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Abstract 

We describe an automated scene modeling system that consists of two components operating in

an interleaved fashion: an incremental modeler that builds solid models from range imagery, and

a sensor planner that analyzes the resulting model and computes the next sensor position. This

planning component is target-driven and computes sensor positions using model information

about the imaged surfaces and the unexplored space in a scene. The method is shape-independent

and uses a continuous-space representation that preserves the accuracy of sensed data. It is able

to completely acquire a scene by repeatedly planning sensor positions, utilizing a partial model to

determine volumes of visibility for contiguous areas of unexplored scene. These visibility volumes

are combined with sensor placement constraints to compute sets of occlusion-free sensor posi-

tions that are guaranteed to improve the quality of the model. We show results for acquisition of a

scene that includes multiple, distinct objects with high occlusion.

1 Introduction

To build accurate and complete 3-D models of unknown objects or scenes, two fundamental

issues must be addressed. The first is how to acquire, model and integrate noisy and incomplete

sensor data into an accurate model. The second issue is the problem of planning the next sensor

position and orientation during the modeling process so as to acquire as much new scene informa-

tion as possible. We have developed a system that creates accurate solid models from multiple

range scans. Further, we are able to plan each successive viewpoint to reduce the number of scans

needed to create a model. This planning problem has been called the Next Best View (NBV) prob-

lem, and arises naturally in systems that autonomously investigate and model their surroundings

[19]. The application area we are focused on is recovery of buildings using range scans in clut-

tered, high occlusion urban areas, but the methods we describe here are applicable to other model-

ing tasks as well.



Previous work in 3-D model acquisition from range imagery [6] [18] [3] [7] [21], whether with

small indoor objects or large outdoor structures such as buildings, has often neglected this plan-

ning component in favor of a large number of images and the assumption of complete scene sam-

pling. In cluttered environments such as outdoor, urban scenes, occlusion and sensor positioning

costs can be high enough to prohibit exhaustive sensing. Our method plans the next sensor view-

point so that each additional sensing operation recovers object surface that has not yet been mod-

eled and attempts to reduce the number of sensing operations to recover a model. Systems without

planning tend to use human interaction or overly large data sets with significant overlap between

them. Given large data set sizes and long image acquisition times, reducing the number of views

while providing full coverage of the scene is a major goal. It is assumed that in these environ-

ments, this reduction will correspond to either improved model quality or a reduction in total

model acquisition time.

Previous solutions to the NBV problem differ in their representations of unexplored space,

their method of utilizing this representation, or both. Connolly [5] used octrees to model the

workspace and differentiated between sensed and occluded octree nodes. Planning was either by

ray-casting the model from discrete sensor positions or by using a histogram of normals for unex-

plored octree node faces. Surface normal histograms were also used by Maver and Bajcsy [10] in

a method that used polygonal surfaces to represent regions occluded from the sensor, and there-

fore was not affected by the discretization issues associated with octrees. Whaite and Ferrie [20]

used an uncertainty metric for models composed of superellipsoids; ray-casting operations on the

model from discrete sensor positions were used to find the viewpoint that will maximize the

reduction in uncertainty. Banta et al. [2] described an algorithm that determines a set of view-

points from an occupancy grid model by examining regions that have high degree of curvature.

Again, a ray-casting procedure is used to choose the best candidate viewpoint. Pito [9] used a

mesh surface model of imaged scene features on which the border elements have been extended a

short distance in the viewing direction, in a sense modeling limited parts of the scene occlusion.

In an inversion of the ray-casting process, these border elements were used to weight sensor posi-

tions, thus avoiding unnecessary ray-casting operations. Work by Kutulakos [8] obtained a

hypothesis of how an object surface behaves at the extremal boundary of the model, and then

observed its deformation during a change in viewpoint. Sobh et al. [13] used coarse and fine sen-

sors and domain knowledge about the scene to determine a hierarchical sensing plan.



Our previous work in sensor planning computed unoccluded sensor viewpoints for a set of

known features given a model of a scene, a sensor model, and a set of sensing constraints [1] [17].

However, these methods are only effective for planning to acquire distinct features on known

objects. In this paper, we apply these techniques to the problem of acquiring an unknown object.

