computeOi for each of them. For the former problem, it is clear in the general sense

everymodel surface may potentially occlude the target. This means that a union ope

must be applied to a number of volumes equal to the number of surfaces in the m

(minus one, since the target surface cannot occlude itself) for every target planne

However, this requirement may be dramatically reduced by considering the following

• only those surfaces with normals that have some component anti-parallel t

target’s normal need be considered – that is, back-face culling may be perfor

• only those surfaces that are within the volumeVimagingneed be considered; it is

not necessary to consider surfaces outside the space in which the senso

operate.

Together these conditions greatly reduce the number of surfaces that need to be exa

for occlusion situations. Further techniques to accelerate this process are given be

section 4.9.

The computation ofOi for a specific target and model surfacei is based on the algorithm

for feature visibility described in [Tarabanis 1996]. It is based on geome

Vocclusion Oi
i i target≠,∀
∪=
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decomposition of space into volumes from which a specified model feature either c

cannot be fully imaged by an ideal sensor. If a target surface – that is, an “occlu

surface in the model – is used as a feature, this algorithm may be used to produce

viewpoints for any target- and occluding-surface pair. The technique is based on b

space decomposition, and operates by traversing the boundary of the target an

occluding surface, as shown in figure 4-6. The traversal generates a partitioning elem

line in 2-D, a plane in 3-D) for each pair of boundary elements, which is then use

produce the occluding area or volume. In the 2-D example shown, the target (in green

occluding surface (in red) are line segments, the boundary elements are their endp

the partitioning elements are lines constructed from the endpoints, and the occlusion

red area. For the 3-D example, the target and occluding surfaces are polygon

boundaries are edges and vertices, the partitioning elements planes, and the occlu

the volume. Computationally, this technique operates in time linear in the comb

number of edges of the target and occluding surfaces. It should be noted tha

Figure 4-6. Occlusion computation by spatial decomposition. An example in 2
dimensions is shown at the left, where the target and occluding “surfaces” are line
segments, and the occluding “volume” is a planar area. At the right is an example in
3 dimensions, using polygons to represent the target and occluding surfaces, and a
volume to represent the occlusion.

target
occluding
surface

target

occludin
surface

occlusion
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algorithm assumes convex boundaries for both the target and occluding surface. If

not the case, a convex decomposition algorithm must first be applied.

4.7  Computing Sensor Placement Constraints

Sensor placement constraints describe the physical locations in which the sensor m

placed, and are typically derived from a description of the manipulator used to positio

sensor or the scene. In some instances, this may be a 6-degree-of-freedom mani

such as a PUMA 560, in which case the sensor placement constraint may be repre

by a sphere of finite radius (assuming there is no overlap between the workspace a

manipulator’s unreachable positions). If the manipulator is constrained to lie a fi

distance from the workspace origin, as in [Whaite & Ferrie 1992], or if the sensor is fi

in location and the object is rotated, then this constraint may be represented by a sph

shell of the appropriate radius. In practical systems, it is likely that there will be

inadmissible region near the center of the workspace where the object is typically pl

to prevent the manipulator from attempting to position the sensor there. This woul

represented by an additional constraint giving the minimum distance from the origin

manipulator may attain. These volumes representing two of these situations are de

in the top row of figure 4-7.

In our experimental setup, the manipulator may move the sensor only in the wo

coordinate, but there is additional positioning due to the turntable that may rotate

object around the z axis. Thus, the workspace is a cylindrical shell. This configurati

common in laser-rangefinder systems, because it maximizes the stability and repeat
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of the rangefinding unit, while still allowing enough maneuverability to capture m

objects. Sensor placement constraints for systems that have a manipulator work

resembling cylinders are illustrated in the second row in figure 4-7. The implementa

described in this thesis is represented by the model on the left.

4.8  Combining Constraints

The three constraints described above must be combined to determine the set of reg

cells from which the sensor may properly acquire the target. Each of these constra

represented by a set in three-dimensional space, and a solution may be found by ap

set operators:

Figure 4-7. Volumetric representation of sensor placement constraints. Examples
shown are for a system with a 6-DOF manipulator (top row) and a system with 1-
DOF manipulator/turntable combination: shell for positional freedom constrained to
a specific distance from the origin (left) and a thick shell for positional freedom
constrained to be at least a certain distance from the origin (right).
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(EQ 4-4)

Note that the final result is a set of points, lines, surfaces, or volumes, and may b

empty set if there is no solution.

4.9  Computational Considerations

The planning process is one of the more computationally expensive aspects of the

acquisition process. However, the cost may be drastically reduced if the computati

the constraints is done in serial fashion, and if information from one constraint is us

reduce the amount of calculation in the more computationally intensive calculations

illustrate this, consider the current costs of calculating the constraint volumes for a t

surface f:

• sensor imaging constraintVimaging: O(m), where m = the number of edges off.

• occlusion constraintVocclusion: O(n2), where n = the number of occluding

surfaces. This calculation is dominated by the cost of unioning theOi volumes.

• sensor placement constraintVplacement: O(1), as this is independent of the

surfaces in the model, and may be computed off-line.

It is clear that for any real-world situation the most computationally expens

computation is that of the occlusion constraint. However, it can be seen that only t

surfaces that intersect the volume described by the sensor imaging constraint need

considered1, because no model surfaces outside of that volume may come betwee

1. Standoff should not be included here because it may prevent the consideration of occluding surfaces that are
than the standoff distance.

V imaging Vocclusion–( ) Vplacement∩
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sensor and the target surface. The sensor imaging constraint can be calculate

rapidly, because the vast majority of surfaces in our model are triangular, the rest

simple polygons with a small number of edges. Thus, ifVimaging is calculated first, and

then used to determine the candidate model surfaces for the occlusion constra

considerable amount of calculation is avoided. In particular, consider that many o

target surfaces have no model surfaces that might possibly block the sensor from

and so the occlusion calculation is avoided entirely. Candidate model surfaces m

evaluated for possible occlusion simply by testing if they intersectVimaging.

