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Abstract

In this paper we present a system for topologically lo-
calizing a mobile Tobot using color histogram matching
of ommnidirectional images. The system is intended for
use as a navigational tool for the Autonomous Vehi-
cle for Ezploration and Navigation of Urban Environ-
ments (AVENUE) mobile robot. Our method makes
use of omnidirectional images which are acquired from
the robot’s on-board camera. The method is fast and
rotation invariant. Our tests have indicated that nor-
malized color histograms are best for an outdoor envi-
ronment while normalization is not required for indoor
work. The system quickly narrows down the robot’s lo-
cation to one or two regions within the much larger test
environment. Using this regional localization informa-
tion, other vision systems that we have developed can
further localize the robot.

1 Introduction

The determination of a mobile robot’s location in a
complex environment is an interesting and important
problem. Localization of the robot can be done geo-
metrically or topologically. In this paper, we present
a fast method of topological localization which uti-
lizes the analysis of color histograms. Our method
can then be used to help another vision system per-
form precise geometrical localization. This combina-
tion of techniques is used to navigate our autonomous
site modeling robot AVENUE.

The AVENUE project’s [1] overall goal is to automate
the site modeling process which includes building geo-
metrically accurate and photometrically correct mod-
els of complex outdoor urban environments. These
environments are typified by large 3-D structures (i.e.
buildings) that encompass a wide range of geometric
shapes and a very large scope of photometric proper-
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ties.

AVENUE uses a mobile robot platform and a software
system architecture that controls the robot to perform
human-assisted or fully autonomous data acquisition
tasks [7]. For a site modeling task, the robot is pro-
vided with a 2-D map of its environment. High-level
planning software is used to direct the robot to a num-
ber of different sensing locations where it can acquire
imagery that is fused into a photo-realistic (i.e tex-
ture mapped) 3-D model of the site. The system must
plan a path to each sensing location and then control
the robot to reach that location. Positional accuracy
is a paramount concern, since reconstructing the 3-D
models requires precise registration among image and
range scans from multiple acquisition sites.

The navigation portion of the AVENUE system [7]
currently localizes the robot through a combination
of three different sensor inputs. It makes use of the
robot’s built-in odometry, a differential GPS system,
and a vision system. The vision system matches edges
on nearby buildings with a stored model of those build-
ings in order to compute the robots exact location.
However, to pick the correct building model for com-
parison, the robot needs to know its approximate loca-
tion. In an ideal world, the GPS data and the odome-
try localization would give a close enough approxima-
tion. In urban environments with tall buildings, GPS
performance can fail as not enough satellites can be
seen. To alleviate this, we have developed a two-level,
coarse-fine vision sensing scheme that can supplement
GPS and odometry for robot localization. This paper
describes a fast method for topologically locating the
robot using vision. Once the robot has been coarsely
located in the environment, more accurate vision tech-
niques can be utilized to calculate the exact position
and orientation of the robot [6].

The topological location needs to be fast as it works
with a set of real-time images which are acquired from
the moving mobile robot (see Fig. 1) and which re-
quire on-board processing using the mobile robot’s
limited computing power. Our method is based upon



histogram matching of omnidirectional images ac-
quired from the robot. The method is fast, rotation
invariant, and has been tested in both indoor and out-
door environments. It is relatively robust to small
changes in imaging position between stored sample
database images and images acquired from unknown
locations. As in all histogram methods, it is sensitive
to changing lighting conditions. To compensate for
this, we have implemented a normalized color space
matching metric that improves performance.

2 Related Work

Topological maps for general navigation were origi-
nally introduced by Kuipers in 1978 [9] and were later
extended specifically to mobile robots [10]. Many
of these methods involve the use of computer vision
to detect the transition between regions [13]. Re-
cently a number of researchers have used omnidi-
rectional imaging systems [12] to perform robot lo-
calization. Cassinis et al. [2] used omnidirectional
imaging for self-localization, but they relied on arti-
ficially colored landmarks in the scene. Winters et
al. [20] also studied a number of robot navigation
techniques utilizing omnidirectional vision. One of
the methods they attempted was topological local-
ization. They represented their image using its low
dimensional eigenspace and then used the eigenspace
approximation to the Hausdorff fraction to perform
matching. To handle illumination differences they
dealt only with the edge images.