We are able to do this by completely modeling all scene occlusion as well as the sensed surfaces

and determining occlusion-free viewpoints for portions of the occlusion boundary. For a survey of

the sensor planning literature, see [16].

2 Overview of model acquisition

We briefly review our model acquisition system which uses range images to build accurate 3-D

models of an object or scene [12]. The method is an incremental one in which modeling opera-

tions may be interleaved with the planning method that determines the next sensor position. For

each range scan, a mesh surface is formed and “swept” in space to create a solid volume repre-

senting both the imaged object surfaces and the occluded volume (figure1). This is done by

applying an extrusion operator to each triangular mesh element, sweeping it along the vector of

the rangefinder’s sensing axis, until it comes in contact with the boundary of the workspace. The

result is a 5-sided triangular prism. A regularized union operation is applied to the set of prisms,

which produces a polyhedral solid consisting of three sets of surfaces: a mesh-like surface from

the acquired range data, a number of lateral faces equal to the number of vertices on the boundary

of the mesh derived from the sweeping operation, and a bounding surface that caps one end. In

this method, the occlusion boundary is explicitly realized as a surface; this feature is important

because it causes each model to be a closed, bounded set, and allows application of the robust

analysis and modification functions of solid modeling techniques. Each surface of this model is

tagged as “imaged” or “occlusion”, depending on the following constraint: when the angle

between the sensing direction and the surface normal is greater than the “breakdown angle” (the

maximum inclination of the sensor with respect to a surface) for the sensor, that surface is labelled

as an occlusion surface. It is these surfaces that drive the planning process.

Each successive sensing operation results in new information that must be merged with the

current model being built, called the composite model, by performing a regularized set intersec-

tion operation between the two. The intersection operation propagates the surface-type tags from

surfaces in the individual models through to the composite model. These tags are key to our algo-



rithms for planning the next view, as they denote surfaces that are used as targets in the planning

process. The system also has other important benefits. It places no topological constraints on the

object or scene -- there may be multiple objects, objects with holes, etc. The resulting models are

guaranteed to be “water-tight” 3-D solids at each step in the process, and the method supports

incremental improvement as new views are integrated into the model..

3 Strategies for viewpoint planning

A “rough” model is acquired first, e.g. from four distinct views, that can then be used to plan

the NBV. Deciding the number of initial views depends on the scene and the task, and it may be

best to have user interaction specify this quantity. Once a partial model is acquired, the planner

operates by considering the entire workspace as the potential location for the next sensor place-

ment, and then constraining this volume until a solution for the next viewpoint is found. The con-

straints are represented as volumes in continuous space which may be combined to form a plan

via set operators. The object of the planning is to maximize the surface area of the occlusion

boundary in the scene that is imaged in each sensing operation. 

There are three constraints that the planner considers. Sensor imaging constraints are limita-

tions on the imaging of a surface in the scene due to the sensor’s modality or implementation. For

Figure 1. Top: (left) data points from range scan of video game controller, and (right) solid model created
from scan showing imaged (light) and occlusion (dark) surfaces. Bottom: (left) image of actual controller, and
(right) reconstruction of controller from the model at top right and models from two additional viewpoints.



example, if the sensor must be within a certain angle of inclination with respect to the surface, this

produces a constraint on the representative volume. Scene occlusion constraints are those due to

the fact that parts of the current composite model block some locations in space from viewing the

target surface. Finally, sensor placement constraints limit the range of positions in which the

sensor may be placed. Each of these constraints may be represented as a volume, called Vimaging, Voc-

clusion, and Vplacement respectively.