The above ordering of the application of constraints in no way affects the outcome o

planning process. However, in the interest of further reducing the amount of time spe

the planning process, there are two other optimizations that do reduce the accuracy

computed plan: decimating the surface of the composite model and discretizing the

representing the sensor placement constraint. These methods reduce the accuracy

they use approximations to either the model or the continuous-space plan, and hen

not exact solutions.

The composite model is a dense polygonal representation of all that is known abou

currently explored workspace. Because it consists of a great number of small poly

surfaces, many of which are coplanar, it is a prime candidate for application of a m

decimation scheme, e.g. [DeRoseet al.1993] [Schroederet al. 1992] [Turk 1992]. At the

point in the planning process where occlusion is computed, accuracy may be sacrific

speed by reducing the number of occluding polygons by merging nearby coplanar su

elements. In our implementation, we use a variant of Simplification Envelopes
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described in [Cohenet al. 1996]. SE is a method that generalizes offset surfaces

determine an interior and exterior boundary between which the resulting decimated m

must lie, and so has the desirable property of having an absolute boundε for the distance

between the original surface and the simplified one. The distance from these bounda

the original surface is given as a single real number input to the algorithm. However,

original form SE produces models whose representative sets may be subsets of the o

model, and which may therefore miss some occlusion situations. To prohibit this effe

applying the SE method it is necessary to allow only the use of an exterior offset sur

so that the resulting simplified model is always a superset of the model from which

derived, as shown in figure 4-8. In addition to this, we have modified the algorithm so

it retains the surface-type tags which describe the surface elements as imaged or occ

and disallows any merging process between them. This is done to ensure that the re

surfaces are composed of only one type of modeled surface: it is not clear wha

Figure 4-8. Simplification Envelopes. The original algorithm produces a simplified
model whose surface lies between an interior and exterior boundary, offset from the
model surface byε (left). The variant used to prevent underestimation of model
volume produces a model boundary between the original surface and an exterior
boundary only (right).

interior

exterior

2ε

exterior

ε

boundary

boundary

boundary
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resulting surface describes if it is due to the merging of an imaged and an occl

surface.

4.10  Terminating Conditions

A primary consideration for a system that plans dynamically is that of determining w

planning is no longer needed and the modeling process is complete. There are a var

methods that may be used, among them the following, in decreasing order of difficu

• continue until there are no surfaces tagged “occluded” left.

• continue until there are no surfaces tagged “occluded” that may be planned

• continue until there are no surfaces tagged “occluded” with area greater thaα.

• continue until the total area of surfaces tagged “occluded” is less thanα.

• continue planning dynamically for a certain amount of time, number of vie

etc.

Each of these may be applied in different situations, but none of them used alone wil

the best results. The first method is not generally applicable because it will fa

terminate in situations where the entire surface of the object is not imageable,

figure 4-9. The second method provides a solution to this problem: continue to pla

surfaces until the plans generated are no longer attainable. The main drawback t

method is that it will continue to plan in the situation where there are many poss

targets, each of which is disconnected and of small area. The third method is

forgiving in that it will only try to plan for targets greater than a certain area. The fou

method just operates until the total unimaged area is less than a threshold, and a
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may not terminate in certain situations. Finally, there are the methods that do not tak

account model quality as a terminating condition, and that lie somewhere betwee

systems with a fixed number of predefined viewpoints and those with full automatic m

acquisition.

Our approach combines the second and third conditions to determine if the plan

should be discontinued: if there are no unimaged surfaces for which a valid plan ma

computed, or there are no unimaged surfaces of area greater than a threshold val

planner assumes the model has been acquired properly. This guarantees that new

information will be acquired with each new view, and at the same time there will alw

be a point at which the system will terminate.

Note that just because a particular unimaged surface has no acceptable plan at a pa

stage in the modeling process does not mean it may not be planned for later on. T

because the model changes after every integration operation: an unimaged surfa

was previously occluded by other unimaged surfaces may be unoccluded subseq

However, if an unimaged surface is occluded completely by imaged surfaces

correctly model parts of the scene) then it is safe to disregard those surfaces fo

Figure 4-9. A situation where it is impossible to image the entire object surface, or
all model surfaces labelled “occluded”.

object boundary
model boundary

“unimaged” model surfaces
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remainder of the planning for that scene, as the occlusions are a permanent part

model and will not change with subsequent views.

As discussed in the previous chapter, the final model retains all surface-type attribut

that even if the object is not completely imaged, it is still possible to analyze the m

appropriately based on the different types of surfaces.

4.11  Example: Single Target, Synthetic Data

To better illustrate the entire planning process, we show in this section plan generatio

a synthetic model composed of three surfaces. In this case, one of the surfaces ha

chosen as the target, and is depicted as the green polygon in figure 4-10. There a

other model surfaces, shown as red polygons in that figure, which may contribu

occlusion situations for the sensor if they are not considered in plan generation.

The first step is to computeVimagingfor the green target surface. For this example, we a

using a 40° breakdown angle to generate the volume, which is shown in grey in figur

11. In order to better visualize this example, the volume has been cut off at the top o

Figure 4-10. Synthetic planning example. The model consists of three surfaces: one
target (shown in green) and two other model surfaces (shown in red).
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image; for most sensors the far bound is not planar but a curved surface, b

approximated by a spherical boundary.

The second step is to computeVocclusionfor the target and the remaining model surface

As stated earlier, this is done by computing the occlusion due to each model su

individually (shown as the red volumes in figure 4-12), then unioning them togethe

this case, there are only two other model surfaces, and their occlusions are disjoint

sensor positions contained inside the red volumes will not be able to properly imag

green target due to occlusion by other model surfaces.

This allows the simple computation of the visibility volumeVtarget by subtracting

Vocclusionfrom Vimaging. The resulting volume describes, in continuous three-dimensio

space, the set of positions from which the sensor has an unoccluded view of the

target surface (shown in figure 4-13). As mentioned above in section 4.9, Computa

Considerations, it is not necessary to computeVocclusionfor every model surface. Only

Figure 4-11. Example: sensor imaging constraint. Vimaging is shown (in grey) for the green target.
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Figure 4-12. Example: occlusion constraint.Vocclusion (shown as the red volumes)
computed from the target and occluding surfaces.

