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Abstract— Robotic manipulation of deformable objects is a
difficult problem especially because of the complexity of the
many different ways an object can deform. Searching such a
high-dimensional state space makes it difficult to recognize, track,
and manipulate deformable objects. In this paper, we introduce a
predictive, model-driven approach to address this challenge, using
a precomputed, simulated database of deformable object models.
Mesh models of common deformable garments are simulated
with the garments picked up in multiple different poses under
gravity, and stored in a database for fast and efficient retrieval.
To validate this approach, we developed a comprehensive pipeline
for manipulating clothing as in a typical laundry task. First, the
database is used for category and the pose estimation is used for
a garment in an arbitrary position. A fully featured 3-D model of
the garment is constructed in real time, and volumetric features
are then used to obtain the most similar model in the database
to predict the object category and pose. Second, the database
can significantly benefit the manipulation of deformable objects
via nonrigid registration, providing accurate correspondences
between the reconstructed object model and the database models.
Third, the accurate model simulation can also be used to optimize
the trajectories for the manipulation of deformable objects, such
as the folding of garments. Extensive experimental results are
shown for the above tasks using a variety of different clothings.

Note to Practitioners—This paper provides an open source,
extensible, 3-D database for dissemination to the robotics and
graphics communities. Model-driven methods are proliferating,
and they need to be applied, tested, and validated in real environ-
ments. A key idea we have exploited is to have an innovative and
novel use of simulation. This database will serve as infrastructure
for developing advanced robotic machine learning algorithms.
We want to address this machine learning idea ourselves, but
we expect the dissemination of the database to other researchers
with different agendas and task applications, which will bring
wide progress in this area. Our proposed methods, as mentioned
earlier, can be easily applied to interrelated areas. One example
is that the 3-D shape-based matching algorithm can be used for
other objects, such as bottles, papers, and food. After integrating
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with other robotic systems, the use of the robot can be easily
extended to other tasks, such as making food, cleaning room,
and fetching objects, to assist our daily life.

Index Terms— Deformable objects, recognition, robotic manip-
ulation, simulation.

I. INTRODUCTION

IN THIS paper, we present a feedforward, model-driven
approach to address the manipulation of deformable

objects, using a precomputed, simulated database of
deformable thin-shell object models, where the bending of the
mesh models is predominant [9]. The models are detailed,
robust, and easy to construct, and using a physics engine,
one can accurately predict the behavior of the objects in
simulation, which can then be applied to a real physical setting.
This paper bridges the gap between the simulation world
and the real world. The predictive, feedforward, model-driven
approach takes advantages of the simulation and generates
a large number of instances for learning approaches, which
not only alleviates the burden of data collection, which can
be efficiently done in simulation, but also makes adaptation
of the methods to other application areas easier and faster.
Mesh models of common deformable garments are simulated
with the garments picked up in multiple different poses under
gravity, and stored in a database for fast and efficient retrieval.

To validate this approach, we developed a comprehensive
pipeline for manipulating clothing as in a typical laundry
task. First, the database is used to estimate categories and
poses of garments in arbitrary positions. A fully featured
3-D volumetric model of the garment is constructed in real
time, and volumetric features are then used to obtain the most
similar model in the database to predict the object category
and pose. Second, the database can significantly benefit the
manipulation of deformable objects via nonrigid registration,
providing accurate correspondences between the reconstructed
object model and the database models. Third, the accurate
model simulation can also be used to optimize the trajectories
for the manipulation of deformable objects, such as the folding
of garments. In addition, the simulation can be easily adapted
to new garment models. Extensive experimental results are
shown for the above tasks using a variety of different
clothings.

Fig. 1 shows a typical pipeline for manipulating cloth-
ing as in a laundry task. This paper brings together work
addressing all the tasks in the pipeline, which have been previ-
ously published in conference papers (see [22] and [24]–[26]).
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Fig. 1. Overall pipeline of robotic manipulation of deformable objects.

These tasks, with the exception of the ironing task, are all
implemented using a feedforward, model-driven methodology,
and this paper serves to consolidate all these results into a
single integrated whole. This paper has also been extended to
include novel garments not found in the database, extended
results on regrasping using a much larger data set of objects
and examples, quantitative registration results for our hybrid
rigid/deformable registration methods, new dense mesh model-
ing techniques, and a novel dissimilarity metric used to assess
folding success. The ironing task is omitted from this paper
due to size constraints. Full details on ironing can be found
in [23]. In addition, a set of videos of our experimental results
are available at: https://youtu.be/fRp05Teua4c.

II. RELATED WORK

A. Recognition

There has been a previous work on the recognition and
manipulation of deformable objects. Willimon et al. [52], [53]
used interactive perception to classify the clothing type.
Their work was based on an image-only database of six
categories, each of which is with five different items from
real garments. Later, they increased the size of the database
but still used real garments. Their work focused on small
clothing, such as socks and short pants usually consisting of
a single color. Cusumano-Towner et al. [4], Miller et al. [32],
Schulmanet al. [38], and Wang et al. [50] have done some
impressive works in clothing recognition and manipulation.
They have successfully enabled the PR2 robot to fold clothing
and towels. Their methods mainly focus on aligning the current
edge/shape from observation to an existing shape. A series
of works on clothes pose recognition was done in [15]–[17].
They used a simulated database of a single garment with about
18 different grasping points, which were mostly selected on
the border when the garment was laid flat. Their work demon-
strated the ability to identify clothes pose using registration to
prerecorded template images. Doumanoglou et al. [5] used
a pair of two industrial arms to recognize and manipulate
deformable garments. They used a database of depth images
captured from 24 real garments, such as a sweater or a pair of
pants. Recently, deep learning attracts considerable attention
in recognizing clothing category [8] and pose recognition [30],
among which convolutional neural network is especially pop-
ular in processing the visual information.

With powerful computing resources, reconstructing
a 3-D model of the garment and using that to search a
precomputed database of simulated garment models in
different poses can be more accurate and efficient. With
the increasing popularity of the Kinect sensor, there are
various methods emerging in computer graphics, such as
KinectFusion and its variants [3], [21], [34]. Although these
methods have shown success in reconstructing static scenes,
they do not fit our scenario directly where a robotic arm is
rotating the target garment about a grasping point. Therefore,
as mentioned in our previous work [24], we first perform
a 3-D segmentation to get the masks of the garment on
the depth images, and then invoke KinectFusion for the
reconstruction.

Shape matching is another related and long-standing topic
in robotics and computer vision. On the 2-D side, various
local features have been developed for image matching and
recognition [10], [18], [27], which have shown a good per-
formance on textured images. Another direction is shape-
context-based recognition [1], [44], [46], which is better
for handwriting and character matching. On the 3-D side,
Wang et al. [49] and Wu et al. [54] have proposed the
methods to match patches based on the 3-D local features.
They extract viewpoint-invariant patches or the distribution
of geometry primitives as features, based on which matching
is performed. References [7], [36], and [43] apply 3-D shape
context as a metric to compute the similarities of the 3-D
layout for recognition. However, most of the methods are
designed for noise-free human-designed models, without the
capability to match the human-designed models against the
relatively noisy and incomplete mesh model from Kinect. Our
method, published in [22], is inspired by the 3-D shape con-
text [7], but provides the capability of cross-domain matching
with a learned distance metric. It also utilizes a volumetric
data representation to efficiently extract the features.

