
A Shadow Based Method for Image to Model Registration

Alejandro J. Troccoli Peter K. Allen
Department of Computer Science

Columbia University
New York, NY 10027

{atroccol, allen}@cs.columbia.edu

Abstract

This paper presents a novel method for 2D to 3D tex-
ture mapping using shadows as cues. This work is part of
a larger set of methods that address the entire 3D modeling
pipeline to create geometrically and photometrically accu-
rate models using a variety of data sources. The focus is
on building models of large outdoor, urban, historic and
archaeological sites. We pose registration of 2D images
with the 3D model as an optimization problem that uses
knowledge of the Sun’s position to estimate shadows in a
scene, and use the shadows produced as a cue to refine the
registration parameters. Results are presented for registra-
tion where ground truth is known and also for a large scale
model consisting of 14 3D scans and 10 images on a large
archaeological site in Sicily.

1. Introduction

The field of 3D reconstruction has been rapidly growing
during the last decade as range finders became more accu-
rate, affordable, available, and deployed in a wide variety
of applications. In particular, an area that has welcomed the
new advances is cultural heritage preservation, where 3D
modeling provides a means of recording historic sites and
allow wider audiences to virtually see or tour these sites.
Unfortunately, the volumes of data are usually of consid-
erable size and the entire modeling pipeline requires sig-
nificant user interaction. Our work centers on developing
new tools and methods to recover complete geometric and
photometric models of large sites that minimize human in-
tervention in 3D to 3D registration and 2D to 3D texture
mapping of the models with imagery [1].

This paper presents a novel method for 2D to 3D regis-
tration using shadows as cues. Shadows have been used in
photogrammetry to perform height determination in aerial
imagery [8], and are also a valuable source of information
for numerous computer vision applications. We use knowl-

Figure 1. Different data sources can be integrated to provide ar-
chaeologist with tools to visualize and document sites. This figure
shows a textured 3D model combined with a panoramic image and
GIS data.

edge of the sun’s position to estimate the location of shad-
ows in the 3D scene and match these with the shadows in
the image to solve the for the camera position and orienta-
tion.

We pose the image registration problem in the context
of a broader project in which our goal is to accurately doc-
ument, using range, image, and GIS data, the steps of the
archaeological excavation in progress. An excavation is a
destructive process, once an object of interest is found, it
needs to be removed from the site. 3D modeling using range
data is an excellent tool for recording each step of the ex-
cavation. Not only does dense range data provide a more
complete record than traditional GIS and image data, but it
also allows for new ways of visualization. Figure 1 shows a
textured 3D model combined with a panoramic image and
GIS data. Integrated models such as these allow dynamic
user interaction with the model, and provide accurate, in-
depth visualizations both on-site and remotely. We present
results from the Acropolis at Mt. Polizzo, which is located

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

in the Mediterranean island of Sicily, and hosts the remains
of ancient Greek civilizations.

The remainder of our paper is structured as follows. Sec-
tion 2 gives an overview of the different techniques used for
image to model registration in projects similar to ours. Sec-
tion 3 reviews our scanning methodology and the problems
we encountered that lead to development of a new method
for 2D to 3D registration based on the shadows cast by the
sun; section 4 gives a detail description of our shadow based
registration and section 5 presents a detailed performance
analysis of our algorithm. We close with a discussion and a
description of ongoing and future work.

2. Previous Work

In a typical 3D acquisition pipeline [2], a specialized 3D
scanner is used to acquire precise geometry and a digital
camera captures appearance information. Unless the 3D
scanner provides a calibrated built in camera, the 3D model
and images must be registered together in order to connect
geometry and texture information. Even if the scanner pro-
vides a pre-calibrated built in camera, this might not be suit-
able for the application at hand, in which case it will be nec-
essary to acquire photographs using a different camera and
register the images to the model.

This problem of image to model registration is closely
related to the problem of camera calibration, which finds
a mapping between the 3D world (object space) and a 2D
image. This mapping is characterized by a rigid transfor-
mation and a camera model, also referred to as the camera’s
extrinsic and intrinsic parameters. The rigid body transfor-
mation takes 3D points from object space to 3D points in the
camera’s reference frame, and the camera model describes
how these are projected onto the image plane.

The camera calibration problem is solved by matching
features in the 3D model with features in the image. These
features are usually points, lines or special designed objects
that are placed in the scene. The matching process can be
automatic or user driven, and the number of feature pairs
required will depend on whether we are solving for the in-
trinsic, extrinsic or both parameters sets. Several methods
have been developed to solve the camera calibration prob-
lem using grid patterns (e.g. [16], [4]).