Figure 4-13. Example: Visibility volume. The grey volume is the result of subtracting
Vocclusionfrom Vimaging.
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those surfaces that intersectVimagingneed be considered in the computation ofVocclusion,

as both red surfaces do in this example.

However, the sensor’s positional freedom, which is determined by the type of manipu

used, may prevent parts of this solution from being viable. Thus it is necessary to con

a model of the sensor’s positional capability, which is described byVplacement. In this

example, we will simulate the use of a Cartesian manipulator that can position the s

within a rectangular space, shown in blue along with the visibility volumeVtarget(in grey)

in figure 4-14. As can be seen in this image, there are many positions available t

sensor which will not provide a satisfactory image of the target, due either to occlu

situations or to limitations on the sensor’s imaging capabilities. These positions are s

in the figure as those that are interior to the blue volume (i.e., contained byVplacement), but

exterior to the grey volume (i.e., not inVtarget). Conversely, there are positions from whic

the sensor has an unoccluded and otherwise acceptable view of the target but w

cannot be positioned due to the shape of the manipulator’s workspace. These positio

those in the figure that are interior to the grey volume (i.e., contained inVtarget) but

exterior to the blue volume (i.e., not inVplacement).

The positions in which the sensor can be placed so as to properly image the target, a

be blocked by any other model surface, are described by the intersection ofVtarget and

Vplacement. This intersection is shown in figure 4-15 as the grey volume shown insid

Vplacement. This volume is a continuous-space solution to the planning problem for

green target, and may now be analyzed in a variety of ways. Because it is repres

volumetrically, its volume, center of mass, and higher-order moments may be calcu



91

ore

4-16,

model

n, all

n the

ones

denote

the
Or, if so desired, it may be used to determine a discretized planning solution if the m

general continuous solution is unnecessary. This is shown by example in figure

where a discrete sensor model is represented by rectangular elements that

individual sensor positions, in this case an 11x11 grid. To compute the discrete pla

that is necessary is to test each element for inclusion in the continuous solution. I

figure, this is depicted by having acceptable positions shown in green, unacceptable

in red. As an extension to this, the size and shape of these elements may be used to

uncertainty in sensor placement, for example by a disk or ball of radius equal to

positional uncertainty.

Figure 4-14. Example: including sensor placement constraints. Target surface (in
green) with visibility volume shown in Vtarget (grey volume) and sensor placement
constraint Vplacement(blue volume)
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Figure 4-15. Example: continuous-space planning solution. The intersection of
Vtarget and Vplacement, shown in grey inside Vplacement (shown in blue).

Figure 4-16. Example: discretized solution. If a discrete solution is desired, it may be
computed by testing each location for intersection with the continuous-space solution
(bottom): here the discrete samples are shown in green if the target is visible, red if not.
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4.12  Example: Strut Model

We further demonstrate this planning process by building a model from distinct view

the object shown in figure 4-17, which is a strut-like part. The planning for the se

orientation is done by the algorithm described above during the acquisition process

the goal of determining a small number of views that will accurately reconstruct

object. This part has both curved and polygonal surfaces, and includes holes that ar

difficult to image. The first two images are acquired without using sensor planning

first image is taken from an arbitrary position, while the second image is acquired a

turntable rotation of 90 degrees. The models acquired from these images, and the re

composite model are shown in figure 4-18 and figure 4-19. The general shape of the

already quite evident in this composite model after two views. A target is designate

this composite model by selection from one of the surfaces tagged “occluded surface

the planning algorithm constructs the plan shown in figure 4-20. This plan is execute

rotating the turntable to place the sensor within the green visibility volume, in this cas

83°. The image taken from that sensor location is used to produce the model shown

left in figure 4-21. At the right of that figure, the new composite model is shown. Agai

target is designated and a plan produced, which is shown in figure 4-22. The turnta

rotated 134° to move the sensor into this visibility volume, and the model at left

figure 4-23 results. This final model is shown at the right in figure 4-23, and rendered

mesh in figure 4-24. As in the earlier models, there are boundaries where the inters

of the solids from two overlapping sensing operations causes an increase in the den

mesh elements. Because this is an incremental method, additional scans may be per

to improve the quality of the model.
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Figure 4-17. Photograph of strut part.

Figure 4-18. Initial models from strut acquisition. The solid models constructed by
sweeping the mesh surface of the first two range images are shown.

Figure 4-19. The composite model of the strut after two views.
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Figure 4-20. Occlusion computation for a
target on the composite model. The entire
green and red volume representsVimaging
for a target from the composite model’s
“occluded surface”. The red space is
Vocclusion = ∪Oi, the union of sensor
positions occluded from the target by
model surface i. The green space is the
visibility volume Vtarget = Vimaging – ∪Oi, i.e.
the valid positions for a sensor viewing the
target.

Figure 4-21. The solid acquired from the third range image via the first plan (left),
and the composite model after three views. The composite model is now very similar
to the object, but there are still some occlusion surfaces between the strut’s arms.
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4.13  Considering Multiple Targets

In the above case, a plan was generated by considering a single target surface. Alt

this method will work, it is only local in its scope and does not take global visibility of t

targets into account. A more sophisticated method is to plan using multiple targets

select the sensor position that images the most target area. Although in many se

Figure 4-22. Result of sensor planning for
a target specified on the “occlusion
surface” of the composite model in
figure 4-21. Again, red volume specifies
points that are occluded from seeing the
target, green volume describes the valid
sensor positions.

Figure 4-23. Fourth model acquired according to the second plan (left), and the
composite model after integration (right).
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scenarios this may be unnecessary, we show here how multiple targets may be u

planning. In this example, the composite model of the strut after two views is use

determine a plan that considers a number of targets. This is achieved by decimatin

surfaces tagged “occluded” and selecting from the result a subset of surfaces wit

largest area. In this example, the 30 occluded surfaces with the largest area are sele

targets and the visibility volumeVtarget is generated for each of them.