B. Manipulation

Reference [37] proposed a method using a dual-arm setup
to unfold a garment from pickup. They used a segmented
mask to match the prestored template mask to track the states
of the garment. The PR2 robot is probably the first robot
that has successfully manipulated deformable objects, such
as a towel or a T-shirt [29]. The visual recognition, in this
paper, targets corner-based features, which does not require
a template to match. The subsequent work has improved the
prediction of the state of a garment using an hidden Markov
model framework by regrasping at the lowest corner point [4].
Reference [5] applied prerecorded depth images to guide
the manipulation procedures. Reference [41] used a pair of
stereo cameras to analyze the surface of a piece of cloth and
performed flattening and unfolding.

One of the applications of our database is to localize the
regrasping point during the manipulation by mapping the
predetermined points from the simulation mesh to the recon-
structed mesh. Therefore, a fast and accurate registration algo-
rithm plays a key role in our method. Rigid or nonrigid surface
registration is a fundamental tool to find shape correspondence.
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A thorough review can be found in [42]. Our registration
algorithm builds on previous rigid and nonrigid registration
methods. First, we use iterative closest point (ICP) [2] to
rigidly align the garment. We then perform a nonrigid regis-
tration to improve matching by locally deforming the garment.
Similar to [20], we find the correspondence by minimizing an
energy function that describes deformation and fitting.

C. Folding Deformable Objects

With the garment fully spread on the table, attention is
turned to understanding its shape and manipulation, such as
garment folding. Miller et al. [32], [33] have designed a para-
meterized shape model for unknown garments. A shape model
is defined for each type of garment. The goal is to minimize
the distance between the observed garment contour points
and points from the parameterized shape model. However, the
average time for the fitting procedure, reported in this paper, is
30–150 s and sometimes does not converge. The contour-based
garment shape model was further improved by Stria et al. [39]
using polygonal models. The detected garment contour is
matched to a polygonal model by removing nonconvex points
using dynamic programming. The landmarks on the polygonal
model are then mapped to the real garment, and followed by
generating a folding plan.

There are other works that have approached the folding
garment task with different strategies. Osawa et al. [37] used
a robot to fold a garment with a special purpose table that
contains a plate that can bend and fold the clothes assisted by
a dual-arm robot. The robot mainly worked on repositioning
the clothes for the plate for each folding action. Within several
“flip-fold” operations, the garment can be folded. Another
folding method using a PR2 robot was implemented in [48].
The core of their approach was about the geometry reasoning
with respect to the cloth model without any physical simula-
tion. Contour fitting at each step took relatively longer than
execution of the folding actions, which reduced its efficiency.
This was further sped up in [40] using two industrial arms and
a polygonal contour model. They showed impressive folding
results by utilizing a specifically designed gripper [19] that is
suitable for cloth grasping and manipulation.

None of the previous works focus on trajectory optimization
for garment folding, which brings uncertainty to the layout
given the same folding plan. One possible case is that the
garment shifts on the table during one folding action so that the
targeted folding position is also moved. Another case is that
an improper folding trajectory causes additional deformation
of the garment itself, which can accumulate. Our previous
work [26] has proved that with effective simulation, bad
trajectories can be avoided, and the results of manipulation
of the deformable objects are predictable.

III. PROBLEM FORMULATION

Robotic manipulation of deformable objects is defined as
to manipulate the object to a given target shape, given the
object in an initial shape [see Fig. 2 (dashed arrow)]. From a
quantitative perspective, the problem is to minimize a distance

Fig. 2. Problem of deformable object manipulation, shown as the dashed
arrow, is very challenging. We introduce a latent state to decouple the
two terms and simplify the problem. This naturally leads to a two-stage
optimization scheme, illustrated as the blue text.

metric between the current shape Scurrent and the target shape
Starget

min
Scurrent

‖Scurrent − Starget‖. (1)

It is practically challenging, because the sensor noise and the
complexity of the many different ways an object can deform.
Searching within such a high-dimensional state space makes
it difficult to recognize, track, and manipulate deformable
objects. To alleviate this problem, we introduce a latent state
Slatent to make the state-space search more tractable, which
transforms our problem into

min
Scurrent,Slatent

λ‖Scurrent−Slatent‖+(1 − λ)‖Slatent − Starget‖. (2)

Here, λ is a parameter balancing the two terms. This is a
common method in mathematics optimization, which simpli-
fies the optimization without moving the actual optimal. In our
settings, the latent state Slatent corresponds to the “clean”
state recognized by the manipulation system, as shown in
Fig. 2. This makes the state-space search easier. First, the
formulation decouples the two challenges into the sensor noise
and the deformation of the object. Second, if we formulate
the latent state strategically (e.g., modeling it as the target
shape with known deformation), the manipulation planning
and the following motion planning will also be simplified. For
example, in Fig. 2, with the shown latent state, if we know
the correspondences between the latent shape and the target
shape, it is straightforward for the system to propose a plan
to manipulate the elbow, as shown by the red arrow.

Hence, the introduction of the auxiliary variable Slatent
decouples Scurrent and Starget and naturally leads to a two-stage
optimization algorithm similar to the well-known expectation–
minimization algorithm. In step one (the E Step), we fix
Scurrent and optimize Slatent to minimize the objective. And
in step two (the M step), we fix Slatent and optimize Scurrent
to minimize the objective. The process is also illustrated as
the blue texts in Fig. 2. From a robotics perspective, the E
step is recognition, and the M step is manipulation. Therefore,
we derive an iterative framework, which does recognition and
manipulation iteratively from a mathematics perspective.
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Fig. 3. Proposed pipeline using deformable garment manipulation as an
example.

More specifically, we use a set of predefined poses of the
object as the anchor of the latent state. Taking a garment as
an example, each pose can be represented by a set of images
or a deformed 3-D model from them. Physically, having a
robot arm to pick up an object and capture its appearance
is too slow and cannot span the large space we hope to
learn. Given the physical nature of this training set, it can
be very time-consuming to create, and may have problems
encompassing a wide range of garments and different fabrics,
which we can more easily accommodate in the simulation
environment. Therefore, we use a physics engine to simulate
a set of 3-D shapes of the garment under gravity (anchor
shapes), with different points grasped by the robotic arm. We
assume that the observed shape in the manipulation process
can be derived from one of those anchor shapes with slight
nonrigid deformation. The benefit of this design is twofold.
For the recognition step, we further decompose the rigid
transform estimation from the nonrigid registration. And with
the help of a large number of presimulated 3-D shapes, we can
achieve a tradeoff between accuracy and efficiency. For the
manipulation step, such a design allows us to know pointwise
correspondences between the latent and target shape, so the
motion planning can be performed easily.

In Sections IV–VII, we will use garment folding as an
example. Fig. 3 shows the experimental settings for our
algorithm: a Baxter robot with a Kinect sensor grasps a
garment and predicts the grasping location. It then uses its
robotic arms to manipulate the garment to a predefined pose.
This procedure will be performed iteratively until the observed
shape is sufficiently close to the target. Specifically, three
key factors of the system will be discussed in the following
sections. First, in Section IV, we will introduce how the anchor
poses are generated. Then, in Section V, the formulation
and the optimization of the registration cost are discussed,
with the final goal to recognize the pose of the garment as
well as pointwise correspondences between the anchor shape
and the observed shape. Note we can easily obtain pointwise
correspondences between the target shape and anchor shapes
given they are both from physics simulation. In Section VI,

we further explain how to manipulate the object given a latent
shape and a target shape, using Bézier curves as the optimized
trajectories.

We want to point out that some of the models used involve
a training stage. Specifically, the E step requires distance
learning and feature extraction before actual optimization. The
registration, the M step, and the folding step do not require
any training, and thus, the optimization step can be performed
directly. Therefore, the entire recognition and manipulation
process can be done after the training stage of the E step,
which will be described in detail in Section V-C.

