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Abstract

A distributed, modular, heterogeneous architecture is
presented that illustrates an approach to solving and
integrating common tasks in mobile robotics, such as
path planning, localization, sensor fusion, environ-
mental modeling, and motion control. FEzperimental
results are shown for an autonomous navigation task
to confirm the applicability of our approach.

1 Introduction

This paper describes the design, architecture, and con-
trol of an autonomous mobile site-modeling robot.
Site models are used in a number of applications, such
as city planning, urban design, fire and police plan-
ning, military applications, virtual reality, and others.
This modeling is done primarily by hand, and owing
to the complexity of these environments, is extremely
painstaking. The models built are often incomplete
and updating them can be a serious problem.

To alleviate this, we have built a mobile robot system
that has been instrumented with both range and imag-
ing sensors and can be used to build photo-realistic,
geometrically accurate 3-D models of outdoor sites.
This modeling process is described in detail in [11, 15].
The focus of this paper is the design of the mobile
system itself, emphasizing the task of autonomously
navigating to a location to acquire the necessary sen-
sor data for site modeling in an intelligent way. The
design and architecture of this robot brings up a num-
ber of important issues in mobile robotics, including
localization methods, sensor fusion, path planning and
navigation, remote vs. centralized control, and wire-
less communications, all of which are discussed in this
paper. We also present results from autonomous nav-
igation experiments with the robot.

For a site modeling task, the robot is provided with
a 2-D map of its environment. High-level planning
software is used to direct the robot to a number of

*This work was supported in part by an ONR/DARPA
MURI award ONR N00014-95-1-0601 and NSF grants CDA-
96-25374 and EIA-97-29844.

different sensing locations where it can acquire im-
agery that is fused into a photo-realistic (i.e texture
mapped) 3-D model of the site [11]. The system must
plan a path to each sensing location and then control
the robot to reach that location. Positional accuracy
is a paramount concern, since reconstructing the 3-D
models requires precise registration among image and
range scans from multiple acquisition sites.

2 Related Work

The problems of mobile robot localization, control and
navigation, as well as autonomous map building, have
been studied separately and in combination for more
than a decade. Early classical approaches to navi-
gating a robot in an indoor environment are [4, 5, 8].
More recent works include [7, 17]. The larger distances
traversed by a mobile robot in an outdoor environment
emphasized the need for additional sensors, due to
the inherent limitations of odometric devices. Various
types of inertial navigation systems were introduced
[3] and methods were developed to optimize their per-
formance [12]. Methods were also developed to fuse
data from various sensors to provide higher accuracy
and better reliability. The most common approach is
combining an inertial navigation system with a GPS
[1, 16]. Many of them utilize a Kalman Filtering
technique to achieve statistically near-optimal perfor-
mance [1, 7, 16]. Various other methods of determin-
ing the robot’s location were proposed in [10, 14]. Two
excellent approaches to map acquisition are shown in
[9] and [17]. An example of a similar to our distributed
approach can be found in [2]. System components in-
tegration is addressed in [13]. Our approach differs
from the above in that it allows for better distribution
of computational resources and easier integration of
heterogeneous components.

3 Hardware Configuration

For our experiments, we use an ATRV-2 mobile
robot manufactured by RWI, Inc (Figure 1). To
maintain continuous connectivity to the robot’s on-



Figure 1: Our mobile robot

board computer from remote hosts, we utilize a wire-
less ethernet connection. Access points for wire-
less access are positioned to give us maximum cov-
erage of the portions of campus on which we do our
testing. Two GPS+GLONASS receivers running in
RTK/CPD (Real-time Kinematic/Carrier Phase Dif-
ferential) mode provide us with positioning informa-
tion. One of them serves as a base station on the roof
of a tall nearby building, sending differential correc-
tions to the other, on the robot. With enough satel-
lites visible (usually 7 or 8), this setup gives us 1Hz
position updates accurate to a few centimeters. A
color CCD camera is affixed to a pan-tilt unit (PTU)
mounted in the front of the robot Images can be trans-
mitted to the host computers using the software de-
scribed in the next section. We have also mounted
a Cyrax 2400 laser range scanner on a custom-built
platform attached to the robot. The scanner uses an
eye-safe class II laser and provides variable resolution
scans up to 100 meters. These two sensors are the
primary acquisition devices for the site modeling task.