The plans are computed for two sensor configurations: one with a sensor that c

placed with full rotational freedom on the surface of a sphere, and the other for a s

that is constrained to lie on the surface of a cylinder from which it can only se

horizontally. This latter configuration is typical of systems such as ours that use a turn

from which a sensor operates at a fixed distance. The plan for full rotational freedo

Figure 4-24. Final strut model, shown rendered (left) and as a mesh surface (right).
Note the through-hole acquired in the rendered model.
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shown in figure 4-25. At the left of the figure is the set of visibility volumes for the

largest targets by area. At right in the figure is the result of intersecting those volumes

Vplacement, which in this case is modeled by a sphere. Darker regions in the fi

intersection represent sets of positions in sensor space where more than one ta

visible, thus their individual plans overlap. The same process is applied to the m

constrained sensor configuration, which is shown in figure 4-26. Again, overlapping p

appear as darker regions which may then be discretized or searched for the positio

images the most target area (see [Preparata & Shamos 1985] for techniques that a

this issue). At the bottom of this figure, we show the resulting continuous-space p

“unwrapped” from the cylindricalVplacementonto a plane, making the overlapping region

quite evident.

Figure 4-25. Planning for multiple targets. Shown here is a plan for a sensor with full
rotational freedom and with positional freedom constrained to a viewing sphere.
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4.14  Example: City Scene

We now show a planning example of a complex scene using multiple targets.

example, which is the city scene shown in figure 4-27, is composed of multiple parts

has extremely high self occlusion. It was chosen because it provides an example o

our system might be used in complex outdoor urban environments. These environ

are typified by large structures that encompass a wide range of geometric shape

typically are grouped so that occlusion is a significant problem. The resulting site mo

may be used in many different applications ranging from city planning, urban design

and police planning, to military applications, virtual reality modeling and others.

Figure 4-26. Planning for a sensor constrained to move vertically in conjunction with
a turntable rotation stage (top). Individual plans “unwrapped” to lie on plane
(bottom).



100

90

two

hile

tire

able

ontal

st by

er to

ning

te the
The modeling process was initiated by the acquisition of four range images, with°

turntable rotations between them, to produce the preliminary model shown from

perspectives in figure 4-28. In this rendering, “occluded” surfaces are shown in red, w

“imaged” surfaces are shown with their edges visible. Approximately 25% of the en

acquirable model surface is at this point composed of “occluded” surface (“acquir

model surface” in this context means those “occluded” surfaces that are not in a horiz

orientation, such as the roofs). After decimating the “occluded” surfaces, the 30 large

area were chosen and plan was generated for them.Vtarget is shown for each of these 30

surfaces, with a decimated copy of the city scene at the center to allow the read

observe the relative orientations.

These visibility volumes are then intersected withVplacementto compute the sets of

occlusion-free sensor positions for the targets, as shown in figure 4-30. In this plan

example, a discrete solution is desired for the proper number of degrees to rota

Figure 4-27. The city scene, consisting of three toy buildings. Note the archway
under the rightmost building, and one of three pillars visible on the leftmost building.
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Figure 4-28. Preliminary model of city scene, from two perspectives.

Figure 4-29. Initial planning for city scene. Shown are visibility volumesVtarget (in
green) for the 30 largest “occluded” surfaces by area.
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turntable. To accomplish this, the sensor space has been discretized every 2°, with the total

target area acquired at each position found by testing the continuous-space pla

intersection with a vertical line at the appropriate position on the cylinder representin

sensor placement constraint. The results of this process are shown in figure 4-31

“planning histogram”, where the height of each green bar represents the area of

surfaces visible from that sensor location. Thus, higher bars denote desirable s

locations, lower ones less so.

Figure 4-30. Plans for top 30 targets by area, shown in green on the surface of a
model of the sensor placement constraint.
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From this discrete representation, the angle of turntable rotation is found by selectin

peak in the planning histogram. After the next range image is taken, the planning pr

is restarted with the next model. In figure 4-32, figure 4-33, and figure 4-34 the contin

and discrete plans are shown for the next 6views.

After a total of 12 images have been automatically acquired, modeled, and integrate

final model is shown in figure 4-35. Again, red areas denote “occluded” surface, w

properly acquired surfaces are shown with their edges visible. Note that because

constraints on the orientation of the sensor, in this example no surfaces on the build

roofs can be acquired. This model is shown texture-mapped in figure 4-36.

Figure 4-31. Results of discretization of sensor space. The height of each green “bar”
represents the area of target surfaces visible from that sensor location.
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Figure 4-32. Plan generation for views 6, 7, and 8.
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Figure 4-33. Plan generation for views 9, 10, and 11.
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Figure 4-34. Plan generation for view 12.

Figure 4-35. Final model of city scene.
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4.15  Analysis: Model City

The results from the city scene acquisition require some analysis. In the table belo

list some of the pertinent measurements of the model as acquisition continues:

• Volume – The total volume of the model.

• Surface Area, Total – The total surface area of the model.

• Surface Area, Occluded – The total area of all “occluded” surfaces that ha

significant component of their surface normals in the world x-y plane. T

prevents the inclusion of “roof” features, which can not be acquired and sh

not be planned for, in this sum.

• Surface Area, Planned Targets – The total surface area of the targets for w

plans have been generated.

Figure 4-36. Final model of city scene, texture-mapped.
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• % Target Area Planned – The surface area of planned-for targets, as a perce

of the total “occluded” surface area.

Each of these metrics was calculated algorithmically on the computer model.

As shown in table 4-1, the first 4 views were acquired without any planning. In the

describing the remaining views there are some features that seem intuitive. The

model volume decreases over time, as indeed it must for a system that uses set inter

for integration and has not duplicated any sensor viewpoints. As is shown in the

column, the total surface does not strictly decrease, due to the effect described in s

4.2. Of particular import is the data in the final column. Because the plans are comp

using a fixed number of surfaces at each iteration, it is interesting to see what perce

of the total available target area is being planned for. Clearly, if every target surface

considered, this would be 100% each time. Even though only 30 of the largest targe

area are planned for, the percent of the planned area never drops below 10% of th

area, and in most cases is over 20%. This shows that the considerable computation

saved by selecting a subset of the targets to plan for is a viable strategy. The actual v

of the city scene has been calculated from measurements made by hand as 362 cm3.