Ulrich and Nourbakhsh [18] originally studied topo-
logical localization of a mobile robot using color-
histograms of omnidirectional images. A database of
image histograms from the locations to be explored
was constructed. Matching was performed by finding
the nearest neighbor in the database for each of the un-
kown image histograms. A unanimous voting scheme
was then used to determine the winning region.

The concept of using color histograms as a method
of matching two images was pioneered by Swain and
Ballard [16]. They suggested using the intersection
of two histograms as a metric for their comparison.
A number of other metrics for finding the distance
between histograms have been explored [8, 15, 19].

Various other approaches to mobile robot localiza-
tion have been proposed and are being investigated.
Among them are the idea of simultaneous localization
and map building [3, 5, 11, 17], the probabilistic ap-
proaches [14, 17], and Monte Carlo localization [4].

3 Hardware

Figure 1: The ATRV-2 Based AVENUE Mobile Robot

Our mobile robot, AVENUE, has as its base unit the
ATRV-2 model manufactured by Real World Inter-
faces Inc. To this base unit we have added a large
collection of additional sensors including a differential
GPS unit, a laser range scanner, two cameras, a dig-
ital compass, and wireless Ethernet. The robot and
all its attached devices are controlled by an on-board
dual Pentium III computer running Red Hat Linux.

One of the cameras, which is mounted on the center
of the robot, is a color omnidirectional camera man-
ufactured by Cyclovision (now Remote Reality) [12].
This is the sensor used for our color-histogram local-
ization method. Images are acquired from the camera
through a video capture board that is mounted in the
on-board computer. This computer is capable of per-



forming all of the image processing for our localization
method.

4 Environment

For our experiments, the robot operated in two dis-
tinct environments. An indoor environment (see Fig.
2) on the sixth floor of Columbia’s CEPSR, building
(where the robotics lab is situated) and an outdoor
environment (see Fig. 2) located on the northern half
of the Columbia University campus.

For the indoor environment, we divided the area into
regions corresponding to the different robot-accessible
hallways and rooms on the sixth floor of the build-
ing. For the most part, the lighting does not change
significantly over time in this environment. There
are not that many windows, and the existing win-
dows are tinted. The result is that as the lighting
changes outdoors throughout the course of the day,
the indoor lighting does not change very much. All of
the corridors are very similar looking, with the major
distinguishing characteristics being occasional colorful
posters that are posted on office doors.

For the outdoor environment, we divided the area into
regions corresponding to which buildings were most
prominent. It should be noted that the ground plane
around almost all of the buildings has the same brick
pattern. Therefore, aiming the omni—camera up (that
is, with the mirror facing down at the ground plane)
was not an option, because all of the regions would
have looked essentially the same. We needed to aim
the camera down (with the mirror facing up) in or-
der to obtain a good view of the buildings extending
all the way up to their tops. This introduced a sig-
nificant problem with the sun, because the sun would
often be visible in the image and would saturate many
pixels. We were able to reduce this effect by masking
out a large portion of the sky in our images. In addi-
tion to the sun itself, the clouds vary a lot from day
to day, making the dominant color of the sky change
dramatically. Again we compensated for this as much
as possible by using our central mask which blocks out
much of the sky.