4 Architecture

A major problem when designing a mobile robot ar-
chitecture is the distribution of computation. As with
battery power, payload, sensor range, and so on, com-
putational resources are limited and usually insuffi-
cient. This is especially true when it comes to pro-
cessing images or large-scale environmental models.

We believe that the correct approach is to distribute
computation across multiple computers. However,
placing a number of computers on the robot is not al-

ways desirable — this would be at the price of reduced
payload and battery life, and is not scalable. A better
solution is to use a distributed wireless system that
has the advantages of providing theoretically unlim-
ited computational and storage resources. Our efforts
are directed towards investigating this approach.

As a first step, we have designed the distributed
object-oriented architecture shown in Figure 2. It
is based on Mobility — a robot integration software
framework developed by RWI, Inc. In addition to
helping us handle the low-level interface with the
robot, Mobility provides us with components that are
abstractions of various hardware pieces, such as sen-
sors and actuators. It is CORBA compliant which
translates into platform, operating system, and pro-
gramming language independence.

The main building blocks of our system are Mobility
components. Each component is a stand-alone piece
of code that performs a specific task. For example,
Odo provides odometric data from the robot and Drive
supplies low-level control commands to the robot. Im-
portant components usually maintain a data structure
(also a component) that represents their state. Other
components may query this data structure about the
current or a previous state (client pull approach) or
register with it to receive an automatic notification
when changes occur (a server push approach).

Components performing related tasks are grouped into
servers. A server is a multi-threaded program that
handles an entire aspect of the system, such as robot
interfacing, navigation control and so on. The stan-
dardized way of communication between components
makes servers easily reconfigurable and replaceable
and provides extreme flexibility. For example, when
we want to test a particular behavior of the control
system indoors (where GPS data, of course, is not
available), all we need to do is run a program GPSSim-
ulator instead of the GPSServer. Similarly, we can test
the navigation system on a Pioneer I robot by simply
running a PioneerServer instead of the ATRVServer.

Because of the underlying framework and the wire-
less connection, a server is not required to run on the
computer physically residing on the robot. This pro-
vides the basis for the distributed nature of our sys-
tem. It also raises many design questions, such as how
and to what extent to utilize the resources of remote
hosts. Apart from the general problems of distributed
systems related to network bandwidth, connectivity,
security, etc., in the context of mobile robots, the
second question has a specific flavor: What part of
the computation needs to be run on-board in order
to guarantee robot’s operability in areas uncovered by
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Figure 2: The architecture of our system. Solid rectangles
represent modules, dotted rectangles are processes, and
dashed rectangles group processes running on the same
machine. The arrows show the data flow between modules.

the network? This leads to a natural classification of
the software components. Those that are hardware
related (e.g. sensor/actuator interfaces) or mission-
critical (e.g. the low-level control system) have to be
run on-board. We call them core components. They
are, by definition, lightweight in that they do not con-
sume a lot of resources. Conversely, remote compo-
nents are either not critical or are extremely heavy-
weight and, therefore, have to be run on remote hosts.

In our case, core servers are the ones shown in the up-
per portion of the block diagram. The top row consists
of hardware-related servers, while the NavServer im-
plements the control system and is, therefore, mission-
critical. Examples of remote components are the user
interface and the Path Planner, which turned out to
be computationally and data intensive. A description
of each component is given in the following subsection.
Note that it is perfectly acceptable to have a core com-
ponent and one or more remote components that are
designed to perform the same task. In this case, the
remote components will implement the full computa-
tionally intensive functionality of their task, while the
core component will be a stripped-down emergency
substitute. This is the approach we have adopted to
effect a consistent control scheme over a wireless con-
nection that can sometimes break down.