An overview of the process is shown in figure2. The left column shows the entire model

acquisition process, which is an acquire-model-integrate-plan loop. The right column shows the

steps in planning. The first step is to select one or more targets. For each target, the sensor imag-

ing constraint is computed to yield Vimaging,. For each target, potential self-occlusions are deter-

mined by testing scene model surfaces for intersection with any Vimaging,. Scene occlusion

constraints Vocclusion, are then computed for each surface that may occlude a target. Next, visibility

volumes, Vtarget, which are the set of sensor positions that may properly image the target, yet are

not occluded by parts of the model, are found. These are intersected with the sensor placement

constraints to find the final viable positions of the sensor. Usually, more than one target is being

considered, so that there is the possibility of imaging multiple targets in one sensing operation. In

this case, computation of sensor imaging constraints and sensor occlusion constraints is done for

select targets

compute sensor imaging 
constraints

compute scene occlusion 
constraints

find model self-occlusions

compute visibility volumes

intersect visibility volumes with 
sensor placement constraint

determine next sensor position

Figure 2. Overview of the sensor planning process.

acquire image

compute model from single 

integrate with previous model

plan next viewpoint

(discretize result if necessary)



each target surface from a set of eligible surfaces. A running example is described next and

depicted in figure 3, demonstrating the planning process for a model consisting of three surfaces:

a single target and two occluding surfaces. 

3.1 Computing sensor imaging constraints

Vimagin describes the locations from which a sensor can effectively image one of the target sur-

faces. The factors that contribute to the imaging constraints are the modality of the sensor and the

geometric parameters describing its ability to acquire images, such as breakdown angle α, depth

of field, standoff (which describes the closest the sensor may be to the target), and its range and

resolution. Each of these parameters affect the shape of a volume representing this constraint. For

common sensors, the volume Vimaging may be quickly generated from a polygonal target surface by

performing an extrusion operator on the surface, in the direction of the surface normal, with a

draft angle equal to the breakdown angle α. Figure 3a shows the three surfaces and Vimaging for the

target surface assuming a sensor with a 45 degree breakdown angle. 

3.2 Computing occlusion constraints

The occlusion constraints further restrict the positioning of the sensor for a specified target by

disallowing all positions in space from which the target is occluded by any part of the environ-

ment. The surfaces in the current composite model are analyzed to see if they occlude the sensor

from the target. For each surface i that potentially occludes the target, a volume Oi is constructed

that represents the space that is disallowed for the sensor. To describe the entire space from which

it is not possible to see the target, it suffices to compute:

(1)

– that is, the union of these volumes over all surfaces in the composite model comprises the

space from which it is not possible to see the target, and hence captures the occlusion constraints.

In the running example shown in figure 3b, Vocclusion is shown for the two occluding model surfaces.

Figure 3c shows Vtarget for this scene, the computation of which is described below. The computa-

tion of Oi for a specific target and model surface i utilizes an algorithm earlier developed for

polygonal feature visibility described in [17][15]. It derives a geometric decomposition of space

into volumes from which a specified model feature either can or cannot be fully imaged by an

ideal sensor. If a target surface – that is, an “occlusion” surface in the model – is used as a feature,

Vocclusion Oi
i i target≠∀

∪=



this algorithm may be used to produce valid viewpoints for any target- and occluding-surface pair.

The resulting occlusion volumes are then united (via a union operation) as shown above. The

polygons need to be convex which may require a convex decomposition.

3.3 Computing sensor placement constraints

Sensor placement constraints describe the physical locations in which the sensor may be

placed, and are typically derived from a description of the manipulator used to position the sensor.

This may be a 6-degree-of-freedom manipulator, in which case the sensor placement constraint

may be represented by a sphere of finite radius Many systems built around laser rangefinders use

a turntable to rotate the object and constrain the sensor to one degree of freedom, usually along a

linear path and this produces a cylindrically-shaped sensor placement constraint. We have previ-

ously included the resolution constraint for the case of a 2-D camera in [14]. Figure 3d shows

Vplacement for a model of a sensor attached to a cartesian manipulator.

3.4 Constraint integration

The planning process constructs a visibility volume

(2)

that describes the set of all sensor positions that have an unoccluded view of the target for a

specified model as shown by the volume Vtarget in figure 3c. Once this visibility volume has been

computed, it is only necessary to include the constraint represented by Vplacement to determine the

plan:

(3)

This integration is shown in figure 3d, in which Vtarget is shown along with Vplacement (the blue vol-

ume), which in this case models a sensor attached to a cartesian manipulator.

Each of these constraints is represented volumetrically by a set in three-dimensional space, and

a solution may be found by applying set operators. The final result is a set of points, lines, sur-

faces, or volumes that represent admissible viewpoints, and may be the empty set if there is no

solution. Figure 3e shows the final Vplan , formed by the set intersection in equation 3. This plan

represents the accessible, unoccluded positions from which the sensor can properly acquire the

target surface.

