
Autotagging to Improve Text Search for 3D Models

Corey Goldfeder
Department of Computer Science

Columbia University
New York, NY

coreyg@cs.columbia.edu

Peter Allen
Department of Computer Science

Columbia University
New York, NY

allen@cs.columbia.edu

ABSTRACT

Text search on libraries of 3D models has traditionally worked
poorly, as text annotations on 3D models are often unreli-
able or incomplete. We attempt to improve the recall of
text search by automatically assigning appropriate tags to
models. Our algorithm finds relevant tags by appealing to a
large corpus of partially labeled example models, which does
not have to be preclassified or otherwise prepared. For this
purpose we use a copy of Google 3DWarehouse, a library of
user contributed models which is publicly available on the
Internet. Given a model to tag, we find geometrically sim-
ilar models in the corpus, based on distances in a reduced
dimensional space derived from Zernike descriptors. The la-
bels of these neighbors are used as tag candidates for the
model with probabilities proportional to the degree of geo-
metric similarity. We show experimentally that text based
search for 3D models using our computed tags can approach
the quality of geometry based search. Finally, we describe
our 3D model search engine that uses this algorithm.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing Methods

General Terms

Algorithms, Experimentation

1. INTRODUCTION
Building a search engine for 3D models represents a sig-

nificant user interface challenge. Existing 3D search engines
require users to submit complex queries, such as drawing a
sketch [1, 4] or providing an initial 3D model as a starting
point. In contrast, the simplest and most natural interface,
keyword search on the descriptive text associated with each
model, is limited by a dependence on the accuracy of these
descriptions, and more fundamentally by the requirement
that they even exist.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’08, June 16–20, 2008, Pittsburgh, Pennsylvania, USA.
Copyright 2008 ACM 978-1-59593-998-2/08/06 ...$5.00.

In the past, text annotations on 3D models have been
largely dismissed by shape search researchers as being un-
reliable and incomplete, and therefore of limited use in re-
trieval systems. Min, Kazhdan, and Funkhouser experimen-
tally confirmed that searching on text alone is a poor re-
trieval strategy for 3D models drawn from the web [6]. In
this work we use geometric similarity to propagate text tags
between similar models and automatically generate salient
keywords. Our goal is to improve the precision and recall of
keyword based 3D model search to the point that it is com-
parable to searching on geometric shape descriptors. Com-
pared to similar recent work in tagging 2D images [2], our
3D autotagging algorithm has the advantage of not requiring
an explicit training stage.

2. AUTOTAGGING
Given an unlabeled 3D model ω, we wish to assign to

ω a set of text tags from the set of all possible tags Λ =
{λ1, λ2 . . . λn}. Specifically, for each tag λi we wish to as-
sign a confidence value P (λi, ω) which we interpret as the
probability that λi is a relevant tag for ω. We informally de-
fine relevancy to mean that a conscientious annotator would
apply tag λi to model ω.

To tag ω, we make use of a corpus of known models
Ω = {ω1, ω2 . . . ωn}, where each model ωx in Ω has asso-
ciated initial tag probabilities P (λi, ωx) for each λi in Λ,
most of which will be zero. We start with a geometric shape
similarity metric and find the neighbors of ω within some
distance threshold τ(ω). We use Zernike descriptors [8] but
in principal any reasonable shape distance should do. Note
that τ is allowed to be a function of the model, which allows
for adaptively defining the threshold based on the density of
models in a given portion of the descriptor space. We take

P (ω≈ωx) = (1 − D (ωx, ωy))2 (1)

to be an estimate of the probability that ωx and ωy represent
the same type of object and therefore should have similar
text tags. Then given our untagged model ω, a possible text
tag λi, and a neighbor ωx from the corpus, the probability
that our query model should have the tag is

P (λi
, ω) = P (ω≈ωx) ∧ P (λi

, ωx). (2)

Intuitively this means that the probability that λi is ap-
propriate for ω is the probability that it is appropriate for
ωx and that ω and ωx are similar enough to share tags.
P (λi, ωx) can be thought of as measuring how much we trust
the original annotation on ωx. When considered over the full

355

Figure 1: Eight models from the PSB and their 5 best autotags. Tags we deemed to be incorrect are shown in italics.