IV. DATABASE FOR DEFORMABLE OBJECT RECOGNITION

As mentioned in Section III, a core component of both the
recognition step and the manipulation step is an off-line sim-
ulated database. In recognition, instead of explicitly modeling
how the observed shape was deformed from the target shape,
we can use a precalculated database to handle all the possible
ways of deformation, and transform the recognition problem
as a shape retrieval problem. In manipulation, since we know
how each simulated model was deformed from the target
shape, motion planning will also be much less challenging
on such clean input. The idea of handling deformation by
simulation essentially trades off efficiency with accuracy. The
computation burden is moved from the online stage to the
off-line stage, so we can use sophisticated algorithms to get
realistic and accurate shapes after deformation. But on the
other hand, because we cannot cover every possible grasping
points and materials during the simulation, it also compro-
mises some accuracy. To address this problem, we further
introduce a nonrigid registration method in addition to the rigid
registrations between the database models and the observed
models in Section V. From another perspective, this is also
a good example of using prior knowledge to guide robots to
follow the steps of a task.

More specifically, we have developed an off-line simulation
pipeline whose results are good enough to support various
applications, using advanced simulators, such as Maya [11]
to simulate deformable objects. In this way, we can produce
thousands of exemplars efficiently, which can be used as a
corpus for learning the visual appearances of the deformed
garments. The off-line simulation is time efficient, noisefree,
and more accurate compared with acquiring data via sensors
from real objects. Simulation models do not suffer from occlu-
sion or noise as compared with physically scanned models.
In the off-line simulation, we use a few well-defined garment
mesh models, such as sweaters, jeans, and short pants. Similar
garment mesh models can be obtained from Poserworld [12]
and Turbo Squid [13]. We can also generate models by using
our own “Sensitive Couture” software [47]. Fig. 4 shows a few
of our current garment models rendered in Maya software.

For each grasping point, we compute the garment layout
by hanging under gravity in the simulator. In Maya, a mesh
model can be converted into an nCloth model, which can be
then simulated with some cloth properties, such as hanging
and falling down. Maya also allows for the control of cloth
thickness and deformation resistance. In addition, any vertex
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Fig. 4. (a) and (b) Original garment mesh models of a sweater and a pair
of jeans rendered in Maya. (c) and (d) Simulation result of hanging (a) and
(b) under gravity, respectively.

Fig. 5. Six different mesh models of the same sweater, but picked up on
different points, simulated in Maya.

Fig. 6. Folding trajectory for a sweater simulated in Maya.

on the mesh can be selected as a constraint point to simulate a
draping effect. The hanging under gravity effect of the garment
models is shown in Fig. 4. Fig. 5 shows a small sample of
different picking points of a single garment hanging under
gravity that simulated in Maya. We release the simulation
script in http://www.cs.columbia.edu/ỹli/garment_db/ so that
researchers can produce training exemplars using their own
models. Fig. 6 shows a simulated trajectory of the garment
manipulation.

V. POSE RECOGNITION

With the off-line simulated database, we solve the pose
recognition problem in three steps. First, we use a Kinect
sensor to capture many depth images from different viewpoints

of the garment by rotating it as it hangs from a robotic arm.
We then reconstruct a smooth 3-D model from the depth input,
extract compact 3-D features from it, and finally match against
the off-line model database to recognize its pose. Finally, we
do a nonrigid registration to find more accurate pointwise
correspondences between the observed 3-D model and the
database model. The overall pipeline for the pose recognition
is shown in Fig. 7. We propose a binary feature to do efficient
shape retrieval. The training process of the feature and the
associated weight is shown in Fig. 7 (red box).

Viewing the recognition step from a big picture, instead of
solving the original problem

min
Slatent

‖Scurrent − Slatent‖. (3)

Our initial design did not contain the binary 3-D feature
and the fast matching design. But then, we found that the
pose recognition part is the bottleneck of the system in terms
of speed. Therefore, we introduce two assumptions to simplify
the problem. First, with the use of the presimulated database,
we assume that the latent shape can only be an instance
from the database. Second, we introduce an efficient binary
feature to describe the shape, and thus define the norm ‖·‖
as a weighted Hamming distance. With sufficient samples
in the database, and a proper definition of the norm using
a large-margin learning-to-rank schema, these two assump-
tions can significantly improve the recognition speed, without
introducing much error. We will introduce each component in
Sections V-A–V-D.

A. 3-D Reconstruction

Given the above-described model database, we now need to
generate depth images and match against the database. Direct
recognition from depth images suffers from the problems of
self-occlusion and sensor noise. This naturally leads to our new
method of first building a smooth 3-D model from the noisy
input, and then performing recognition in 3-D. However, how
to do such reconstruction is still an open problem, although
there exist approaches of obtaining high-quality models from
noisy depth inputs, such as KinectFusion [34], which requires
the scene to be static. In our data collection settings, the target
garment is being rotated by a robotic arm, which invalidates
the KinectFusion’s assumptions. We solve this problem by first
segmenting out the garment from its background, and then
invoke KinectFusion to obtain a smooth 3-D model, assuming
that the rotation is slow and steady enough, such that the
garment will not deform in the process.

Segmentation: Before diving into the reconstruction algo-
rithm, let us first define some notation. Given the intrinsic
matrix Fd of the depth camera and the i th depth image Ii ,
we are able to compute the 3-D coordinates of all the pix-
els in the camera coordinate system with [xci yci zci ]T =
F−1di [ui vi 1]T , in which (ui , vi ) is the coordinate of a pixel
in Ii , with di as the corresponding depth, and (xci , yci , zci )
is the corresponding 3-D coordinate in the camera coordinate
system.

Our segmentation is then performed in the 3-D space.
We ask the user to specify a 2-D bounding box on the
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Fig. 7. Overview of the pipeline for the pose recognition step. In the off-line training stage (the red rectangle), we extract a tailored binary feature from the
simulated database, and learn a weighted Hamming distance from additional calibrated data collected from the Kinect. In the online testing stage (the green
rectangle), we reconstruct a 3-D model from the depth input, find the NN from the simulated database with the learned distance metric, and then adopt the
pose of the matched model as the output.

depth image (xmin, xmax, ymin, ymax) with a rough estimation
of the depth of the garment (zmin, zmax). Given that the
data collection environment is reasonably constrained, we
find even one predefined bounding box works well for all
categories of garments. The box needs to be redrawn only
when dramatic changes of the environment happen, such as
when the sensor or the robot is moved. Then, we adopt all
the pixels having their 3-D coordinates within the bounding
box as the foreground, resulting in a series of masked depth
images {Ii } and their corresponding 3-D points, which will be
fed into the reconstruction module.

The 3-D reconstruction is done by feeding the masked
depth images {Ii } into KinectFusion, while the unrelated
surroundings are eliminated, leaving the scene to reconstruct
as static. This process can be done in real time. In addition
to a smooth mesh, the KinectFusion library also generates a
signed distance function (SDF) mapping, which will be used
for 3-D feature extraction. The SDF is defined on any 3-D
point (x, y, z). It has the property that it is negative when
the point is within the surface of the scanned object, positive
when the point is outside a surface, and zero when it is on the
surface. We will use this function to efficiently compute our
3-D features in Section V-B.

B. Feature Extraction

Inspired by 3-D shape context [1], we design a binary
feature to describe the 3-D models. In our method, the features
are defined on a cylindrical coordinate system fit to the
hanging garment as opposed to traditional 3-D shape context,
which uses a spherical coordinate system [7].

