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Abstract

Image-based servozng systems are often used to track
moving targets and their underlying control architec-
ture is a regulation of the image. This regulation is
a function of rigid camera-to-target geometric con-
straints. Satisfying such constraints requires that the
robot motors have suficient velocity bandwidths, and
oflen these bandwidths are limited. This paper lays
down the foundation for a partitioned controller. Such
a controller would coordinate a camera’s DOF into a
synergistic move to overcome bandwidth limitations.
Tracking experiments are shown on a custom designed
5 DOF gantry robot which highlight the limitations of
regulator-based control, as well as show how partition-
ing can be used to achieve more robust control.

1 Introduction

Closed loop control can increase the performance of
robotic tasks. Controllers can be designed to handle
external disturbances or uncertainties in the environ-
ment. However, closed loop control requires sensory
feedback, and vision is one way to provide this feed-
back. The visual task often is to robotically servo the
camera to maintain a desired visual pose of the mov-
ing tar et. Ty icall an image Jacobian is used [1],

[4], [5]!’81,[9], f’lo], fi3], [14], and [16 An excellent
/review of visual servoing is given in 6]. In essence,

these systems are image regulators.

There are two major limitations for regulator-based
tracking systems. The first is motor speed bandwidth.
That is, for fast moving targets, the motors may not
have the speed capability to keep the target’s image
features in view. Tracking will then fail since there is
nothing to regulate with. The second is the robust-
ness of vision-based algorithms to image changes. For
example, in the case of tracking, target accelerations
may appear as discrete jumps in pixel information.
Filters often have to be implemented in software to
distinguish such jumps from noise [17], [3]. This pa-
per introduces a partitioned controller design that ad-
dresses these limitations.
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Figure 1: Robot and Local Network Configuration

Motor Precision Range Max. Velocity
x 7.50 x 10–5 m/step 1.94 m 2s 0.7 m/s
Y 7.50 x 10–6 m/step 4.43 m X 0.5 m/s
z 3.75 X 10–6 m/step 0.68 m E 0.5 m/s
Pan 0.0514 deg/step +150 deg % 128 deg/s ec
Tilt 0.0514 deg/step -47 to +31 deg % 113 deg/s ec

Table 1: Joint Motor Properties

2 Monitoring a Robotic Workcell

Our interest in visual control is in building a robotic
system that can monitor an entire assembly workcell.
Our workcell contains 2 Puma 560 robots and we have
custom built a 5-DOF robot to position a camera any-
where in the assembly workcell to be able to monitor
the operation of the Puma’s. The robot has three
translational DOF which configure it as a Cartesian
Gantry robot and can cover a workspace of 3,6 x 6.4x 1
cubic meters. At the gantry’s end-effecter is a 2-DOF
pan-tilt unit (PTU) made by Directed Perception on
which a camera is mounted. The robot’s 3 transla-
tional DOF’S are controlled by stepper motors with
a IBM PC bus interface. The PTU has its own seri-
ally interfaced stepper motor control system. Table 1
gives the relevant joint motor properties, The net ef-
fect of this is a 5-DOF hybrid robot that can monitor
the workspace (see Figure 1).

In using this robot for visual monitoring tasks, a num-
ber of problems must be addressed. First, the entire

mass of the gantry’s links may need to be moved as it

0



DIRECTION OF MOVING TARGET OVER TIME

0 IS INITIAL CAMERA ORIENTATION

1 PANNING STILL ALLOWS FIELD
OF VIEW ANO RESOLUTION

2 SAME AS 1

3 PANNING INSUFFICIENT, HENCE

GANTRY XYZ MOVE NEEDED

Figure 2: Monitoring with partitioned DOF’S

translates. Second, the gantry motors’ velocity band-
widths are limited, and are much less than the veloc-
ity bandwidths of the PTU’s motors. The net effect of
this is that performance for tracking moving targets
with this robot is related to which degrees of freedom
are invoked in the tracking task.

For example, we can track a target at high velocities

J
using the PTU alone (fixed gantry position ; however
the range of the PTU pan-tilt is limited, an arbitrary
pose configurations of the camera-to-target cannot be
satisfied. If we allow all 5-DOF to be used, we then
limit our tracking velocities. This paper describes a
hybrid approach to solving the above problems, by
building a partitioned controller that can be used to
track objects using temporal as well as spatial con-
st raints.

In our specific case, we have additional problems.
Large accelerations on the gantry’s translational DOF
generate end-point vibrations, These vibrations are a
disturbance and adversely affect image feature acqui-
sition. Because of these vibrations, joint accelerations
have to be limited below their mechanical capabilities.
This again limits the ability to track fast moving tar-
gets.