A. Description of the components

To ensure maximum flexibility, each hardware device
is controlled by its own server. The hardware servers
are usually simple and serve three purposes: 1) insu-

late the other components from the low-level hardware
details, such as interface, measurement units, etc. 2)
provide multiple, including user-defined, views of the
data coming from the device (e.g. polar or cartesian
coordinates). 3) control the volume of the data flow,
for example the rate at which images will be grabbed.

Our hardware is controlled by four servers, that per-
form some or all of the tasks above (Figure 2). The
ATRVServer is the interface to the robot’s hardware
and comes with the standard Mobility distribution. It
consists of several components that represent its sen-
sors and actuators or provide general robot-specific
information, such as shape and dimensions. Two com-
ponents of main interest are Odo, which provides po-
sition and velocity, and Drive, which drives the robot.

The GPSServer parses the data from the GPS receiver
and makes it available to other modules. Position fixes
are provided in various formats. Two of them are ab-
solute: longitude-latitude-altitude and X-Y-Z with re-
spect to the WGS-84 coordinate reference frame [6].
The other two are local: east-north-up and x-y-z with
respect to a user-defined coordinate system. Addi-
tional information includes the number of satellites
used, current mode (RTK float or fixed), HDOP, etc.

The PTUServer is a simple server that we use to
point the camera in a desired direction. Its two main
commands are PAN 6 and TILT ¢, which are self-
contained. It also allows the current pan and tilt po-
sitions to be queried.

The last hardware server, the ImageServer supplies a
stream of images taken from the sensors. We use it to-
gether with the PTUServer to obtain visual feedback
from the robot on remote machines.

The NavServer (beneath the hardware servers in Fig-
ure 2) builds on top of the hardware servers and pro-
vides a higher-level interface to the robot. A set of
more intuitive commands, such as “go there”, “estab-
lish a local coordinate system here”, and “execute this
trajectory”, are composed out of the low-level hard-
ware control input. The server also provides feedback
on the progress of the current tasks. It consists of
three modules: 1) The Localizeris a part of the robot’s
control system that performs data fusion. It obtains
new readings from the odometry and the GPS, regis-
ters them with respect to the same coordinate system,
and produces an overall estimate of the robot’s posi-
tion and velocity. 2) The Controller is a control mod-
ule that brings the robot to a desired pose. It executes
commands of the type GOTO x,y and TURNTO ¢.
Based on its target and the updates from the Local-
izer, it produces pairs of desired rotational and an-



gular velocities that it feeds to the Drive component
of the ATRVServer. 3) The Navigator monitors the
work of the Localizer and the Controller, and handles
most of the communication with the user interface and
other remote components. It accepts commands for
execution and reports the overall progress of the mis-
sion. It is optimized for network traffic: it filters out
the unimportant information from the low-level com-
ponents and provides a compact view of the current
system state to registered remote modules.

A mission consists of commands that are carried out
sequentially. The user specifies commands using the
User Interface (details below) and sends them to the
Navigator for execution. Alternatively, commands can
be sent by any remote component. The Navigator it-
self does not execute most of the commands — it sim-
ply stores them and resends them to the appropriate
components, one at a time. It monitors the progress of
the current command and, if it completes successfully,
starts the next one. Additionally, a small group of
emergency commands exists, such as STOP, PAUSE,
and RESUME, that are processed immediately.

The commands stored in the Nawvigator are accessible
to other modules. This is useful in two ways: 1) it
allows users who have just connected to the robot to
see what it is trying to achieve and how much it has
accomplished; 2) it allows the robot to continue its
mission, even if the network connectivity is temporar-
ily lost. Moreover, this is the only way to accomplish
a mission that requires passing through a region not
covered by the network.