The cylinder is divided into N layers with the same height.
And for each layer, as shown in Fig. 8 (top-right), we
uniformly divide the world space into (R rings)× (� sectors)
in a polar coordinate system, with the largest ring covering
the largest radius among all the layers. The center of the polar
coordinate system is determined as the mean of all the points
in the highest layer, which usually contains the robot gripper.
Note we do a uniform division instead of logarithm division
of r as shape context does. The reason why shape context uses

Fig. 8. Feature extraction from a reconstructed mesh model. (a) Bounding
cylinder of a garment is cut into several layers. (b) Set of layers (sections).
For each layer, we divide it into cells via rings and sectors. (c) Binary feature
vector collected from each cell. Details are described in Section V-B.

the logarithm division of r is that the cells farther from the
center are less important, which is not the case in our settings.
For each layer, instead of doing a point count as in the original
shape context method, we check the SDF of the voxel which
the center of the polar cell belongs to, and fill one (1) in the
cell if the SDF is zero or negative (i.e., the cell is inside the
voxel), otherwise zero (0). Finally, all the binary numbers in
each cell are collected in an order (e.g., with φ increasing and
then r increasing), and are concatenated as the final feature
vector.

The insight behind is, to improve the robustness against
local surface disturbance due to friction, that we include the
3-D voxels inside the surface in the features. Note we do not
need to do the time-consuming classification (e.g., ray tracing)
to determine whether each cell is inside the surface, but only
need to look up their SDFs, thus dramatically speed up the
feature extraction.

Matching Scheme: Similar to shape context [1], when
matching against two shapes, we conceptually rotate one of
them and adopt the minimum distance as the matching cost to
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provide rotation invariance. That is

Distance(x1, x2) = min
i

‖Ri x1 ⊕ x2‖1 (4)

in which x1, x2 ∈ B
�RN are the features to be matched

(B is the binary set {0, 1}), ⊕ is the binary XOR operation,
and Ri is the transform matrix to rotate the feature of each
layer by 2π/�. Recall that both features to be matched
are compact binary codes. Thus, such conceptual rotation
as well as Hamming distance computation can be efficiently
implemented by integer shifting and XOR operations, resulting
in matching that is even faster than the Euclidean distance
given reasonable � values (e.g., � = 10).

C. Domain Adaptation

Now, we have a feature vector representation for each model
in the simulated database and for the query. A natural idea
is to find the nearest neighbor (NN) of the query in the
database and transfer the metadata, such as category and pose
from the NN to the query. But a naive NN algorithm with
the Euclidean distance does not work here, because even for
the same garment and the same grasping point by the robot, the
way it deforms may still be slightly different due to friction.
This requires a solution in the matching stage, especially given
that it is impractical to simulate every object with all the
possible materials. Therefore, essentially, we are doing cross-
domain retrieval, which generally requires a “calibration” step
to adapt the knowledge from one domain (simulated models)
to another (reconstructed models).

1) Weighted Hamming Distance: Similar to the distance
calibration in [51], we use a learned distance metric to
improve the NN accuracy, that is

BestMatchw(q) = arg min
i

wT (
x̂i ⊕ q

)
(5)

in which q is the feature vector of the query, i is the index
of models in the simulated database, and ⊕ is the binary XOR

operation. x̂i = R̂i xi indicates the feature vector of the i th
model, with R̂i as the optimal R in (4).

The insight here is we aim to grant our distance metric
more robustness against material properties by assigning larger
weights to the regions invariant to the materials (this amplifies
the features that are more intrinsic for the recognition task).

2) Distance Metric Learning: To learn the weighted Ham-
ming distance, we use an extra set of mesh models collected
from a Kinect using the same setting in Section V-A as
calibration data. Only a small amount of data is needed for
each category (e.g., 5 models in 19 poses for sweater model).
To determine the weight vector w, we then formulate the
learning process as an optimization problem of minimizing
the empirical error with a large-margin regularizer

min
w

1

2
‖w‖2

2 + C
∑

j

ξ j

s.t. wT (
x̂i ⊕ q j

)
< wT (

x̂k ⊕ q j
) + ξ j

∀ j, ∀yi = l j , yk �= l j

ξ j ≥ 0 (6)

in which x̂i is the orientation-calibrated feature of the i th
model (from the database), with yi as the corresponding
ground truth label (i.e., the index of the pose). q j is the
extracted feature of the j th training model (from Kinect), with
li as the ground truth label. We wish to minimize

∑
i ξi , which

indicates how many wrong results the learned metric w give,
with a quadratic regularizer. C controls how much penalty is
given to wrong predictions.

This is a nonconvex and even nondifferentiable problem.
Therefore, we employ the RankSVM [14] to obtain an approx-
imate solution using the cutting-plane method.

3) Knowledge Transfer: Given the learned w, in the test-
ing stage, we then use (5) to obtain the NN of the query
model. We directly adopt the grasping point of the NN,
which is known from the simulation process, as the final
prediction. We will describe experiments using the method
in Section VII-A.

D. Deformable Registration

After obtaining the location of the current grasp point,
we seek to register the reconstructed 3-D model to the ground
truth garment mesh to establish point correspondences. The
input to the registration is a canonical reference (“source”)
triangle mesh Slatent that has been computed in advance and
stored in the garment database, and a target triangle mesh
Scurrent representing the geometry of the garment grasped by
the robot, as acquired by 3-D scans of the grasped garment.

The registration proceeds in three steps. First, we scale
the source mesh Slatent to match its size to the target mesh
Scurrent. Next, we apply an ICP technique to rigidly transform
the source mesh Slatent (i.e., via only translation and rotation).
Finally, we apply a nonrigid registration technique to locally
deform the source mesh Slatent toward the observation Scurrent.
In Section V-D1, following the standard practice of 3-D
registration, we use “source model” to refer to Slatent and
“target model” to refer to Scurrent.

1) Scaling: First, we compute a representative size for each
of the source and target meshes. For a given mesh, let ai and
gi be the area and barycenter of the i th triangle. Then, the
area-weighted center c of the mesh is

c =
NS∑

i

ai gi

/ NS∑

i

ai (7)

where NS is the number of vertices of the source mesh S.
Given the area-weighted center, the representative size l of
the mesh is given by

l =
NS∑

i

ai‖gi − c‖
/ NS∑

i

ai . (8)

Let the representative sizes of the source and target meshes
be lS and lT , respectively. Then, we rescale the source mesh
by a factor of lT / lS , which is a 3-D vector in the x, y, and z
space with respect to a 3-D reference point.

2) Computing the Rigid Transformation: We use a variant
of ICP [2] to compute the rigid transformation. ICP iteratively
updates a rigid transformation by: a) finding the closest
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Fig. 9. Visualization of distance function given a mesh. Right: color bar
shows the normalization distance.

point w j on the target mesh T for each vertice v j of the source
mesh S; b) computing the optimal rigid motion (rotation and
translation) that minimizes the distance between w j and v j ;
and c) updating the vertices v j via this rigid motion.

To accelerate the closest point query, we prepare a grid
data structure during preprocessing. For each grid point, we
compute the closest point on the target mesh once using fast
sweeping [45], and store for runtime using both the found
point and its distance to the grid point, as shown in Fig. 9, to
avoid multiple queries and computations.

At runtime, we approximate the closest point query for
vertex v j by searching only among those eight precomputed
closest points corresponding to the eight grid points surround-
ing v j , thereby reducing the complexity of the closest point
query to O(1) per vertex. After establishing point corre-
spondences, we compute the optimal rotation and translation
for registering v j with w j [2]. We iteratively compute point
correspondences and rigid motions until successive iterations
converge to a fixed rigid motion, yielding a rigidly registrated
source mesh S̄.