5 Vision Processing

5.1 Building the Database

Our method involves building up a database of refer-
ence images taken throughout the various known re-

gions that the robot will be exploring at a later time.
Each reference image is then reduced to three his-
tograms, using the Red, Green, and Blue color bands.
Each histogram has 256 buckets, with each bucket con-
taining the number of pixels in the image with a spe-
cific intensity. The location of the pixels in the ac-
tual image plays no role in this histogram. When the
robot is exploring those same regions at a later time;
it will take an image, convert that to a set of three his-
tograms, and attempt to match the histograms against
the existing database. The database itself is divided
into a set of characteristic regions. The goal is to de-
termine in which specific physical region the robot is
currently located. The two environments have very
different lighting and color characteristics, and there-
fore we have used two different methods of analysis for
the histograms.

The images themselves, both for the database and for
the later unknowns, are taken with the robot’s on-
board omnicamera. The images are taken at a reso-
lution of 640x480 with a color depth of 3 bytes per
pixel. We use an omni directional camera instead of a
standard camera because it allows our method to be
rotationally invariant. Images taken from the same lo-
cation but with a different orientation will differ only
by a simple rotation. Since the histogram only takes
into account the colors of the pixels and not their posi-
tion within the image, two histograms taken from the
same location but from a different orientation will es-
sentially be the same. This rotational invariance of the
camera allows us to cut down the size of our database
considerably, since only one image at a given physical
location is needed to get a complete picture of the sur-
rounding area. However, we would still have problems
if we were to build our database by driving the robot
straight through the center of each region. At different
locations in a given region, the proximity of a building
or other structure is important. We therefore build up
a more comprehensive database by having the robot
zigzag through the test environment. This allows us
to obtain representative images of a given region from
different positions within that region. Although this
does increase the size of the database, this is not a
major problem because the database is stored as a
series of histograms, not images, and the comparison
between each of the 256-bucket histograms is very fast.

The actual construction of the reference database,
the learning phase of this algorithm, starts with the
user inputing which region the robot is about to pass
through. At this point the robot starts taking an
omni-image once every two seconds. The user drives
the robot throughout the region in a zigzag pattern,
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Figure 2: Schematic of the indoor environment (left), the outdoor campus environment as seen from above (center)

and in outline form (left)

allowing maximal coverage. As each image is captured
by the frame grabber, the training program immedi-
ately computes the three color histograms for that par-
ticular image. Only the histograms need to be stored,
not the images. It should be noted that the region
does not have to be completely devoid of people. In
fact, people walking through the field of view (at a
reasonable distance away) have a minimal effect on
the histograms.

5.2 Image Masking

The histograms are actually constructed only after
we have performed some preprocessing on the images.
Unwanted portions of the omni-image must be elimi-
nated. First, we only consider pixels within the circu-
lar mirror and ignore the outer pixels resulting from
the tube which surrounds the optical equipment. We
do this by finding the center and radius of the mirror
in the image and then ignoring all pixels outside that
circle. Second, there are fixed pieces of the robot’s
superstructure that are always present and always in
the same orientation (since these pieces and the cam-
era are attached to the robot and never move with
respect to each other). We create a bit-map mask,
mark all of the pixels that lie on the robot’s super-
structure, and apply that mask to each image that
we take. This way we only concentrate on the pix-
els that should be different from image to image. Fi-
nally, we need to eliminate the camera itself from the
omni-image. This is done in a manner similar to our

handling of the unwanted outer pixels. We take the
center and the radius of the camera in the image, and
exclude all pixels inside the corresponding circle. Be-
cause our camera was positioned to look straight up at
the sky and because the sky can vary greatly in color,
we also needed some way to minimize the amount of
sky visible. Instead of having the inner pixel mask
just cover the camera, we extended it out even further
to block out much of the sky. However, if we were to
enlarge this mask too much, we would cut off much
of the surrounding buildings. These buildings are in
fact a key feature for our algorithm because they often
have different characteristic colors. By experimenting
with different mask radii, we were able to arrive at
a reasonable compromise mask size which eliminated
much of the sky without significantly cutting off the
tops of buildings.