B. User Interface

The goal of our user interface is to provide a com-
prehensive real-time view of the robot’s location and
activities within its environment. It provides both a
list view of the current set of commands and an in-
tegrated map view displaying navigation targets and
paths overlaid on the map. The click-and-drag map
view also facilitates manual generation of a desired
trajectory or importing one from files or other com-
ponents (such as the Path Planner). The list view
is useful when we want to specify exact coordinates
of a target location or a specific version of a com-
mand (e.g. move backwards). Critical navigation
commands, such as STOP, PAUSE, and RESUME are
available as a convenient stand-alone toolbar. Our lay-
ered architecture allows us to interact with the robot
at several levels of detail simultaneously. While watch-
ing the progress on the map view, we can still obtain
raw odometric or GPS data, or monitor the status of
each component. Images from the robot’s camera can
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Figure 3: The Graphical User Interface

also be displayed. A PTU control interface allows us to
point it in the desired direction and obtain rich visual
feedback. We have been able to successfully teleop-
erate the robot in the corridors of our building this
way. Finally, the Path Planner is a component that
automatically generates a safe trajectory to a desired
point. It uses a two-dimensional polygonal map of the
area and produces a piece-wise linear trajectory that
can be viewed and, possibly, corrected or enhanced
using the user interface, and then sent to the robot.

5 Control

Planning a path to a desired viewpoint is only one step
in the complex task of data acquisition. An equally
crucial step is to accurately follow the path to prevent
collision with obstacles in the environment. We must
also ensure that the actual robot position and orienta-
tion at each sensor acquisition site can be accurately
computed so that the scans acquired at these sites can
be later correctly registered and integrated.

We make use of two sources of localization informa-
tion: the GPS and the robot odometry. Both of these
have problems, which require the intelligent fusion
of the their position estimates. The GPS system is
subject to radio link downtime, insufficient number
of satellites in view, low update rates (1Hz), high-
frequency jumps, and athmospheric conditions [6].
The odometry is unsuitable for long distances since it
is affected by slip and calibration and modeling inac-



curacies, due to which its error accumulates, growing
potentially unbounded with time. Our solution is to
use these two sources of information synergistically to
effect real-time trajectory following, minimizing path
deviations as they occur.

A. Fusing Position Estimates

The Localizer performs fusion of the data obtained by
the sensors. Since our campus is mainly flat, we use a
2-D coordinate system to facilitate computation and,
thus, our robot’s state is modeled by a 5-dimensional
vector x = [£,n,0,v,w]! where [¢,n]T is the robot’s
position, @ is its orientation, and v and w are the cur-
rent translational and rotational velocities.

The fusion process consists of taking a linear combi-
nation of the measurements of the two sensors:

z = kav + (1 — k)z° 1)

where z9 and z° are the GPS and odometric estimates
of the current state, and k is a coefficient that deter-
mines the relative weight of the two estimates. The
above equation is applied only to the first three state
variables, since we do not use the GPS to obtain ve-
locity information. The odometric measurement of
velocities is accurate enough and we accept it directly
into the resulting vector. Direct GPS observations of
the current vehicle orientation are not used either. We
have found that deriving an estimate of the orienta-
tion from the GPS position fixes works better. As our
trajectory consists of straight line segments and the
sampling rate of the GPS is relatively low (1Hz), when
the robot is moving towards a target, our control law
produces rotational velocities that are much smaller
than the accuracy of the GPS fixes. Thus, we can
neglect them and assume that the robot has moved
along a straight line. Hence, at a given time t,,, we fit
a straight line {9 to a window of m past GPS readings
and obtain the estimate 67 = 69 = const. The GPS
estimates &7 and 1! of the robot position at time ¢;
are given by the GPS readings [u;,v;]T at that time
plus a correction that accounts for the displacement
of the GPS antenna from the center of odometry:

& = wui—azcos(09) + aysin(09)

n? = v — aysin(09) — aycos(69)

where a, and a, are the GPS antenna coordinates
with respect to the robot’s local coordinate system.