(“Seagull” is considered salient because it is a brand of guitar.)

set of neighbors N this generalizes to

P (λi
, ω) =

|N|
[

n=1

P (ω≈ωn) ∧ P (λi
, ωn) (3)

or equivalently by the sieve principle to

P (λi
, ω) =

|N|
X

n=1

(−1)n−1
X

S⊂{1,...|N|}
|S|=n

Y

s∈S

(1−D(ω, ωs))
2
P (λi

, ωs).

(4)

2.1 Implementation
Our corpus consists of 192,343 models downloaded from

Google 3DWarehouse. Each model has a title, a set of key-
words, and a text description, although for many models
one or more is blank. A good deal of the text is composed
of nonsense words or blatantly incorrect labels. We found
that the title and keyword fields were usually more reliable
than the description, and so we assumed P (λi, ω) = 0.7 for
tags drawn from the title and keywords and P (λi, ω) = 0.5
for tags drawn from the words of the description. Tags were
stemmed using WordNet [3] and words that appeared on a
list of stop words were ignored.

For the geometric similarity distance we used the Eu-
clidean distances between Zernike descriptors [8], computed
on a voxel grid of 128 voxels per side with a binary thicken-
ing kernel 4 voxels in diameter. For scaling, we used 7 point
Gaussian numerical integration to find the center of mass
of a uniform mass distribution on the surface of the object.
Further integrations found the mean distance and standard
deviation from surface points to the center of mass. We
scaled so that the mean distance and 3 standard deviations
fit within the unit sphere and clipped anything that lay out-
side. Scaling in this fashion is robust to moderate changes
in shape and to outliers. We voxelized our models using a
fast software voxelizer which we wrote, and computed the
descriptors using a tuned version of Novotni and Klein’s pub-
licly available reference implementation. Following their rec-
ommendation, we used 20 levels of moments, which resulted
in 121 dimensional descriptors. We performed a PCA over
the descriptors of the 3DWarehouse data and kept only the
top 57 dimensions. This preserved 99.9% of the original vari-
ance and led to much faster neighbor search, as described in
Section 4.

3. EXPERIMENTAL VALIDATION
To validate the quality of our automatically produced

tags, we used the Princeton Shape Benchmark (PSB) [11].
We computed Zernike descriptors for every model in the
PSB, matched them against the models in our 3DWarehouse

Figure 2: Precision/recall over the PSB for tag dis-

tances on autotags, Zernike descriptor distances, tag dis-

tances on the original tags of the PSB, and tag distances

on a combination of the original tags and autotags.

corpus, and tagged them using our algorithm. In comput-
ing tags we treated the PSB as if it consisted of completely
untagged models. For τ(ω) we used an adaptive threshold,
which we defined as the radius of the hypersphere contain-
ing the first 15 nearest neighbors. Fig. 1 shows the results
for eight models, where we have examined the autotags and
italicized those we deemed to be incorrect.

3.1 Discriminative Power
Our first experiments were designed to test how discrim-

inative our tags are, in the sense that models that belong
to the same class in the PSB were given similar tags, and
models in different classes were given dissimilar tags. We
used the Vector Space Model [9] to define a “tag distance”
between models. In the Vector Space Model, every possible
tag λi ∈ Λ is assumed to be an independent dimension, and
the tags for a model ω form a vector in Λ-space. The length
of the vector along each dimension λi is given by the “tag
frequency, inverse document frequency”method (tf-idf) [10].
The distance between the tags of two models is 1 - the cosine
of the angle between the tag vectors, or 1.0 (the maximum
possible distance1) if either model is untagged.