Vtarget Vimaging= Vocclusion–

Vplan Vtarget= Vplacement∩



 

4 Example: city scene

We now show a planning example of the scene shown in figure 4, which is composed of multi-

ple objects and has extremely high self-occlusion. These environments are typified by large struc-

tures that encompass a wide range of geometric shapes with significant occlusion. . Our

experimental setup, common in laser rangefinder systems because it maximizes the stability and

repeatability of the rangefinder, allows the manipulator to move the sensor only in the world z

coordinate, while a turntable rotates the object around the z axis (cylindrical workspace). The

modeling process was initiated by acquiring four range images 90° apart to produce the composite

model shown in figure 5. In this rendering, “occlusion” surfaces are shown in red, while “imaged”

Figure 3. Constraint integration (a) Vimaging: visibility vol-
ume for the unoccluded target at base of volume. (b) Vocclusion:
occlusion volumes caused by two occluding model surfaces.
(c) Vtarget: visibility volume formed by Vimaging − Vocclusion. (d)
Vplacement for a cartesian manipulator, shown with Vtarget. (e)
Vplan (in dark grey) shown with Vplacement.

(c)

(a)

(e)

(d)

(b)



surfaces are shown with their edges visible. Approximately 25% of the entire acquirable model

surface is at this point composed of “occlusion” surface After decimating these surfaces, the plan-

ner selects the 30 largest by area as targets; thus 30 Vtarget volumes will be constructed. In

figure 6, Vtarget is shown for each of these surfaces, with the initial model at the center to allow

the reader to observe the relative orientations. 

These visibility volumes are intersected with Vplacement to compute the sets of occlusion-free

sensor positions for the targets, as shown at the left in figure6. Each intersection, shown as a sur-

face on the cylindrical Vplacement, represents a set of occlusion-free sensor positions for a specific

target; overlapping regions represent visibility for multiple targets. In this example, a solution for

the next sensor position is found by testing the continuous-space plans for intersection with the

Figure 4. The city scene, consisting of three
toy buildings. Note the archway under the
rightmost building, and one of three pillars
visible on the leftmost building.

Figure 5. Composite model of city
scene from four sensing operations,
with occlusion surfaces (occlusion
surface shown dark, imaged sur-
faces shown as mesh).



vertical path of the sensor at incremental angle ε (ε = 2° in this example). The results of this pro-

cess are shown at the right in figure6 in a “planning histogram”, where the height of each bar rep-

resents the area of target surfaces visible from that sensor location. Thus, higher bars denote

desirable sensor locations, lower ones less so. The sensor position is found by selecting the peak

in the planning histogram. After the next range image is acquired, modeled, and integrated, the

Figure 6. Continuous-space plans for targets (left) and discretization (right) to area-weighted sensor positions.

Figure 7. Plan generation for views 6-9 (left two col-
umns) and 10-12 (right two columns). Each plan is
shown as Vplan in continuous space (to left) and plan-
ning histogram sampled at angular increment of 2° (to
right).



planning process is restarted with the next model. In figure7 the continuous and discrete plans are

shown for the next seven views, resulting in a total of twelve images automatically acquired,

modeled, and integrated. This final model is shown texture-mapped in figure8. Note that the

arches and pillars are correctly recovered despite the high occlusion.

5 Analysis: Model City

Table 1 lists measurements of the model during the acquisition process, which can be used to

assess the performance and accuracy of the system. These measurements include: total volume of

the model (cm3); total model surface area (cm2); occluded area (cm2) - the total area of all

occlusion surfaces; planned area (cm2) - the total surface area of the targets for which plans have

been generated; % target area planned – the surface area of planned-for targets, as a percentage

of the total occlusion surface area.