Tracking with pose constraints alone may be overly
restrictive. We can redefine the tracking task with
temporal constraints as follows. The camera is con-
strained to keep the target in its general field of view.
A more rigid camera-target pose constraint is main-
tained at certain criticai times. For example, cam-
eras are often used to track a part in a pick-and-place
process. When the part is in-flight, the camera is
actuated to keep the part in general visual contact.
The part’s pose information is most important during
pick-up and place-down, It is at these critical times
that the camera is positioned to maintain a desired
camera-to-target pose. Figure 2 shows how the dif-
ferent DOF may be used to accomplish a monitoring
task for a moving object.

Redefining the tracking task with temporal con-
straints may overcome limitations inherent in

regulator-based tracking systems. For instance, some
of a robot’s joint motors have faster response times
than others. The response time is dependent on
torque loading. For example, a robot’s base motor
joint incurs a high startup cost due to the inertial
load of all the robot’s links. End-effecter joints, with
less link mass to actuate, accelerate quicker. This sug-
gests a natural partitioning of a robot’s DOF into fast
and slow response time groups. The former group’s
motors actuate the camera quickly, keeping the target
in a general field of view during which time the latter
group’s motors get up to speed. Additionally, end-
effector joints tend to have smoother performance.
For eye-in-hand configurations, this suggests less cam-
era jerk and a more robust image capture thus curbing
end-point vibrations.

A partitioned controller requires a fundamentally dif-
ferent controller architecture. However the image-
based methods used in traditional tracking systems
lend to its development. For example, the same fil-
ters (namely Kalman-based ones) that are used for
robust image capture, can be used for target trajec-
tory prediction. The development of these methods
will be introduced in this paper and highlighted with
experiments.

3 Image Based Tracking

Image-based visual servoing methods directly express
an error function in terms of image features. They are
less sensitive to calibration errors and computation-
ally faster [12] than position-based “look-and-move”
methods [16].

The image Jacobian (called the Interaction Matriz
LT in [8]) maps differential rates of change of image
features in a camera’s image space to the world task
space

d~ “
LT $

z=
(1)

Typically in visual tracking, one is interested in the in-
verse mapping. Since L~ may be under or over deter-
mined, a suitable pseudo-inverse must be calculated.

Since the image Jacobian depends on the image fea-
tures selected, it is not unique. It is a design variable.
Espiau et al. [8] prescribed possible image features
for planar, cylindrical and spherical targets. Castano
et al. [4] presented an interesting method of selecting
an image set based upon visual compliance as a vi-

1
sion analog of force compliance. Allen et al. 1] and
[2] demonstrated that planar motion exhibits el iptical
optic flow patterns that can be used to quickly esti-
mate the image Jacobian. Feddema et al. [9] avoided
the pseudo-inverse computation by designing a square
Jacobian matrix. The resulting image space to task
space mapping is non-unique but used a best guess
method for determining target pose. Papanikolopou-
10S et al. [14] used a model reference adaptive con-
trol method where the actual image Jacobian does
not have to be determined. The captured image is
referenced to a desired model of the mapping and the



servoing methods.
state parameters are updated on-line.

As mentioned in the Section 1, these are regulator-
based trackers. In essence, this technique operates as
follows. First, a reference image is captured and a
(n x 1) reference vector s * is defined from this image.
This vector is a set of n image features that geometri-
cally describe the desired camera pose relative to the
target. Second, as the target moves, a new image is
acquired and the image features are monitored. These
image features form the elements of a (n x 1) vector s.
An error function, (called the task function in [8]) is
defined. This is a function of the difference between
the acquired and reference image. This function de-
scribes the geometrical relationship the camera should
have with respect to the target. Traditionally a rigid
constraint is used as follows. For differential changes,
the task function is defined as

e(F(t), t) = C(s(F(t), t) – s*) (2)

P(t) is a 6 x 1 vector description at time t of the posi-
tion and orientation of the target with respect to the
camera. C’ is the inverse of the image Jacobian. Thus
the rigid constraint s(F t)) = s* is perfectly achieved

\ife = 0. Since e = e(F(t ,t) then

_T+~de de

Z=th=” at
(3)

where we define TC = dF/dt. TC will be our control law
vector, It will be the camera’s velocity in response to
the rates of change in e. From (3) we have

‘.=(91(=)== ‘4)
where tle/aF = CL T = I, can be set to the identity
matrix under certain circumstances [15]. If we design
a desired evolution of de/dt we can pilot the camera’s
velocity response. For example, we could design e to
converge asymptotically by setting

(5)

with ~ > 0. Consequently, our control law becomes

~=_Ae_&
c

at
(6)