4.16  Discussion of Trade-Offs between Sensing and Planning

The focus of this section is on the computational costs and trade-offs involved in the

ing and planning phases of the model acquisition process. Although it is not possib

determine either the sensor positions or their number for an unknown scene in adv

we discuss here some of the issues involved in using planned versus unplanned sen
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As we have mentioned above, the purpose of the planning phase is twofold. By auto

cally planning sensor viewpoints, it is possible to ensure that the scene or obje

acquired to the desired resolution. In addition, having an algorithmic planning me

may lead to a reduction in the number of views, and therefore the time and data, nec

to acquire a model. However, quantifying the reduction exactly can only be achieved

number of unplanned and planned views is known in advance, which may only be don

scenes so simple that they usually do not require planning at all.

The entire time cost to acquire a model is the sum of the time to acquire and integra

information from both pre-planned views – such as those from equal 90° turntable rota-

tions – and those which are planned. The cost of pre-planned views may be written 

Costpre-planned = n (CA + CM  + CI) (EQ 4-5)

TABLE 4-1. Model measurements during acquisition.

View # Volume (cm3)
Surface Area:
Total (cm2)

Surface Area:
Occluded (cm2)

Surface Area:
Planned Targets (cm2)

% Target Area
Planned

0 4712 1571 1571 – –

1 1840 1317 942 – –

2 1052 1151 590 – –

3 506 733 200 – –

4 432 658 140 – –

5 416 656 121 61 50%

6 404 659 104 28 27%

7 391 657 90 12 13%

8 386 647 84 8 10%

9 382 644 75 15 20%

10 380 651 62 7 11%

11 374 622 53 16 30%

12 370 604 36 9 25%
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whereCA, CM , andCI are the costs associated with acquiring, modeling, and integra

each range image andn is the number of pre-planned views.CA includes the time needed

to position the sensor and to acquire the image. Image acquisition time is linear

respect to the size of the image, but positioning time varies widely with the task. For s

situations, such as the experimental setup described in Chapter 3, determining th

from one position to the next is done in constant time, and the repositioning motion is

However, for situations where positioning the sensor requires the use of advanced

planning algorithms, or repositioning is very expensive, this cost may be conside

larger.CM accounts for the time spent applying extrusion and set union to each su

element in the mesh constructed from the range image. The extrusion may be done i

stant time, but general set intersection operators are approximately quadratic in the

ber of model edges. However, because the union is of a set of parallel triangular p

which meet only along their extruded surfaces, each union operation may be carried

constant time. Thus,CM is linear in the size of the image.CI is quadratic, since it relies on

a general set intersection operator. However, due to the effects of taking intersectio

noisy surface data, the number of intersecting model surfaces from the same object s

decreases over time, thus somewhat countering the effect of the increasing num

model surfaces.

It is possible to estimate a lower bound onn, the number of unplanned views required,

we assume that the space represented by the sensor placement constraint is divided

by the number of views – that is, sensor positions are evenly distributed and the first

tion is chosen randomly. In the case of a turntable-based system,n views would have 360/

n degrees of rotation between each of them. Under this assumption, if the visibility
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certain featuref is known to lie within a portion of the sensor placement constraint, then

may be determined. Again, using the turntable example, if a model feature is only vi

within a 20° angle, then in order to guarantee that feature is acquired images must be

at less than 20° increments. Thus, for any feature which can only be imaged within

angle ofα, the number of views needed to guarantee acquisition off is

(EQ 4-6)

In the example of the city scene shown above, there is one feature that is only visible

9° region of the sensor placement constraint. Thus at least 41 images at equal tur

rotations are needed to guarantee acquisition of that feature if no view planning is

formed. There may be other features with even more constrained visibility, which w

increase the number of required views, but this is a useful way to estimate a lower b

The cost of planned views is more difficult to analyze, since it is necessary to know

many planned views will be required for the scene. The cost for acquiring the pla

views is:

Costplanned = m (CA + CM  + CI  + CP) (EQ 4-7)

wherem is the number of planned views, andCP is the cost of planning a single view

which was shown in section 4.9 to be quadratic in the number of model surfaces. T

both an unplanned view and a planned one areO(s2), s in this case referring to the numbe

of surfaces in the composite and single-view models. Unfortunately, there is no sol

for computing the number of viewsm that an unknown scene will require, just as there

no solution to determining a set of viewpoints that will completely acquire an unkno

360
a

--------- 1+
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scene. However, it may be possible to compute an estimate based on a qualitative d

tion of the scene This description may be based on a classification of parts or scene

by an “occlusion index”, from which the number of initial unplanned views may be c

jectured. In this thesis the number of initial views was a user-defined variable, foun

examining the scene occlusion and estimating the number of initial views neede

acquire a rough model. Because the number of initial views is a single integer param

its estimation is an appropriate place to allow user interaction.

In the implementation of our system the planning component has received conside

less attention to optimization, and remains highly instrumented with verification c

Because of this, the time to plan a new sensor viewpoint and acquire an image

approximately 120 minutes for each of the planned city scenes. This is a factor o

greater than the time required to acquire an unplanned view, which is approximat

minutes as discussed in the previous chapter. Although the minimum of 41 unpla

images necessary to acquire the city scene would have been faster in this situatio

easy to imagine a situation where this would not be the case. For example, if by impro

the planning code the time to produce a plan was reduced to less than 29 minute

planned and unplanned methods would take the same amount of time to produce m

of equal quality. However, because using viewpoint planning greatly reduces the nu

of views (from 41 to 12), it would also reduce the amount of data storage necessa

well as wear on the positioning system.