The coefficient k& in (1) represents our confidence
in the accuracy of the GPS data during the time
frame considered. It is composed of two parts: k =
kshapekdir- Here, kshape represents our confidence in

the data as derived from the shape of the trajectory
traveled and is computed as kspape = maz{0,1 —
kYo g dist([ug,vi]T,19)%}, where k; is an ex-
perimentally derived coefficient. The coefficient kg
is a factor that depends on the discrepancy between
the orientation estimates from the GPS data and the
model. It prevents the introduction of occasional
drifts in the GPS data into the status. Thus, we eval-
uate kgir as maz{0,1 — kg(69 — 0)?}, where 0 is the
angle to the target and kg is experimentally derived.

B. Motion Control

Each time the Localizer produces a new estimate, or a
new target is supplied by the Navigator, the Controller
updates its output to the Drive component. Given the
current state and the target position, the target is first
expressed in polar coordinates [A¢, Ap] with respect
to the robot’s current local coordinate system. The re-
sulting translational and rotational displacements are
then multiplied by a pair of experimentally determined
gains to obtain the new velocities vy, = —k, Ap and
Wnew = —k,A¢. Before applying these velocities cer-
tain limits are imposed. First, we cancel high accel-
erations and then restrict the velocities within an ac-
ceptable interval. Finally, the new values are sent to
the Drive component for execution.

6 Experiments

To test our robot’s ability to correctly execute its
tasks, a series of tests were performed on our cam-
pus. Arbitrary trajectories were generated by the Path
Planner, or by the user with the help of the graphical
interface, and were executed. The trajectories were
polylines, with the robot turning to its next target
in place as soon as it reached the current one. The
maximum translational and rotational velocities were
0.5 m/s and 0.4 rad/s respectively. In all cases, the
robot performed as expected with no visible deviation.

To further confirm these results, a more comprehen-
sive experiment was set up to obtain ground truth
data. A piece of chalk was attached at the center of
odometry on the bottom of the vehicle so that when
the robot moved it plotted its actual trajectory on the
ground. A complex desired trajectory of 14 targets
and total length of 210 m was generated and sent to
the robot. After its execution, sample points from the
actual trajectory were marked at intervals of approx-
imately 1 m and measurements of each sample point
were obtained. Figure 4 shows the planned and ac-
tual trajectories, overlaid on the map of this area of
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Figure 4: A complex test run

our campus. The average error in this run was 0.46 m.

It should be noted that the performance of our system
strongly depends on the accuracy of the GPS data that
we get. During the experiment above, the number of
satellites used were 6 or 7 most of the time, occa-
sionally dropping to 5 or increasing to 8. The GPS
receiver was working in RTK float mode in which its
accuracy is seriously deteriorated compared to when it
works in RTK fixed mode. The latter mode provides
accuracy to within a few centimeters, however, it is
only available when 7 or more satellites provide good
signal-to-noise ratio over a long period of time.
Another test that we performed was a polygonal tra-
jectory in the shape of the digit “8” around the two
planters in the center of Figure 4. The trajectory was
132 m long and asked the robot to return to the same
place where it started. During 3 such runs, RTK fixed
mode was intermittently available and the robot al-
ways returned within a foot of the starting point. In
contrast, when using odometry only, the robot never
succeeded to go around the big planter alone.

7 Summary and Future Work

This paper has described a mobile robot system that
is being built to autonomously navigate in a complex
environment to create 3-D site models. The system
has a hardware/software architecture that allows inte-
gration of sensing, control and user interaction. Tests
have shown that the robot can effectively navigate in
real-time in our campus environment. We are extend-
ing the control and localization to include real-time
visual feedback. Using known visual landmarks on
campus, we can provide a third means of positional

rectification (beyond GPS and odometry) which can
easily be included in our sensor fusion module. We
are also using the site models we create to perform
an update to the site map, including a full 3-D map,
which can be used for later navigation tasks.
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