3) Nonrigid Registration: Given a candidate source mesh S̄
obtained via rigid registration, our nonrigid registration seeks
the vertex positions v j of the source mesh S that minimize

ES̄,T (S) = Efit(S, T ) + Edef(S, S̄) (9)

where Efit(S, T ) penalizes discrepancies between the source
and target meshes and Edef(S, S̄) seeks to limit and regularize
the deformation of the source mesh away from its rigidly
registrated counterpart S̄. The term

Efit =
NS∑

i=1

(dist(gi ))
2 Āi (10)

penalizes deviation of the target mesh. Here, gi is the barycen-
ter of the triangle i and dist(gi) is the distance from gi to the
closest point on the target mesh. As in the rigid case, we use
the precomputed distance field to query for the distance.

It might appear that the fitting energy Efit could be trivially
minimized by moving each vertex of mesh S to lie on mesh T .
In practice, however, this does not work, because all of the
geometry of the precomputed reference mesh S̄ is discarded;
instead, the geometry of this mesh, which was precomputed
using fabric simulation, should serve as a prior. Thus, we
introduce a second term to retain as much as possible the
geometry of the reference mesh S̄.

The deformation term Edef(S, S̄), derived from a physically
based energy (see [9]), is a sum of three terms

Edef(S, S̄) = κ Earea + β Eangle + αEhinge (11)

where α, β, and κ are user-specified coefficients. The term

Earea =
NS∑

i=1

1

2

(
Ai

Āi
− 1

)2

Āi (12)

penalizes changes to the area of each mesh triangle. Here,
Ai is the area of the triangle i and ·̄ refers to a corresponding
quantity from the undeformed mesh S̄. The term

Eangle =
NS∑

i=1

3∑

k=1

1

6

(
θik

θ̄ik
− 1

)2

Āi (13)

penalizes the shearing of each mesh triangle, where θik is the
kth angle of the triangle i . The term Ehinge [9]

Ehinge =
∑

e

(θe − θ̄e)
2‖ē‖/h̄e (14)

penalizes bending, measured by the angle formed by adjacent
triangles. Here, θe is the hinge angle of edge e, i.e., the angle
formed by the normals of the two triangles incident to e; ‖ē‖
is the length of the edge e, and h̄e is a third of the sum of the
heights of the two triangles incident to the edge e.

We used the secant-version of the Levenberg–Marquardt
(L–M) method [28] to seek the source mesh S that mini-
mizes the energy (9). Sample registration results are shown
in Fig. 14. In Section VII-B, we describe registration and
regrasping experiments using the method described in this
section.

VI. GARMENT MANIPULATION

A. Folding by Minimizing Distance

With the garment lay flat on the table, it can be manipulated
by minimizing the distance between the current state and the
desired state. Taking garment folding as an example, the goal
is specified by the initial and folded shapes of the garment
and by the starting and target positions of the grasp point
(as in Fig. 10). The key factor here is to compute optimal
folding trajectories that can minimize the distance between
the folded shape (current state) and the desired folded shape
(desired state). Practically, it is difficult to optimize trajectories
for a desired folded shape. Therefore, we seek the trajectory
that effects the desired set of folds in the simulation. With
the comparable simulation environment to the real world,
the simulation results, e.g., optimized trajectories, can be
transferred to a real robot.

We use a Bézier curve [6] to describe the trajectory.
An nth order Bézier curve T(u) has (n + 1) control points
Pk = (Pk,x , Pk,y , Pk,z)

T ∈ R
3, defined by

T(u) =
n∑

k=0

Bn
k (u)Pk (15)

where Bn
k (u) = ( n

k

)
(1 − u)n−kuk (Bernstein basis).

We use n = 3 for simplicity, but our method can be easily
extended to deal with higher order curves. P0 and P3 are fixed
to the specified starting and target positions of the grasp point
(as in Fig. 10). The intermediate control points x = (PT

1 , PT
2 )T
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Fig. 10. Example of the folding task: we want to fold a sleeve into the blue
target position, by using a robotic gripper to move the tip of the sleeve (grasp
point) from the starting position (P0) to the target position (P3), following a
trajectory, shown as the red curve. P1 and P2 are knot points that form the
Bézier trapezoid.

can then be adjusted to define a new trajectory using the
objective function defined as follows:

xopt = argmin
x

{lx + α‖Slatent − Starget‖︸ ︷︷ ︸
C(x)

}2. (16)

Here, C(x) is a cost function with two terms. The first term
penalizes the trajectory length lx, thus preferring a folding path
that is efficient in time and energy. The second term seeks the
desired fold, by penalizing distance ‖Slatent − Starget‖ between
the desired folded shape Starget, compared with the shape Slatent
obtained by the candidate folding trajectory x, as predicted by
a cloth simulation; we used a physical simulation engine [31],
for the cloth simulation. The weight α balances the two terms;
we used α = 103 in our experiment.

Intuitively, the distance measures the difference between the
desired folded shape and the folded garment in simulation. We
define the distance term as

‖Slatent − Starget‖ = 1

|Starget|
∫

Starget

‖q(y) − y‖d A (17)

where |Starget| is the total surface area of the garment mesh
including both sides of the garment, y ∈ Starget is a point
on the target folded shape Starget, q(y) ∈ Starget is the
corresponding point on the simulated folded shape, and d A
is the area measure [see Fig. 11 (left)]. Our implementation
assumes that Starget and Slatent are given as triangle meshes,
and discretizes (17) as

‖Slatent − Starget‖d = 1

|Starget|
∑

i

‖qi − yi‖Ai (18)

where yi is the barycenter of the i th triangle on the target
shape, qi is the (corresponding) barycenter of the i th triangle
on the simulated shape, and Ai is the barycentric area of the
i th triangle on the target shape, as defined in Fig. 11 (right).

To compute the trajectory length lx, we use De Casteljau’s
algorithm [6] to recursively subdivide the Bézier curve T into
a set of Bézier curves T( j ), until the deviation between the
chord length (‖P( j )

0 − P( j )
3 ‖) and the total length between

the control points (
∑2

i=0 ‖P( j )
i − P( j )

i+1‖) for each subdivided
curve T( j ) is sufficiently small. Then, lx is approximated by
summing up the chord lengths of all the subdivided curves:
lx ≈ ∑

j ‖P( j )
0 − P( j )

3 ‖.

Fig. 11. Left: distance captures the misalignment between Starget and Slatent
by integrating the distance between the corresponding points y ∈ Starget and
q(y) ∈ Slatent over the garment. Right: barycentric dual area Ai associated
with this vertex yi is defined as the area of the polygon created by connecting
the barycenters of the triangles adjacent to yi .

We initialize P1 and P2 as

P1 = 2

3
P0 + 1

3
P3 + h‖P0 − P3‖ev (19)

P2 = 1

3
P0 + 2

3
P3 + h‖P0 − P3‖ev (20)

where ev is the unit vector in the upward vertical direction.
Constant h = 1/3 means that the initial trajectory will have
equal horizontal extent between knot points.

To optimize (16), we apply a secant version of the L–M
algorithm [28], [35]. For the current trajectory generated by x,
we estimate the derivative ∇C(x) of the cost function C(x)
numerically, by sampling slightly modified trajectories x+δe j ,
where e j , 1 ≤ j ≤ dim(x), are the orthonormal bases, and we
used δ = 10−1 in our implementation.

The secant version of the L–M algorithm iteratively builds
a local quadratic approximation of {C(x)}2 based on the
numerical derivative, and then takes a step toward an improved
state. The direction of the step is a combination of the
steepest gradient descent direction and the conjugate gra-
dient direction. We use the specific approach described by
Madsen et al. [28, Sec. 3.5]. The iterative procedure termi-
nates when the improvement in {C(x)}2 becomes sufficiently
small.