The last term of (6) de/& is the target’s velocity.
That is, from (3), and de/dF’ = 1 we have

(7)

If camera’s velocity is identical to the target’s velocity,
then s(F’(t)) = s* and de/dt would be O. Thus,

(8)

Since the target’s velocity is not known a priori, some
estimate of 8e/8t will be necessary for perfect track-
ing. Kalman filtering can be used for estimating the
target velocity [3]
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4 Tracking Implementation

Figure 3 shows a photo of the target. This target is
the Toshiba FMA gripper. It is a pneumatic-driven
four-fingered gripper. Each finger is made up of 3
stretchable flexible chambers and can be positioned
into a variety of different grasps by changing the pres-
sure in each chamber. Because this gripper is devoid
of sensors, we are interested in using vision to monitor
its pose during assembly tasks.

To uniquely determine its pose, typically four co-
planar fiducial marks are selected. The centroid of
each mark has a vertical, v, and horizontal u, pixel
associated with it. Assuming perspective projection
it can be shown [12] that the following equation

leads toward the form of the image Jacobian. The
above (2 x 6) matrix maps the velocity of a point
(x, y, z) in the !J?3 task space to a velocity of a point
(u, v) in the 3?2 (camera) image space. Here, ~ is the
camera lens focal length. The subscript c denotes that
the variable is with respect to the camera frame. The
frame’s origin is at the camera’s lens. z. is along the
optic axis and points towards the target.

Usin four fiducial points will lead to an (8 x 6) ma-

ttrix see [5] for full form). In tracking, one needs to

compute T. given df-/dt. This requires calculating the
pseudo-inverse of LT. Furthermore, necessary robot
joint velocities must be computed using T. and the
robot’s manipulator Jacobian J:

$;= [J]+Tc (11)

where the (5 x 6) matrix [3]+ is the pseudo-inverse
of 3. The net effect is two expensive matrix inversion
computations which limit the motor command update
rate, additionally limiting tracking performance.

4.1 Visual & Kinematic Servoing

Kinematic-servoing refers to the use of a robot’s kine-
matics (joint positions and velocities through en-
coders) as feedback for end-effecter positioning. It
is much quicker than visual-servoing but requires ac-
curate calibration. On the flip side visual-servoing is
tolerant to calibration errors, but is computational ex-
pensive and requires image feature robustness. Crow-
ley, [7] suggests a duality existing between these two



Our partitioned tracking system uses a hybrid control
law composed of two different servoing commands.
The first is a visually-servoed command. Here, a sin-
gle SSD is used to command the robot’s pan and tilt
joint velocities as follows:

Visual- servoing:

where Wzc and WY=are the image feature’s rotati:na~
velocities with respect to the camera’s frame. These
are mapped to the pan and tilt joint velocities, ~Pan

and ~tilt respectively using a (2 x 2) manipulator Ja-
cobian. This yields:

[33=[--] (13,

The result of this command keeps the target centered
in the camera’s field-of-view. The second command
is a cinematically-servoed command. Here pan and
tilt angle position feedback are used to proportionally
command the gantry’s cartesian joint velocities:

Kinematic- servoing:

where 1{, is a proportionality gain constant. q~an
and q~ilt are reference setpoint pan and tilt angles

respectively. The result of this command translates
the camera in the direction of pan and tilt.

We note that since only a (2 x 2) image Jacobian
and (2 x 2) pan-tilt manipulator Jacobian need to be
inverted, motor update rate is quickly achieved. This
combined with both the PTU’S quick response times
and image robustness of a single SSD affords tracking
of higher target accelerations.

5 Experimental Tests in Tracking

Two sets of experiments were conducted to highlight
both motor bandwidth limitations using a traditional
tracking system and increased tracking performance
using the partitioned controller.

In the first experiment, the Toshiba gripper was at-
tached to a Puma and was visually tracked using four
co-planar fiducial marks. The distance between each
fiducial mark was known. In tracking tests, rigid con-
straints on the camera-gripper pose were used. The
pose required that (a) the gripper’s image was cen-
tered in the camera’s field of view; (b) a predefin-

able camera-to-gripper distaince z* was maintained;
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Figure 4: Step Input Joint Position Response
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Figure 5: Step Input Joint Velocity Response

and (c) the camera’s image plane remained parallel
to the gripper. Each fiducial mark was tracked with
a (40 x 40) window using Hager’s X Vision sum-of-
square-difference (SSD) trackers [11]. This allowed us
to do tracking in real-time at the 30 fps video rate. In
all tests, the lens focal length, ~, was 12.5 mm. and
z* was set to 25 cm.