5.3 The Effects of the Environment

The controlled lighting environment of the indoor re-
gions cannot be duplicated in our outdoor tests even
with the most cooperative weather conditions. There-
fore, we needed a method to compensate for the sig-
nificant variations in outdoor lighting. In order to re-
duce this variation as much as possible, we used a nor-
malization process on the images before histograming
them. This process uses R+g+B, R+g+B , and R+g+B
of each given pixel for the histograming. This gives us
the percentage of each color at that particular pixel
regardless of the overall intensity of that pixel. So,




Figure 3: Outdoor Omni Image Unmasked (top left), Masked (top center), Indoor Omni Image Unmasked (top
right), Unwarped Outdoor Omni Image (bottom)

in theory, for a fixed physical location, if a pixel of a
certain color was highly illuminated in one image and
was in a slight shadow in another image, there should
be the same percentages of each color after normaliza-
tion in both images. In the indoor environments, we
could use either the normalized or the non-normalized
images because of the low variation in lighting condi-
tions. We chose the normalized images for use in the
highly variable outdoor images.

5.4 Matching an Unknown Image

At this point, our software has a collection of his-
tograms grouped together according to the region in
which the particular image was taken. We can now use
this database to try to match an unknown image to it
and find the proper region for this unknown. We use a
specific metric to compare two histograms in order to
see how different they are. Initially, we treat each color
band separately. Going through bucket by bucket, we
compute the absolute value of the difference between
the two histograms at that particular bucket and then
sum these differences across all buckets. This gives
us the difference between the two histograms in each
of the red, green, and blue bands. Experimentally, we
find that taking the sum of the three differences across
the color bands gives a much better indicator than any
one of the color bands taken by itself.

To find the reference region that corresponds to an un-
known image, we histogram the unknown image and
use our metric to determine the difference between it
and each of the histograms stored in our database. We
then pick the histogram with the smallest difference in

each of the regions in our database. Of these smallest
differences, we then pick the very smallest and choose
the region of that known reference histogram as the re-
gion for the unknown. This method allows us to find
the region with the absolute minimum histogram dif-
ference, but it also permits us to identify those regions
whose histograms have a difference which is within a
certain range of the absolute minimum. By reducing
the number of possible regions, we can more effectively
search for a precise location using more exact vision
methods (see the discussion in section 7).

6 Experiments

In figure 4, a typical set of histograms in the three
color bands is shown for an outdoor image. Nor-
malized and non-normalized histograms are both dis-
played. Figure 5 is a graph of the metric differences
between the normalized histograms of this one image
and those of the images in the reference database.

6.1 Indoor Results

We built a reference database of images which were
obtained from the robotics laboratory and from the
other offices and hallways on our floor. There were
12 distinct regions, each with an approximately equal
number of images (50) in them. We created two ver-
sions of this database, one normalized and one non-
normalized. All images had the necessary masking.
We then took a second set of images throughout our
indoor region to be used as unknowns. When the non-
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Figure 4: A non-normalized (left) and normalized (right) histogram of a typical masked outdoor omni-image.
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Figure 5: The metric differences between the normal-
ized histogram database and an unknown histogram.
In this example, image number 420 is both the mini-
mum difference and the correct region.

normalized unknown images were compared against
the non-normalized database, we obtained an overall
success rate of 78% (see figure 6). When utilizing the
normalized database with normalized unknowns, we
obtained a success rate of 80% (see figure 6). The
success rate was consistent throughout the indoor re-
gions with the exceptions of regions 4 and 7. These
two regions are in fact located at the corners of the
hallways. They are small transition areas between two
much larger and more distinctive regions, and they are
also extremely similar to each other. Because of their
similarities and because of their transition-like char-
acteristics, our algorithm had difficulty distinguishing
the two regions from each other and from the larger
regions on which they bordered.

Region | Images | Non-Normalized | Normalized
Tested | % Correct % Correct
1 21 100% 95%
2 12 83 % 92%
3 9 7% 89%
4 5 20% 20%
5 23 74% 91%
6 9 89% 78%
7 5 0% 20%
8 5 100% 40%
Total | 89 78% 80%

Figure 6: Results of an indoor test. Test images were
taken from only 8 of the 12 regions.