Using this tag distance, we computed the distance matrix
for the models of the PSB. Fig. 2 shows the precision/recall
graphs of our autotag distances as compared to Zernike de-
scriptor distances. It is important to remember that the
autotag results are for text search, while the Zernikes re-

1Since tf-idf weights are always nonnegative the cosine must
lie within (0,1).

356

quire an input 3D model. Although the Zernike descriptors
are more discriminative, our algorithm still captures much
of the power of the underlying shape descriptor and makes
it accessible via keyword search.

As a control, we compared the quality of our computed
tags to the original tags that came with the PSB models,
using the method of [6]. Like them, we used seven sources of
text for each model, including the model’s filename, original
URL, text from the referring webpage, and synonyms from
WordNet. We formed tag vectors as we did for the autotags
and calculated the tag distances. Fig. 2 shows that the
initial precision of our tags is significantly superior to that
of the original tags. For most models the original tags and
the autotags are not identical, and so we can combine both
sets of tags into a single tag vector. As Fig. 2 also shows,
the combination of original and computed tags outperforms
either tag source alone. In fact, the results are quite close
to the precision/recall of the Zernike descriptors. We feel
that this result is strong evidence against the notion that
text based search can never compete with other forms of 3D
search such as sketches and 3D query models.

3.2 Search Quality
Our first experiments confirmed that our tags are reason-

ably consistent within a class. However, nothing was said
about the saliency of the tags; tagging all “houses” with the
keyword “car” is consistent but not very useful. For our sec-
ond set of experiments we tested tag quality by simulating
example keyword searches for models in the PSB. We eval-
uated the searches for our autotags and the original tags.
The queries were chosen to map directly onto classes in the
PSB classification, so that we could evaluate the precision
and recall of the results.

Given a search query λ, we returned the models ωx that
were tagged with λ, ordered by descending P (λ, ωx). For the
original tags, we weighted all tags equally, since we have no
probability information for them.2 Figure 3 shows the pre-
cision/recall for the queries “airplane,” “head” and “sword”
where we have capped the recall at the point where there
are no more models tagged with the query string, and so any
further retrieval would be random. Note that the precision
of the autotags is equal or greater to that of the original
tags nearly always. Perhaps more importantly, the autotags
can successfully recall 60% to 75% of the relevant results for
each query, while the recall for queries on the original tags
capped out at 5%, 10% and 45%. The greater recall of the
autotags demonstrates that our algorithm can assign usable,
salient tags to 3D models, extending the reach of text search
to models that were previously unreachable.

4. SEARCH ENGINE
We have implemented a shape search engine that uses au-

totagging. Our search engine has access to copies of 3DWare-
house and the PSB and can find models by geometric simi-
larity, original tags, or autotags.

In Section 2.1 we described how we used PCA to reduce
the 121 dimensional Zernike descriptors to 57 dimensions.
PCA packs as much variance as possible into the first few
dimensions, which allowed us to build a very fast k-nearest-

2In Figure 3, the apparently increasing precision for “sword”
on the original tags is due to the random retrieval order for
models with the same tag weight.

Figure 3: Simulated searches for “airplane,”“head,” and

“sword”.

neighbors implementation. This is the core of our search
engine, since we need to find neighbors in Zernike descriptor
space in order to do autotagging.

Our approach is based on [7]. To find all of the neighbors
of p within radius r they first prune the space to a hypercube
with sides of 2r, centered on p. To support this operation,
they maintain n separate lists of the points, each sorted
along one dimension. Pruning to a hypercube then reduces
to rejecting any points with a distance greater than r in any
one dimension, and then finding the intersection of n lists.
The points which remain are brute force searched, and those
which lie outside of the radius r hypersphere are rejected. If
k neighbors are not found, the algorithm can be run again
with a larger value of r.