In the case of using multiple arms, we associate an individ-
ual trajectory xi to each of the arms Ri . We then extend the
state variable to x = (xT

1 , . . .)T . The rest of the optimization
procedure is the same as the single arm case. Note that
both single- and dual-arm trajectories are in the 3-D space.
In Section VII-C, we describe the folding experiments using
the method described in this section.

VII. EXPERIMENTS

We used a series of experiments to demonstrate the effec-
tiveness of the proposed method and justify the components.
We tested our method on a data set of various kinds of gar-
ments collected from practical settings. Experimental results
demonstrate that our method is able to achieve both reasonable
accuracy and fast speed.

A. Pose Recognition

1) Data Acquisition: Since the simulated database in
Section IV does not have the data captured in the real settings
for domain adaptation (see Section V-C), we collect an extra
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Fig. 12. Visual examples of the pose recognition result of our method. The garment is picked up via a griper of the Baxter robot. From left to right, each
example shows the color image, input depth image, reconstructed model, matched simulated model, ground truth simulated model, and the predicted grasping
points (red) marked on the model with the ground truth (yellow). Bottom-right: example is considered as a failure example, which may be because of the
uninformative deformation shape. Note our method does not use any color information (best viewed in color).

test data set for general evaluation of pose recognition of
deformable objects based on depth image as inputs.

The data set consists of two parts: a test set and a calibration
set. To collect the testing set, we use a Baxter robot, which
is equipped with two arms with seven degrees of freedom.
A Kinect sensor is mounted on a horizontal platform at a
height of 1.2 m to capture the depth images. We then use our
3-D reconstruction algorithm to reconstruct their mesh models.
Given we also need to learn/calibrate a distance metric from
extra data from Kinect [using (6)], we collect an extra small
amount of data with the same settings as the calibration data,
only collecting five poses for each garment. A weight vector w

is then learned from this calibration data for each type of
garment.

2) Qualitative Evaluation: We demonstrate some of the
recognition results in Fig. 12 in the order of color image, depth
image, reconstructed model, predicted model, ground truth
model, and predicted grasping point (red) versus ground truth
grasping point (yellow) on the garment. From Fig. 12, we can
first see that our 3-D reconstruction is able to provide us with
good-quality models for a fixed camera capturing a dynamic
scene. And our shape retrieval scheme with learned distance
metrics is also able to provide reasonable matches for the
grasping points. Note that our method is able to output a mesh
model of the target garment, which is critical to the subsequent
operations, such as path planning and object manipulation.

Another observation is that the proposed recognition
approach handles the noise well. It is not from the simulated
database, because we did not add noise to the simulation of
the mesh model, but more from the matching and recogniz-
ing stage, which is inherently robust. The robustness comes
from: 1) the volumetric representation in both KinectFusion
and binary feature extraction and 2) the weighted Hamming
distance metric bridging the ideal simulated data and the real
data.

3) Quantitative Evaluation:

a) Implementation details: In the 3-D reconstruction,
we set X = 384 and Y = Z = 768 voxels and the
resolution of the voxels as 384 voxels per meter to obtain
a tradeoff between resolution and robustness against sensor
noise. In the feature extraction, our implementation adopts
R = 16,� = 16, and N = 16 in the feature extraction as
an empirically good configuration. That is, each mesh model
gives a 16 × 16 × 16 = 4096 dimensional binary feature. We
set the penalty C = 10 in (6).

b) Classification accuracy: For each input garment,
we compute the classification accuracy of pose recognition,
that is

Accuracy = # of correctly classified test cases

# of all test cases
. (21)
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Fig. 13. Sample results of applying our method on novel garments. Each
group of results shows the color image, reconstructed model, and predicted
grasping points (red) versus ground truth (yellow) marked on the model from
left to right (best viewed in color).

The classification accuracy for each garment type is reported in
Table I (left). Given we have two models for each garment in
the database (except shorts), we report the accuracy achieved
using only Model 1 for retrieval, using only Model 2 for
retrieval, and use all the available data. The total grasping
points for sweaters, pants, and shorts are 19, 12, and 8,
respectively. Our method is benefited from the 3-D recon-
struction step, which reduces the sensor noise and integrates
the information of each frame to a comprehensive model and
thus leads to better decisions. Among three types of garments,
recognition of shorts is not as accurate as the other two. One
possible reason is that many of the shapes from different
grasping points look very similar. Even for human observers,
it is hard to distinguish them.

4) Generality to Novel Garments: Though we used a rela-
tively small garment database for our experiments, we noticed
that our simulated models can also be generalized to recognize
similar but unseen garments. Fig. 13 shows some examples of
recognizing poses of unseen garments using the same weight
w learned on our original data set. We also noticed that there
exist some decorations, such as pockets or shoulder boards
on those garments; however, our method is robust enough to
ignore these subtler features.

The reason why the proposed approach can still perform
well on the unseen models is the visual similarity among
models within the same category, and sometimes even the
models across different categories. For example, sweaters and
jackets can be considered as garments similar to our sweaters’
model. Also, knit pants and suit pants are similar to our jeans
model. Although they are made of different materials, the ways
that they deform are similar to our training models for certain
poses. This generality to unseen models may help reduce the
burden of training data collection; however, it may not always
be satisfactory from an end-to-end system perspective. For
example, jackets may require a different way of manipulation

Fig. 14. Registration examples. First row: sweater grasped at elbow. Second
row: long-sleeve shirt grasped at sleeve end. Third row: pair of pants grasped
near knee. Fourth row: pair of pants grasped near ankle. Each row depicts
from left to right: reconstructed mesh, predicted mesh from the database, rigid
registration only, and rigid plus nonrigid registration.

from shirts. In such cases, more fine-grained categorization is
preferred. Fortunately, in industrial applications, the categories
are usually predetermined, and such undesirable conditions can
be limited.

B. Registration and Iterative Regrasping

1) Registration: We apply both rigid and nonrigid reg-
istrations, while rigid step focuses on mesh rescaling and
alignment, and the nonrigid step refines the mapping accuracy.
In Fig. 14, we compare the difference between using rigid
registration only and using rigid plus nonrigid registration side
by side. We can clearly see that with nonrigid registration, the
two meshes are registered more accurately. In addition, the
location of the designated grasping points on the sleeves is
also closer to the ground truth points. Note that for the fourth
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Fig. 15. Examples of each step in our regrasping procedure. For each row from left to right: snapshot of initial pickup, predicted mesh from database,
predicted mesh with weighted Gaussian distribution distance, predicted regrasping point on the 3-D reconstructed mesh, and finally snapshot of unfolding.
Top row: Baxter robot unfolds a sweater following pickup. Bottom row: Baxter robot unfolds a pair of pants following pickup.

TABLE I

LEFT: AVERAGE CLASSIFICATION ACCURACY FOR DIFFERENT GARMENT TYPES. RIGHT: AVERAGE RUNNING TIME

(EXCLUDING 3-D RECONSTRUCTION) IN SECONDS TO PROCESS ONE GARMENT OF THE PROPOSED METHOD

ON THE PROPOSED DATABASE, WITH THE INPUT OF DIFFERENT GARMENT TYPES

row, after the alignment by the rigid registration algorithm,
the state is evaluated as a local minimum. Therefore, there is
no improvement by the following nonrigid registration. But as
we can see from the visualization, such a case is still good
enough for finding point correspondence.