6.2 Outdoor Results

We repeated the same test on a set of outdoor regions
that spanned the northern half of the Columbia cam-
pus. There were 8 distinct regions in this test, and
each of these regions had approximately 120 images.
We again created two versions of the database, one
normalized and one non-normalized. We then took
a second set of outdoor images to be used as un-
knowns. When using non-normalized images for the
histograms, we achieved a success rate of 34% (see
figure 7). When using normalized images, the suc-
cess rate was increased to 65% (see figure 7). The
majority of the regions had fairly consistent success
percentages, with the exception of region 2. This re-
gion was a very special case because one of the large
buildings which dominated a different region (region
1) was still prominently visible when the robot was
in region 2. However, the two regions were at a large
enough physical distance apart that it would not have



been appropriate to consider them a single region.
Using the set of outdoor unknowns, we also computed
all of the regions whose histogram differences were
within 10% of the minimum histogram difference. In
most cases there were only two other regions that fell
within this range, and 80% of the time one of those
regions was the correct one.

Region | Images | Non-Normalized | Normalized
Tested | % Correct % Correct
1 50 58% 95%
2 50 11% 39%
3 50 29% 1%
4 50 25% 62%
5 50 49% 55%
6 50 30% 57%
7 50 28% 61%
8 50 41% 78%
Total | 400 34% 65%

Figure 7: Results of an outdoor test. Test images were
taken from all 8 regions

7 Summary and Future Work

When we performed our matching tests with the in-
door database, we found that the difference between
the results of using non-normalized images versus nor-
malized images was not significant. The success rate
for the normalized ones was 80%, only about 2% bet-
ter than for the non-normalized. When we performed
our database matching tests outdoors on both the nor-
malized and the non-normalized images, the normal-
ized ones had a success rate that was about twice as
high as the non-normalized. This was what we were
expecting. However, the success rates were still no-
ticeably lower outdoors than indoors. The normalized
outdoor images gave us success rates of about 65%.
There was however one very helpful feature. 80% of
the time, the correct regions for the unknowns had his-
togram differences that were within 10% of those for
the minimum region. In most cases, there were only
2 regions in that 10% range. What we have done has
therefore reliably narrowed down the possible regions
for the robot from 8 to 2.

The color histogram method described in this paper
is part of the larger AVENUE project, which con-
tains another vision based localization system. This
other localization method matches images of the fa-
cades of nearby buildings with pre-existing models of
those buildings. From these matches, exact informa-

tion on the position of the robot can be found [6].
However, this system assumes that we have some pre-
vious information as to where in the environment the
robot actually is. It works under the assumption that
the previous odometry data and GPS data that it has
acquired, although possibly degraded, is still relatively
accurate. Using this information, it then attempts to
match the robot’s environment with models of build-
ings that should be nearby. However, one can not
always make the assumption that the GPS data or
odometry data is that good. In particular, when the
robot is very near buildings, GPS data is virtually use-
less. The algorithm described in this paper can narrow
down the general location to within two or three pos-
sibilities. This greatly decreases the number of models
against which the main vision system has to attempt
to match. The combination of the two systems will al-
low us to accurately localize our robot within its test
environment without any artificial land marks or pre-
existing knowledge about its position.

What is needed next is a fast secondary discrimina-
tor to distinguish between these two or three regions,
thus decreasing the work load of the main vision sys-
tem even more. One possibility would be to give the
robot some initial knowledge about its starting point.
Using this, we could keep track of the robot’s previ-
ous region and thus narrow down the possible regions
in which the robot could currently be located. At a
rate of 0.5 frames per second, the chances that the
robot has moved through two regions instead of just
one is very small. We are also planning to add the
use of edge images to the system so that we can en-
code some geometric information into our database
that will be independent of the lighting of the scene.
A metric based on the edge images could then be used
as a secondary discriminator to choose between the
narrowed-down possibilities.
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