The step input was carried out as follows. First, a

1!
reference image was defined (Figure 3-Left by plac-
ing a SSD tracker on each fiducial mark. T e gripper
was then displaced 3 cm along a line parallel to the
camera’s horizontal axis i.e. the gantry’s –.zo axis.
Motor actuation was not enabled while the gripper
was moved. Once the gripper was in place (see Figure
3-Middle), the camera was then allowed to move. Fig-
ure 3-Right shows the image after the camera moved.
The regulator has successfully moved the gantry hold-
ing the camera to recover the reference image. Figures
4 and 5 show the position and velocity response of the
five motors when the controller gain, A, was set to 0.1.
de/dt in equation (6) represents the target’s absolute
velocity. Since the gripper is not in motion once the
camera is allowed to move this term was set to zero.

We note several points in figures 4 and 5. First, there
is asymptotic convergence, and e indeed approaches
zero. This suggests that the control law is stable.
Second, since translation was parallel to the camera’s
image plane, the corresponding joint, q. approaches
-3 cm, hence the image Jacobian design appears to be
dependable. Third, there is some initial pan and tilt
actuation from O to 37 see, and some reverse correc-
tion from 37 to 61 sec.

This last point highlights the different motor speed
bandwidths. Ideally if all motors had the same band-
width only joint q. would actuate because the tar-
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Figure 3: (Left) Reference Image (Middle) Gripper in position (Right) Final image after camera movement. The
to
regulator has correctly moved the camera on the gantry

get was translated parallel to this axis only. In real-
ity, the PTU motors have a faster response time than
the gantry’s translational motors. The PTU motors
thus react to the step input quicker than the gantry
can translate. Once the gantry does translate toward
its commanded position, the PTU motors compen-
sate for their initial reaction. This underscores how
partitioning may naturally be taken advantage of to
track fast moving targets. The control gain J was
then increased to take advantage of the PTU’s faster
response times. However, this led to poorer results.
The gantry’s translational DOF would overshoot and
led to oscillatory behavior.

We also note that motion tracking tests were con-
ducted. We found that tracking was unreliable at tar-
get speeds greater than 2 cm/s. The tracking system
would lose the four SSDS whenever the target was sud-
denly accelerated. A Kalman-filter estimator was im-
plemented. However there is a startup time associated
with error covariance matrix convergence. We found
that at fast accelerations, the target may leave the
camera’s field-of-view during this convergence time.

For the second set of experiments, the partitioned con-
trol law (Eqns 12-14) was implemented and pose con-
straints were relaxed. Here, the reference setpoint pan
and tilt angles, qfian and q~ilt were set to 90 deg and O

deg respectively. These setpoint angles were the start-
ing positions of the pan and tilt joints upon tracking
initializatmn. The target was commanded to move
0.4 m at 8 cm/s parallel to the camera’s image plane.
Figures 6, 7, 8 and 9 show the resulting motor veloc-
ities and positions. Figure 6 shows the gantry’s hori-
zontal velocity ramping up in response to the increase
in the pan velocity (Figure 7). At approximately 5.0
sees, when the target has stopped moving, we see the
pan velocity passes O deg/s and goes through a sign
reversal. From approximately 5.0 to 12.0 sec we see a
consequent gantry deceleration. Figures 8 and 9 con-
firm that camera has translated 0.4 m and its pan and
tilt angles are reconfigured to their setpoint positions.
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recover the reference image
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Figure 8: Partitioned Cartesian Position Response
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6 Conclusion and Future Research

The paper emphasized the problems associated with
regulator-based tracking systems using rigid geomet-
rical constraints. Experiments showed that problems
exist that limit the ability for a machine-vision system
to track fast moving targets. These problems are both
mechanical and image processing related. Namely,
robot joints motors have limited velocity bandwidths
and image feature detection is sensitive to noise. De-
spite these problems, we have been able to effect a
stable control of the different degrees-of-freedom by
partitioning them and understanding the limitations
of each controller. By redefining the tracking task
with temporal constraints we can overcome some of
the problems involved and have tracked targets mov-
ing at 20 cm~s.

Using a single SSD however, poses two limitations,
namely a loss of target-camera depth and orienta-
tion. The partitioned motor responses (Figures 6- 9)
suggest that we can determine when the target has
stopped moving or changed direction. This occurs
when the gantry has reached its maximum velocity or
when the PTU reverses direction. When the target is
motionless, its position can become a reference point
for triangulation and depth can then be computed.
The gantry’s cartesian DOFS can then maneuver the
camera and reestablish depth constraints.

Target orientation determination poses a more sig-
nificant problem. We are presently examining motor
responses as a result of the coupling of visual and
kinematic servoing. We are currently implementing
this approach for monitoring our workcell via visual
servoing.
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