We also evaluate the registration algorithm on the entire
database, which contains two stages: rigid registration using
ICP algorithm and nonrigid registration algorithm. To show
the performance of our registration algorithm, the registration
pairs are established with the knowledge that the recognition
of the pose is 100% correct. This will enable the registration
to happen between the closest grasping locations. Meanwhile,
we design the registration experiments in two directions: the
source mesh to the target mesh, and vice versa. We also
compare the registration results of the rigid registration and the
rigid plus the nonrigid registration for all the pairs. Detailed
results are shown in Table II. For example, for the S to
T(R), we first subdivide the source mesh into a set of disjoint
triangulated patches, and generate a single sample point in
each patch. Each sample point is also assigned the area of
the patch it belongs to. Then, from each such sample point,
we find the closest point on the target mesh, and sum up the
distance of all point pairs and multiplied by the corresponding
patch area. Finally, the summed value is divided by the total
area of the source mesh.

TABLE II

REGISTRATION RESULTS. WE COMPARE THE SOURCE MESH (S)
REGISTERED TO THE TARGET MESH (T), AND VICE VERSA,

FOR BOTH RIGID-ONLY REGISTRATION (R) AND RIGID PLUS

NONRIGID REGISTRATION (R + N). WE CAN SEE THAT
WHEN THE SOURCE MESH REGISTERED TO THE

TARGET MESH, THE AVERAGE ERROR DISTANCE

IS LESS THAN THE TARGET MESH REGISTERED

TO THE SOURCE MESH. ALSO, WE CAN SEE
THAT WITH ADDITIONAL NONRIGID

REGISTRATION, THE AVERAGE

ERROR DISTANCE IS REDUCED

2) Iterative Regrasping: Fig. 15 shows two examples
(sweater and pants) of iterative regrasping using the Baxter
robot. The robot first picks up a garment at a random grasping
point. Once the arm reaches a predefined position, the last
joint of the arm starts to rotate and the Kinect will capture the
depth images as it rotates, and reconstruct the 3-D mesh in real
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Fig. 16. Left: picture of our test garments. Right: results for each unfolding test on the garments. We evaluate the results by recognition, regrasping,
unfolding, and regrasping attempts for each test. The last row shows the average of each evaluation component.

time. After the rotation, a predicted pose is recognized [24]
as shown in the third image of each row. For each pose,
we have a constrained weighted evaluation metric over the
surface to identify the regrasping point as indicated in the
fourth image. By registration of the reconstructed mesh and
predicted mesh from the database, we can map the desired
regrasping point onto the reconstructed mesh. The robot then
regrasps by moving the other gripper toward it. With our 1-D
blob curvature detection method, the gripper can move to the
best curvature on the garment and regrasp, which increases
the success rate. The iterative regrasping stops when the two
grasped points are the designated anchor points on the garment
(e.g., elbows on the sleeves of a sweater).

Fig. 16 (left) shows seven sample garments in our test, and
the table on the right shows the results. For each garment,
we perform ten unfolding tests. We have on average an 83%
successful recognition rate for the pose of the objects over
all the garments. We have on average an 87% successful
regrasping rate for each garment, where regrasping is defined
as a successful grasp of the other arm on the garment. We
are able to achieve a successful rate of 80% to unfold the
garment, placing the grippers at the designated grasping points.
Unsuccessful unfolding occurred when either the gripper lost
contact with the garment, or the gripper was unable to find
a regrasping point. Although we did not perform this exper-
iment, it is possible to restart the method after one of the
grippers loses contact as an error recovery procedure.

For the successful unfolding cases, we also report the
average number of regrasping attempts. The minimum number
of regrasping attempts = 1. This happens when the initial
grasping is at one of the desired positions, and the regrasping
succeeds at the other desired position (i.e., two elbows on
the sleeves for a sweater). In most cases, we are able to
successfully unfold the garments using 1–2 regraspings.

Among all these garments, jeans, pants, and leggings
achieve a high success rate because of their unique layout
when grasping at the leg position. The shorts are difficult
for both recognition and unfolding steps possibly because
of their ambiguous appearances in different grasping points.
One observation is that in a few cases, when the recognition
is not accurate, our registration algorithm was sometimes
able to find a desired regrasping point for unfolding. This is
an artifact of the geometry of pantlike garments where the
designated regrasping points are at the extreme locations on

Fig. 17. Baxter robot places a garment flat on a table. Left: garment is
a sweater and the two desired grasping points are on the sleeves. Right:
garment is a pair of pants and the two desired grasping points are on the
lower leg parts.

the garments. It is important to note that the gripper of the
Baxter robot has a limit of grasping capabilities. For garments
such as thick jackets and jeans, droppings may happen in the
process. Therefore, we select relatively light garments in our
experiments. We also attached rubbers onto gripper to increase
the friction.

3) Laying Flat on a Table: We also show that after grasping
at two desired points, the robot will proceed to place the
garment on a table. In our experiments, we use cardboard to
simulate a table area. As shown in Fig. 17, the robot is able
to place the garment flat with a simple move when grasping
at a pair of two desired grasping points. With such a flat
configuration, the robot can begin to fold it. Practically, in
terms of the garment size, we notice that sometimes it is
difficult to achieve a fully flattened garment on the table by
the maximum opening of the two arms of the Baxter robot.
Therefore, in such cases, manual adjustments may be needed
to arrive at a good standing point of the coming folding step.

C. Folding by Minimizing Distance

1) Parameter Adaptation: Two key parameters affect the
how realistic the simulation is, the material properties of the
fabric, and the frictional forces between the garment and
the table.

a) Material properties: Through many experiments, we
found that the most important property for the garments in
the simulation environment is shear resistance. It specifies the
amount that the simulated mesh model resists shear under
strain; when the garment is picked up and hung by gravity,
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Fig. 18. Method for measuring the shear resistance. Left: diagonal length
measurement. Middle: zoomed-in regions. Right: garment is hanging under
gravity.

the total length will be elongated due to the balance between
gravity force and shear resistance. An appropriate shear resis-
tance measure allows the simulated mesh to reproduce the
same elongation as the real garment. This measurement will
bridge the gap between the simulation and the real world for
the garment mesh model.

For each new garment, we follow the following steps to
measure the shear resistance. Fig. 18 shows an example.

- Manually pick one extremum part of the garment, such
as the sleeve end of a sweater, the waist part of a pair of
pants, and a corner of a towel.

- Hang the garment under gravity and measure the
length between the picking point and the lowest point
as L1.

- Slowly put down the garment on a table and keep
the picking point and the lowest point in the previous
step at maximum spread condition. Measure the distance
between these two points again as L2. The shear resis-
tance fraction is defined by the following:

shear_frac = (L1 − L2)/L2. (22)

- We then pick up and hang the virtual garment into the
same configuration in Maya, adjusting the Maya shear
parameter, such that the shear fraction as calculated in
the simulator is identical to the real world.
b) Frictional forces: The surface of the table can be

rough if covered by a cloth sheet or slippery if not covered,
which leads to variance in friction between the table and the
garment. A shift of the garment during the folding can possibly
impair the whole process and cause additional repositioning.
Adjusting the frictional level in the simulation environment
to the real world is crucial and necessary for trajectory
optimization.

To measure the friction between the table and the garment,
we do the following steps.

- Place a real garment on the real table of length Lt .
- Slowly lift up one side of the real table, until the garment

in the real world begins to slide. The lifted height is Hs .
The friction angle is computed as

� Friction = sin−1(Hs/Lt ) (23)

- In the virtual environment, the garment is placed flat on a
table with gravity. Assign a relatively high friction value
to the virtual table. Lift up one side of the virtual table
to the angle of � Friction.

- Gradually decrease the frictional force in the virtual
environment, until the garment begins to slide. Use this
frictional force in the virtual environment as it mirrors
the real world.