Clearly, if the cost of planning is very expensive with respect to the cost of acquir

modeling, and integrating the data, for many tasks it will be sufficient to use pre-defi
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views, as shown in Chapter 3. However, for may scenes it will not be as easy to acqui

sensor data as it is in our experimental setup. One such situation is for systems whe

sensor is on a mobile robot, and is typified by the hours required to move the M

Sojourner a few meters on a remote world. In these situations,CA has increased dramati

cally, and far outweighs the cost of planning to reduce the number of views. Another

to reduce the disparity between planned and unplanned views is to reduceCP, either by

using more efficient code or by a modification of the planning algorithm. The forme

desirable because it retains the generality of the method, and it is expected that a sp

by a factor of 5 to 10 may be easily realized. Modifications to the planning algorithm

include the use of heuristics to select targets with few occlusions, thus reducing the

tively expensive intersections done during the planning operation (see section 4.9, Co

tational Considerations). A detailed discussion of these heuristics is out of the sco

this work, but those based on the position and orientation of the target surfaces hold

promise: it can be seen that the “occluded” surfaces closest to the borders of the

image cannot be occluded, and therefore may support faster planning.

Although in this thesis we have not identified exact methods of determiningn andm for an

unknown scene, experience has shown us that planning is most effective when a m

of the object surface has already been acquired. In the examples shown, planning is

ated only after a substantial model has been built, and therefore the planning is isola

relatively small regions of “occluded” surface. Because the number of initial vie

depends on the scene, the task, and the system, it may be best to have user inte

specify this quantity.
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Chapter 5 Conclusions and Future Work
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5.0  Conclusions

This thesis discusses the problem of automatic model acquisition for arbitrary free-

objects and scenes. It has presented an approach for solving this task under a var

constraints, by decomposing the task into a modeling component and a plan

component. It has also presented the results from experiments that show ho

implementation of the approach performs on a variety of reconstructions. This ch

summarizes the contributions to computer vision, graphics, and modeling made b

work. Limitations of the system, and the future research that will advance work in

area, are also presented.

5.1  Summary

The automated model acquisition method presented in this thesis consists o

components that operate in an interleaved fashion: a modeling component that acq
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models, and integrates data acquired from a range imaging camera, and a pla

component that analyzes the resulting model and computes the next sensor position

The modeling component operates by constructing a mesh surface from the range i

and extruding each mesh element into a solid prism. The union of the resulting s

prisms forms a solid model of both the imaged object surfaces and the space occ

from the sensor. A sensor model is then used to annotate the model with tags that de

each surface as a properly-imaged object surface or one that is the result of occlus

the scene. Models from different viewpoints are integrated using a set interse

operator.

The planning component takes as input the integrated model from the mod

component. The tags that annotate the model surfaces are used to determine volu

visibility for contiguous areas of unexplored scene. These volumes are combined

models representing the sensor’s positional freedom to compute sets of occlusio

sensor positions that are guaranteed to improve the quality of the model. These set

be intersected to determine a single best region for the next sensor position, or discr

if a continuous solution is not necessary.

Both components have been tested, individually and as a system, on a variety of dif

shapes and scenes. Complex parts with holes and both flat and curved surfaces, as

multi-part scenes with very high self-occlusion, have been properly acquired.

resulting models have been rendered, and in many cases fabricated using an RP m
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5.2  Contributions

The primary contributions of this thesis are embodied in the techniques describe

model acquisition and sensor viewpoint planning:

• Model acquisition of complex scenes – Free-form and multiple objects

arbitrary topological type can be acquired.

• Guaranteed solid models – The resulting model is “watertight” irrespective of

number of images used to acquire it.

• Construction of solid using mesh surface and sweeping – Although there

been work done using extrusion to generate models, this has been with inte

images, and has not been extended to range imagery or mesh su

applications.

• Persistence of surface-type information – “Imaged” and “occluded” surface

persist through model integration, so that properly-acquired surfaces (and

not so) are identifiable in the final model.

• Incremental model improvement – The model quality may be improved as

application requires by using additional sensing operations.

• Plan generation for best next view – Feature-based viewpoint sensor plan

techniques have been applied to situations in which the entire object is

modeled. Their use in this context is new, and has the following advanta

continuous-space representation, the ability to handle model self-occlu

applicability to different sensors, and computational cost determined by ta

surfaces (not by the size of the sensor space).
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• Model acquisition system and testbed – It is important, particularly in

geometric modeling arena, that algorithms be able to be usefully applied.

methods presented in this thesis have been implemented in a system

combines the software algorithm with an industrial robot, a laser rangefinder,

a turntable. It should be noted that this system is much more flexible t

scanners currently on the market, and therefore may serve as an exc

platform for future research in this field.

5.3  Limitations

As discussed in the preceding chapters, the approach described in this thesis is not w

limitations. We summarize these limitations here, and discuss possible solutions tha

be carried out to improve the system.

5.3.1  Limitations of the Modeling Algorithm

The modeling component of this thesis has three primary limitations to its effectiven

one due to a sensing constraint and two due to modeling constraints.

The first and probably the greatest limitation of the domain of objects that may

acquired is that the method requires “surrounding views” of a scene in order to prod

useful model. Thus, it is not effective in modeling the inside of a room from a sen

location at the center. However, this limitation may be overcome if the modeling techn

is changed to produce the solid from the mesh surfaceto the sensor origin (instead o

sweeping itawayfrom the sensor) and if set subtraction is used instead of set intersec
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Although this technique will not create well-bounded models after only a few view

does permit the modeling of situations such as the room example.

Secondly, this method may run into limitations due to modeling resolution faster

other techniques such as mesh surface merging. This is because at each inter

operation between models, there are many surfaces that differ only because their

vertices have been affected differently by noise. Thus, at each intersection operatio

mesh surface there tends to increase in resolution. This is not a problem in many

surface-based merging methods because a resulting mesh may have the same reso

the two input meshes.

Finally, because set intersection is used as the integration method, there

consideration of the value of overlapping samples, as is done in methods that com

samples to compute aconsensus surface. In addition, there is a bias effect due to th

intersection operation: since each composite model is formed from the intersectio

previous models, the bias is towards the model of least volume. A possible solution t

is to provide a topology-preserving post-processing stage in which the vertices from

final model are moved to new positions that are weighted averages of the surfaces th

within a certain distance in the direction of the surface normal. This technique migh

used in conjunction with additional surface tags that give an estimation of the sen

accuracy when the surface was acquired.
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5.3.2  Limitations of the Planning Algorithm

There are three limitations of the planning system. The first is due to the characteriz

of target surface visibility, the second is due to omission of a field-of-view constraint,

the last is the failure to recognize when certain inappropriate plans are used.