As shown in table 1, the first four views were acquired without any planning (view zero is just

the entire workspace). The total model volume decreases over time, as indeed it must for a system

that uses set intersection for integration and has not duplicated any sensor viewpoints. The total

surface area does not strictly decrease, due to an increase in the scene complexity with the integra-

tion of new images. Of particular import is the data in the final column. Because the plans are

computed using a fixed number of surfaces at each iteration, it is interesting to see what percent-

age of the total available target area is being planned for. Clearly, if every target surface were con-

sidered, this would be 100% each time. Even though only 30 of the largest targets by area are

planned for, the percent of the planned area never drops below 10% of the total area, and in most

cases is over 20%. This shows that the considerable computational cost saved by selecting a sub-

set of the targets to plan for is a viable strategy. The actual volume of the city scene has been esti-

mated as 362 cm3, whereas the calculated model volume is 370 cm3. 

The peaks in the planning histogram are very steep. In some cases, a difference of only a few

degrees in sensor placement causes the viewpoint to be an occluded view and prevents it from

acquiring new information, reflecting the fact that the scene has high occlusion and viewpoint

planning becomes more important. There is at least one feature that is only visible for a nine

degree region of the sensor placement constraint. Thus at least 41 images at equal turntable rota-

tions are needed to guarantee acquisition of that feature if no view planning is performed as



opposed to 12 images needed with sensor planning. Note in figure8 the recovery of the occluded

areas behind the columns and arches which have been recovered correctly with view planning.

The planning component has not yet been optimized and the time to plan a new sensor view-

point is approximately 120 minutes for each of the planned city scenes. This is a factor of 20

greater than the time required for an unplanned view, which is approximately six minutes.

Although the minimum of 41 unplanned images necessary to acquire the scene would have been

faster in this situation, it is easy to imagine a situation where this would not be the case: the break-

even point is 29 minutes for planning, at which point the two methods take the same amount of

time. However, because the viewpoint planning greatly reduces the number of views (from 41 to

12), it also reduces the amount of data storage necessary. 

Table 1: Model measurements during acquisition.

View # Volume Surface Area Occluded Area Planned Area % Target Area Planned
0 4712 1571 1571 – –
1 1840 1317 942 – –
2 1052 1151 590 – –
3 506 733 200 – –
4 432 658 140 – –
5 416 656 121 61 50%
6 404 659 104 28 27%
7 391 657 90 12 13%
8 386 647 84 8 10%
9 382 644 75 15 20%
10 380 651 62 7 11%
11 374 622 53 16 30%
12 370 604 36 9 25%

Figure 8. Final texture-mapped city model.



6 Other considerations

Planning can be one of the more computationally expensive aspects of the model acquisition

process. It is unclear whether the planning algorithm, as currently implemented, is as fast as a

brute force ray-casting method. However, in the long run this method will be more beneficial than

ray-casting, particularly since it works in continuous instead of discrete space. The cost of our

method may be drastically reduced if the computation of the constraints is done in serial fashion,

and if information from one constraint is used to reduce the amount of calculation in the more

computationally intensive calculations. To illustrate this, consider the current costs of calculating

the constraint volumes for a target surface f:

• sensor imaging constraint Vimaging: O(m), where m = the number of edges of f.

• occlusion constraint Vocclusion: O(n2), where n = the number of occluding surfaces. This

calculation is dominated by the cost of unioning the Oi volumes.

• sensor placement constraint Vplacement: O(1), as this is independent of the surfaces in the

model, and may be computed off-line.

It is clear that for any real-world situation the most computationally expensive computation is

that of the occlusion constraint. However, it can be seen that only those surfaces that intersect the

volume described by the sensor imaging constraint need to be considered1, because no model sur-

faces outside of that volume may come between the sensor and the target surface. The sensor

imaging constraint can be calculated very rapidly, because the vast majority of surfaces in our

model are triangular, the rest being simple polygons with a small number of edges. Thus, if Vimag-

ing is calculated first, and then used to determine the candidate model surfaces for the occlusion

constraint, a considerable amount of calculation is avoided. In particular, consider that many of

the target surfaces have no model surfaces that might possibly block the sensor from them, and so

the occlusion calculation is avoided entirely. Candidate model surfaces may be evaluated for pos-

sible occlusion simply by testing if they intersect Vimaging. This ordering of the application of con-

straints in no way affects the outcome of the planning process. 

1. Standoff should not be included here because it may prevent the consideration of occluding surfaces that are closer 
than the standoff distance.