With these two parameter setups, we obtain similar manip-
ulation results for both the simulation and the real garment.
Fig. 19 (left) shows a picture of all the test garments we
used in different colors, sizes, and materials. The table on
the right of Fig. 19 shows the measured parameters of each
test garment, including stretch percentage and friction angle,
and corresponding Maya parameters. For common garments,
these parameters do not have a significant variance. Therefore,
we suggest that if researchers use simulators such as Maya,
the average values are a reasonably good start.

2) Garment Manipulation and Folding: Fig. 20 shows three
successful folding examples from the simulation and the real
world, including a sweater, a pair of pants, and a medium
size towel. We show six key frames for each folding task.
The folding poses from the simulation are in the first row of
each group with an optimized trajectory. We also show the
corresponding results from the real world. The green tape on
the table indicates the original contour of the garment.

Each garment is first segmented from the background, and
key points are detected from the binary mask. Given the key
points, a corresponding multistep folding plan is created (the
folding plan is predefined, and one of our folding plans for
a sweater is shown in Fig. 21). For each garment, we have
optimized trajectories for each folding step. Here, we map
these optimized trajectories to our scenario according to the
generated folding plan. Then, the Baxter robot follows the
folding plan with optimized trajectories to fold the garment.
We can see that the deformation of the real garment and the
simulated garment is very similar. Therefore, the final folding
outcome is comparable with the simulation.

Table III shows the statistical results of the garment folding
test. Each time one or two robotic arms fold the garment
counts as one fold. We ran ten trials for each test garment.
It turns out that the folding performance of the sweaters
and towels are very stable with our optimized trajectories.
Jeans and pants are less stable, because the shear resistance
of the surface is relatively high, and sometimes is difficult
to bend, leading to unsuccessful folding. In the successful
folding cases for jeans and pants, we sometimes ended up with
small wrinkles, but the folding plan was still able to complete
successfully.

We also show the average time to fold a garment in the
last row. The robot is able to fold most garments in about
1.5 min. Meanwhile, we found that it is challenging, because
the garments have to be well placing-flat on the table within
a range. Any misalignment may lead to a different or even
a wrong folding plan. For safety purpose, the robot arms
move relatively slow in the experiments. The folding action
could be potentially sped up in a standard industrial-level
pipeline.

3) Solution Space: The solution space is a subspace of the
trajectory space where the folded garment ends in a shape
with a dissimilarity score less than a threshold. Intuitively,
a number of trajectories within the solution space will fold
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Fig. 19. Left: picture of our test garments. Right: results for each unfolding test on the garments. We show the results of stretch percentage, friction angle
of the table, and the corresponding parameters in Maya by each test. The last row shows the average of each measurement component.

Fig. 20. Successful folding examples with optimized folding trajectories from off-line simulation. The first row of each group is from the simulation and
the second row is from the real world (green tape shows the original garment contour position). Top: sweater folding with three steps. Middle: pants folding
with two steps. Bottom: medium size towel folding with two steps.

the garment, leaving its shape close to the desired shape. We
have found that trajectories within the solution space can vary
to a degree while still allowing the robot to accomplish the
folding task. This result also agrees with the fact that people
do not have to follow a unique trajectory to fold the garment.
However, trajectories outside the solution space cause issues
for the folding tasks. Our trajectory optimization automatically
avoids such cases.

To further explore the relationship between the trajectories
and folded shapes, we experimented the folding with a few
different trajectories in simulation. A notable finding is that
the symmetric trajectories can always produce better folded
shape, as shown in Fig. 22. The 13 color curves in each plot
represent 13 different trajectories. The dissimilarity bar on
the right shows the difference between the folded shape and
the desired folded shape for each folding simulation. We also
tested with asymmetric trajectories for the folding, as shown
in the second and third plots in Fig. 22. We can see that the

Fig. 21. Garment folding plan for a sweater.

second plot has larger dissimilarities than the first and third,
which is mainly caused by the friction. The robot should raise
the starting point to a high enough position at the beginning
to prevent the grasped portion of the garment pushing the
other portion on the table. This is also consistent with our
simulation results that our optimizer will drive the height of
the trajectories to a reasonable distance from the garment.

There is a tradeoff between doing contour fitting at each
step and total time spent to fold a garment. In this paper, we
start with one template and then assume that each step after
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TABLE III

RESULTS OF FOLDING TEST FOR EACH GARMENT. WE SHOW THE
NUMBER OF FOLDING STEPS, SUCCESSFUL RATE, AND TOTAL TIME

OF EACH GARMENT. EACH GARMENT HAS BEEN TESTED

TEN TIMES. THE TIME IS THE AVERAGE OVER ALL

SUCCESSFUL TRIALS FOR EACH GARMENT

Fig. 22. Dissimilarity values from different trajectories for folding the towel
model in the second folding step. The trajectory is projected to a 2-D plane
for illustration purposes. S and T stand for the start and the target position,
respectively (best viewed in color).

that the folded garment is close to that in the simulation. Our
experimental results, as shown in Table III, verify that this
method works well and is able to save time, since we only
do the contour fitting once. With our simulated trajectories,
the Baxter robot is able to fold a garment under predefined
steps correctly. An alternative method could use the contour
fitting at each step, but this would require more time and
computation.

We note that some failures due to the motor control error
from the Baxter robot. When the robot executes an optimized
trajectory, its arm suffers from a sudden drop or jitter. Such
actions will raise pull forces to the garment, leading to drift
and inaccurate folding. This can be solved by using an
industrial-level robotic arm with more accurate control. We
also note that failures can be recognized with the correct
sensing suite, and we are currently investigating ways to effect
online error recovery for such failures. One difference between
the simulation and the real world we found is that moving a
point on the mesh in the simulation is different from using a
gripper to grasp a small area of a real garment and move it.
In the future, we hope to be able to simulate a similar grasp
effect for the trajectory optimization.

VIII. CONCLUSION

In this paper, we introduced a simulation database of
common deformable garments to facilitate recognition and
manipulation. The database contains five different garments
within three categories: sweater, pants, and shorts. Each
garment is fully simulated with a number of depth images
and 3-D mesh models for all the semantic labeled grasping

points. We demonstrated a consistent and complete pipeline
of manipulating a deformable garment to a target pose. First,
from a mathematical optimization perspective, we derive the
high-level framework as a two-stage algorithm, recognition,
and manipulation. In recognition, we treat the pose estimation
as a 3-D shape retrieval problem, and transfer the known pose
from the most similar model in the database to the observed
model. Then, rigid and nonrigid registration is performed to
support the manipulation step. In manipulation, we import the
mesh model into the simulator and compute the optimized tra-
jectories. We extensively tested each component of the pipeline
with designed experiments, such as garment recognition via
picking up, unfolding the garment to a known desired state
and laying flat, and using precomputed folding plans to fold
it using a novel trajectory optimization method that prevents
common folding errors. We have addressed all the phases of
the pipeline in Fig. 1 individually. However, there are still
some system and hardware issues that prevent the system from
being a completely seamless pipeline. This is mainly due to
kinematic constraints on the Baxter robot, which limits its
ability to work with larger garments on a normal size table.

While the focus of this paper has been on clothing, we
want to underline the point that model-driven, feedforward
prediction can work well in complex environments with many
unknown states. We believe that the ideas in this paper
can be ported to similar domains, such as food handling
(“soft deformable objects”) and articulated rigid objects with
multiple kinematic states. Furthermore, the step of placing
the garment flat on the table is less explored. Currently, we
use action playback for the step, but more factors need to be
considered if more flexibility is desired.
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