While in the process of acquiring an object, it may become evident that a view

degrades the model has been used. For example, let’s assume that the part being im

a propeller blade or other thin part. After an initial model has been acquired, it is q

possible that the planner will generate a sensor position that causes the blade to be i

in profile, i.e. edge-on. Since sampling sensors tend to perform poorly in this orienta

the single-view model created is likely to be only a subset of the true volume. Howev

is possible to note when these situations occur. If the surface area of surfaces t

“imaged” ever decreases, the current single-view model should be suspect. Po

planning behavior at this point would at least include disregarding the current viewp

and image.

The second limitation is that no orientation constraint is included in the planning proc

The reason for this is that the modeling component assumes that the field-of-

completely covers the workspace, so the constraint is not relevant during the pla

process. However, in situations where such a field-of-view is not possible, this cons

is important to consider. The reader is directed to [Abrams 1997] and [Sedas-Gersey

for techniques that allow its inclusion.

Finally, because the planning system considers only total visibility for each target,

possible that some solutions are missed where partial visibility would allow a better re
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“Total visibility” in this context means that every position in the plan cancompletely

image the target surface. For example, when planning for two targets, their visib

volumes may be disjoint, meaning that there are no positions that totally image

targets. However, there may be positions that partially image both targets, and whos

imaged area is greater than either target individually. This is an example of a case w

planning using total visibility does not provide the best solution. However, in practic

probably does not affect the outcome significantly, since the plans generated wit

current methods already have many overlapping visibility volumes for the total visib

case.

5.4  Future Work

The limitations of the system described above point to areas in which there remains

work to be done to increase the effectiveness and flexibility of the current sys

Moreover, several other avenues of exploration in this field draw attention. We dis

some of them here.

• Modeling in diverse environments: As modeling techniques are applied to la

objects or outdoors, it will become impossible to continue the current practic

viewing the entire surface of the object from its exterior. For example, cons

the interior of a large room: A sensor at the center of the room can acq

information about the interior walls, but the methods used to model and integ

this information will be quite different from the case where the outside surf

has been completely imaged.
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• Rapid modeling systems: There have been recent advances in rangefi

scanners, and some prototypes are now able to produce range images at c

1Khz. Although it is unlikely that real-time modeling will be realized any tim

soon, specialized techniques can certainly be developed to improve the spe

current systems, although at a cost to modeling fidelity.

• High-accuracy modeling: As with most systems, there is always the desir

push the envelope with respect to modeling accuracy. Accuracy in systems

use multiple images depends in large part on the method of integration, an

robust merging methods must be developed that can determine optimal sur

under various constraints.

• Planning and visibility issues: Sensor planning systems ordinarily assume

the sensor requires complete visibility for each target surface. However, fin

more appropriate viewpoints may be possible if this constraint is relaxed

partial visibility is considered.

• Model acquisition at the CAD primitive level: Although one may acquire high

tessellated models of real-world objects, these models are far from the lev

abstraction of the CAD models with which a human designer would typica

work. The problem for the future is to find methods to transform models so

they more closely follow common design principles.
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5.5  Final Remarks

The field of 3-D digital imaging and modeling is undergoing a remarkable expansio

this time, in both research and application. The problems that will be encountered b

these systems can easily be applied to a wide range of tasks will be both interestin

challenging. It is our hope that this thesis will provide both support and cause for fu

advancements in the field.
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A.0  Introduction

This appendix discusses the means used to calibrate the rangefinder/robot/tur

system.

A.1  Calibration

In order to merge models acquired from different viewpoints, they must be transfor

into a common coordinate frame. In this regard a system may choose bet

transforming the models into the world coordinate frame or transforming them into s

other common frame, usually that of one of the models. All other things being equal,

better to do the former, since it allows interaction between the model and the world.

latter technique is useful if one is only concerned with generating a model of the ob

and may be accomplished by either fitting overlapping parts of the model together

aligning registration features that are either part of the model or added nearby.
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Calibration of our system allows imaged data from the rangefinder to be transform

world coordinates. There are two parts to this calibration: the first is concerned

calibrating the camera internally, so that it correctly interprets its sensing operations

accurate depth data. The second part of the calibration, and the one which is

completely dealt with here, is concerned with determining the transform from the

effector of the robot to the center of the rangefinder’s coordinate system.

A.1.1  Rangefinder / Robot System Calibration

Although single images may be acquired and modeled independently, it is necessary

able to establish their position and orientation in a common reference frame if mul

images (or models) are to be merged into one. We need to determine the homoge

transformation matrix Tgrip-range that transforms points from the coordinate frame of t

rangefinder (denoted Prange) to points in the frame of the manipulator’s gripper (denot

Pgrip), as shown in figure A-1. Once we have this transform a sensed point may be bro

into the world coordinate frame by multiplying first by Tgrip-range, and then by Tworld-grip (the

gripper transform given to us by the robot) to give us Pworld.

One common way to solve this problem is to include a step during processing in whic

distinct images are registered. However, image registration is a computationally expe

process that can be avoided if the inter-image transform is know beforehand. Determ

this involves accurately computing the transform from the end effector of the robot to

origin of the coordinate system of the rangefinder.
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To see why registration is a difficult problem, look at table A-1, which shows the resul

an accuracy test reproduced from [Mooringet al. 1991] using the type of manipulato

initially chosen for the work presented here. Although the repeatability of this manipu

is well suited to our task (mean position error of 0.0041 inch, mean angular erro

z

x

y
World

z

x

yGripper

Rangefinder

z (direction of beam)
y

x

Tworld-grip Tgrip-range

Figure A-1. Transformations between world, gripper, and rangefinder.

Pose #
Position Error
(in.)

Orientation
Error (deg.)