However, in the interest of further reducing the amount of time spent in the planning process,

there are two other optimizations that do reduce the accuracy of the computed plan: decimating

the surface of the composite model and discretizing the space representing the sensor placement

constraint. These methods reduce the accuracy because they use approximations to either the

model or the continuous-space plan, and hence are not exact solutions.

Sensor space discretization has been shown previously in the examples. The decimation of the

composite model is performed by separating the occlusion boundary into targets consisting of

coplanar, convex surfaces via a variant of the Simplification Envelopes (SE) algorithm [4]. SE is

a method that generalizes offset surfaces to determine an interior and exterior boundary between

which the resulting decimated model must lie, and so has the desirable property of having an

absolute bound for the distance between the original surface and the simplified one. The distance

from these boundaries to the original surface is given as a single real number input to the algo-

rithm. However, in its original form SE produces models whose representative sets may be sub-

sets of the original model, and which may therefore miss some occlusion situations. To prohibit

this effect, in applying the SE method it is necessary to allow only the use of an exterior offset

surface, so that the resulting simplified model is always a superset of the model from which it is

derived. In addition to this, we have modified the algorithm so that it retains the surface-type tags

which describe the surface elements as imaged or occluded, and disallows any merging process

between them. This is done to ensure that the resulting surfaces are composed of only one type of

modeled surface: it is not clear what the resulting surface describes if it is due to the merging of an

imaged and an occluded surface. The computational cost of the decimation is O(n), and is there-

fore fast enough to provide a substantial benefit without a quantifiable loss of fidelity. 

A primary consideration for a system that plans dynamically is that of determining when plan-

ning is no longer needed and the modeling process is complete. While there are many ways to

compute termination criteria, in essence it is a function of the application and its needs. A benefit

of our method is that at each step the number and area of occluded and imaged surfaces is known

due to the tagging process, and this can be used as the termination criterion. This provides a mea-

sure that can be used to quickly create models at reduced resolution or build a more detailed and

accurate model, depending on user needs.

When acquiring an image that contains a particular surface, much of the surrounding surfaces

are also acquired. It therefore makes sense to consider as targets those parts of the model with a



high density of occluded surface. “Occluded” model surface area is not strictly related to actual

unimaged object surface area, as in the case of a long cylinder, where the scanner cannot image

much of the interior walls, yet is able to acquire the hole and properly model the object’s topol-

ogy. Because “occluded” surfaces usually lie close to the boundaries of true surfaces, or at worst

delimit unexplored volume in the workspace, using them to guide exploration is a sound strategy.

For the modeling process, highly reflective surfaces in the scene can be problematic. In the

current implementation we assume these regions are relatively small in the image, and that their

artifacts may be removed in image preprocessing. Another limitation of this system is that it con-

siders only total visibility for each target. It is possible that some solutions are missed where par-

tial visibility would allow a better result. “Total visibility” in this context means that every

position in the plan can completely image the target surface. For example, when planning for two

targets, their visibility volumes may be disjoint, meaning that there are no positions that totally

image both targets. However, there may be positions that partially image both targets, and whose

total imaged area is greater than either target individually. A similar limitation is that, as currently

implemented, the system requires full images of the scenes. This is purely an implementation

issue of the modeling component of the system; the planning process does not require such

images, and would operate similarly if the modeling system were modified to use an alternative

method to set intersection for integration.

7 Conclusion

The automated model acquisition method presented in this paper consists of two components

that operate in an interleaved fashion: an incremental modeler and a sensor planner that analyzes

the resulting model and computes the next sensor position. This planning component utilizes a

partial model to determine volumes of visibility for contiguous areas of unexplored scene. These

visibility volumes are combined with sensor placement constraints to compute sets of occlusion-

free sensor positions that are guaranteed to improve the quality of the model. These sets may be

intersected to determine a single best region for the next sensor position, or discretized if a contin-

uous solution is not necessary. We are currently equipping a mobile robot base with sensors (both

range and photometric) to automatically acquire models of real buildings using this system. The

system will acquire a partial model from a small number of viewpoints which will be used both to

plan the next viewpoint and to navigate the mobile sensor base to this position.
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