We mapped this algorithm to a PostgreSQL database im-
plementation. Instead of n lists, we maintain a table of n

columns, where each row represents a single n-dimensional
point. We also maintain an index on each column, which
is algorithmically equivalent to maintaining a sorted list on
each dimension. With this schema, we can perform the en-
tire [7] pruning algorithm as a single SELECT statement
with BETWEEN constraints on each dimension. Due to
the PCA step most of the variance is in the first few dimen-
sions, allowing PostgreSQL to prune dimensions with higher
variance first. Columns with a higher variance are likely to
have fewer neighbors within the search distance, and so most
rows are pruned very early and do not need to be repeatedly
considered for intersection. In practice, our implementation
running on a 2.4 GHz Intel CPU can search 192,343 Zernike
descriptors and return the 50 nearest neighbors of a query
descriptor in approximately 5 seconds. Figure 4 shows the
user interface of our search engine.

5. CONCLUSIONS
We have demonstrated an automatic tagging system that

learns new tags for a 3D model by comparing it to a large set
of tagged models and probabilistically propagating tags from
neighbors. We have shown that the discriminative power of
these tags is comparable to that of the underlying geometric
similarity distance, and that searching for models based on
our autotags can result in better precision and greater recall
than searching on the original tags.

357

Figure 4: Our web based search interface for keyword and geometry search.

Although we have focused in this paper on autotagging to
improve shape retrieval in a digital library, there are several
other domains where automatically annotating 3D models
can be helpful. For example, when users submit models to a
public digital library such as Google 3DWarehouse, they are
often asked to supply tags for the models. If we can autotag
models immediately, we can suggest tags that already exist
on other models, which could improve the consistency of
annotations in the library.

Our results are highly dependent on the quality of the
corpus we use, in terms of both tag quality and coverage of
the space of 3D models. In choosing 3DWarehouse as our
corpus we have emphasized coverage over tag quality. We
have experimented with autotagging using a smaller hand-
classified corpus [5], and in future work we will examine the
tradeoff between corpus accuracy and size.

6. ACKNOWLEDGMENTS
The authors wish to thank Google for providing a com-

plete copy of 3DWarehouse in .obj format.

7. REFERENCES
[1] D. Y. Chen, M. Ouhyoung, X. P. Tian, and Y. T.

Shen. On Visual Similarity Based 3D Model Retrieval.
Eurographics 2003.

[2] R. Datta, W. Ge, J. Li, and J. Z. Wang. Toward
Bridging the Annotation-Retrieval Gap In Image
Search by a Generative Modeling Approach.
Multimedia, 2006.

[3] C. Fellbaum. Wordnet: An Electronic Lexical

Database. MIT Press, 1998.

[4] T. Funkhouser, P. Min, M. Kazhdan, J. Chen,
A. Halderman, D. Dobkin, and D. Jacobs. A Search
Engine for 3D Models. ACM Transactions on

Graphics, 22(1), 2003.

[5] C. Goldfeder, H. Feng, and P. Allen. Training Set
Expansion via Autotags. Shape Modeling

International: SHREC Shape Retrieval Contest, 2008.

[6] P. Min, M. Kazhdan, and T. Funkhouser. A
Comparison of Text and Shape Matching for Retrieval
of Online 3D Models. European Conference on Digital

Libraries, 2004.

[7] S. A. Nene and S. K. Nayar. A Simple Algorithm for
Nearest Neighbor Search in High Dimensions. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 19(9), 1997.

[8] M. Novotni and R. Klein. 3d Zernike Descriptors for
Content Based Shape Retrieval. Solid Modeling and

Applications, 2003.

[9] G. Salton. Mathematics and Information Retrieval.
Journal of Documentation, 35(1), 1979.

[10] G. Salton and C. Buckley. Term-weighting Approaches
in Automatic Text Retrieval. Information Processing

and Management, 24(5), 1988.

[11] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser.
The Princeton Shape Benchmark. Shape Modeling

Applications, 2004.

358