1 0.456 0.619

2 0.454 0.369

3 0.564 0.665

4 0.481 0.646

5 0.496 1.904

6 0.518 0.641

7 0.363 1.116

8 0.469 0.748

9 0.153 0.757

TABLE A-1. Results of accuracy experiment on Puma-560 manipulator. The
manipulator was commanded to move the end effector to one of 9 poses, where
the actual pose was then measured using a CMM.
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0.0905 degrees), this table shows that the accuracy of the manipulator is insufficie

our work. Arbitrarily positioning the sensor to acquire a range image may result in ang

errors in excess of one degree, as shown in poses five and seven. Since the laser oft

sensing operations from a distance of approximately 0.5m from the target, this will r

in a sensed position error of greater than 8mm, which is unsatisfactory.

There are many ways of overcoming this problem: First, do not use the manipulat

arbitrary positions, or do not use anthropomorphic manipulators such as the one a

The joints that have the greatest effect on error are known, and use of these sho

minimized. Secondly, calibrate the laser/manipulator system in the pose it will acq

data from. One simple and often-used solution is to use a turntable to rotate the obj

be imaged. This allows the rangefinder/manipulator system to be calibrated very pre

within the range of motion required for image acquisition. Third, try to reduce the dista

from the rangefinder to the object being imaged: the longer this distance is, the great

effect of angular errors on the resulting data.

One may wonder at the ubiquitous use of turntables in the commercial products

perform modeling-from-observation tasks. Additional motivation for using a turntabl

that it reduces the number of unique transformations in a way that simplifies correctio

other registration methods. Without a turntable, and allowing unconstrained placeme

the manipulator arm, we have the following situation:

(EQ A-1)

Here n is the number of matching points in the rangefinder and world coordinate fra

and also the number of different gripper transforms (in the general case one po

Pn
world Tn

world grip– T P
grip range– range

n=
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extracted per scan, i.e. per gripper position). For n matching world and imaged point

will have n transforms for the end effector, each of which will introduce additional er

Using a turntable allows us to constrain the arm to a small subset of positions wher

error may be accounted for in Tgrip-range when Tgrip-range is determined. If we use the

rangefinder model discussed above and constrain the sensing operation to jus

viewpoint, the above equation reduces to:

(EQ A-2)

where Tworld-range= Tworld-gripTgrip-range. The benefit of this is that there is only one transformati

matrix, instead of then in the first equation, which permits fine tuning of on

transformation to improve registration instead of n independent transformations

course, a disadvantage is that now only one view of the object may be imaged. T

where the turntable is useful, since it allows the object to be repositioned with respe

the sensor. Turntables are an inexpensive means to increase the performance of this

system, since their rotation R(θ) may be applied very accurately. In order to incorporate

turntable, its relationship Tworld-turn to the world coordinate system must be known. This m

be measured using the sensor or the end effector of the robot. Now any points measu

the sensor must not only be transformed into the world coordinate frame, but also int

of the turntable so that any turntable rotation may be reversed. This gives us the follo

equation for transforming data from the sensor into the common coordinate frame o

turntable with rotationθ = 0:

(EQ A-3)

Pn
world Tworld range– Pn

range=

Pturntable R θ( ) 1– Tworld turn–( )
1–
Tworld range– Prange=
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A.1.2  Determination of Rangefinder Transform Tr

To determine the relationship Tgrip-rangebetween the rangefinder and the manipulator’s e

effector a least-squares solution is computed to a system of linear equations, analog

the method for used to determine transformations in tablet systems [Sutherland 1

Again, we need to obtain the matrix Tgrip-range, described by:

(EQ A-4)

where [x y z 1] and [x’ y’ z’ w] are the homogeneous coordinates of a point in

rangefinder and gripper coordinate frame’s respectively. Note that, due of the typ

sensor, 3-D coordinates are used in both the sensed (rangefinder) and gripper coo

frames, so the scale factor w is unity. More importantly, note that because the senso

acquires data in it x-z plane, all the values y are 0. The effect of this is that it is

possible to completely determine the transformation matrix. Fortunately, the matrix ca

found up to a determination of the Opposition vector [T12 T22 T32], which may then be

calculated as shown below.

Multiplying equation A-4 out, and including the knowledge that all y are 0, gives

following 4 equations which hold for all matched sets of points:

(EQ A-5)

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

x

y

z

1

x'

y'

z'

w

=

T11x T13z T14++ x'=

T21x T23z T24++ y'=

T31x T33z T34++ z'=

T41x T43z T44++ 1=
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For n points we will then have 4 equations per point in 12 unknowns to solve the ge

case, therefore requiring 3 pairs of matching points. We can solve this system

computing a solution to Ax = b in the following form:

(EQ A-6)

With more than 3 pairs of matching points this system will be overdetermined. A l

mean-square solution may be found by first multiplying both sides by AT:

(EQ A-7)

As discussed above the sensed points [x y z] are coplanar in the x-z plane of the se

coordinate frame, hence it will not be possible to determine the second column in thegrip-

range, i.e. the Opposition vector. However, if it is assumed that Tgrip-range describes a right

handed coordinate frame, this which may be calculated from cross product of the No

and Approach vectors (the first and third columns in Tgrip-range), giving us Tgrip-range.

x1 z1 1 0 0 0 0 0 0 0 0 0

x2 z2 1 0 0 0 0 0 0 0 0 0

…
xn zn 1 0 0 0 0 0 0 0 0 0

0 0 0 x1 z1 1 0 0 0 0 0 0

0 0 0 x2 z2 1 0 0 0 0 0 0

…
0 0 0 xn zn 1 0 0 0 0 0 0

0 0 0 0 0 0x1 z1 1 0 0 0

0 0 0 0 0 0x2 z2 1 0 0 0

…
0 0 0 0 0 0xn zn 1 0 0 0

0 0 0 0 0 0 0 0 0x1 z1 1

0 0 0 0 0 0 0 0 0x2 z2 1

…
0 0 0 0 0 0 0 0 0xn zn 1

T11

T13

T14

T21

T23

T24

T31

T33

T34

T41

T43

T44

x'1
x'2
…
x'n
y'1
y'2
…
y'n
z'1
z'2
…
z'n
1

1

…
1

=

AT Ax ATb=
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