In the area of image registration for 3D modeling using
dense 3D data, several approaches can be taken, depend-
ing on factors such as the type of range scanner being used
(laser-stripe vs. time of flight), the scale of the model to be
built and the environment conditions. For example, some
scanning configurations allow texture and geometry to be
acquired by the same camera as in the works of Pulli et al.
[11], and Bernardini et al. [3], and hence there is no need
for calibration. Such a case is usually limited to laser stripe
range finders, which can only cover short ranges and have a

restricted set of working environment conditions.
If the images are to be acquired by a camera that is

not built in to the range scanner, then it is possible to pre-
calibrate before deployment. Such a system was developed
for the Digital Michelangelo project of Levoy et al. [10].
Pre-calibration, when possible, has the advantage of avoid-
ing any user driven post-processing. However, one must
be certain that the calibration remains constant during the
whole scanning process to avoid unexpected errors, or pro-
vide a re-calibration mechanism. Pre-calibration works well
for objects that are scanned at short distances because a
good pixel to area ratio is then guaranteed.

When pre-calibration is not possible, then each image
will have to be registered. A typical scenario of small scale
object modeling where each image is individually registered
is described by Rocchini et al. [13]. Here, image to model
registration is done manually by a user who selects corre-
sponding pairs of points. In a similar context of small object
modeling, Lensch et al. [9] present an automatic method
for image registration based on silhouette matching, where
the contour of a rendered version of the object is matched
against the silhouette of the object in the image. No user
intervention is required, but their method is limited to cases
where a single image completely captures the object.

Departing from the above are those methods specifically
developed for large scale modeling. Our methods fall in
this area. Not only is the scale different in our case, but
we are also dealing with outdoor scenes, where the envi-
ronment conditions are not easily controlled. This usually
rules out the possibility of using triangulation based range
finders. Instead, time of flight laser scanners are typically
used. To capture texture information, a camera can be fixed
to the scanner and calibrated. Still in some cases, when the
scanner is reaching objects that are more than 50m away,
it might be necessary to capture additional images closer to
the scene to obtain a better pixel to area resolution. In [15]
we present an automatic method for image to model regis-
tration of urban scenes, where 3D lines are extracted from
the point clouds of buildings and matched against edges ex-
tracted from the images. Ikeuchi et al. [6] in their Great
Buddha work, use reflectance edges obtained from the 3D
points and match them against edges in the image to obtain
the camera position.

3. Modeling the Acropolis at Mt. Polizzo

Geometry, in the form of point clouds, is acquired by a
laser range finder, and texture, in the form of photographs,
is obtained with a digital camera. Details for each stage of
our modeling pipeline are given next.

Scan acquisition. To model the acropolis at Monte
Polizzo we used a time-of-flight laser scanner (Cyrax 2500)
to measure the distance to points on the site. Data from the

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

Figure 2. Modeling the Acropolis at Mt. Polizzo. Top left: Targets have been placed in the area to be scanned. Top right: Point cloud of
scanned area. Bottom left: Mesh resulting from merging all point clouds. Bottom right: Textured mesh with panorama as background.

scanner comprises point clouds, with each point consisting
of three coordinates (x,y,z) and a value representing the am-
plitude of the laser light reflected back to the scanner.

Scan registration. Multiple scans are required to com-
pletely acquire a site such as the Monte Polizzo acropolis.
The resulting point clouds need to be registered together.
Typically, the coordinate system of one of the point clouds
is chosen as the coordinate system for the model. In ar-
chaeology, however, a global site coordinate system is set
up from GPS data. A set of control points are accurately
measured using (preferably differential) GPS, and are then
used to initialize a theodolite in the world coordinate sys-
tem. The theodolite is used to measure points of interests,
such as the location of findings, rocks, or the terrain con-
tour. We need to determine the registration of each point
cloud with respect to the site’s coordinate system. We solve
this problem by using a set of targets that the scanner can
automatically recognize, shown in Figure 2. Before taking
a scan, we place the targets on the area we plan to cover, and
use the theodolite to measure their positions in the site’s co-
ordinate system. Afterwards, we scan the scene at a low
resolution to identify and acquire the targets’ positions in

the scanner’s coordinate system, and so solve the 3D-to-3D
registration problem. The targets are then removed and a
full-resolution scan is acquired.

Surface generation. From sets of registered point
clouds that represent the state of the site at the same point
in time, we generated a triangular-mesh surface, using the
VripPack software developed by Curless and Levoy [5].
VripPack outputs the best mesh that fits the point cloud data,
smoothed to account for registration errors.

Texture acquisition. In addition to the scanner, we used
a Nikon D100 digital camera, mounted on the scanner’s
case, to acquire texture information. For each scan we ac-
quired, we took a photograph.

Local texture registration. We performed a simple cal-
ibration prior to our trip to estimate the camera’s external
and internal parameters. We determined the camera cali-
bration by scanning a flat wall with the room lights off and
the camera’s shutter open for the eight-second duration of
the scan. This provided us with an image of the grid pat-
tern described by the laser as it sampled the wall and the
3D coordinates of each sample. We repeated the scanning
from a different distance and angle to acquire more sam-

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

ples. We then segmented the images to obtain the centroid
of each grid point, and solved the calibration problem using
the 2D-to-3D correspondences just obtained.

Global texture registration. While the local texture
calibration procedure provided us with a good estimate of
the camera’s parameters, we found that our images were
slightly misaligned with respect to the complete model. One
reason for this is that our calibration was local to the scan-
ner’s coordinate system. To texture-map the final model,
this local registration had to be transformed to the site’s
coordinates. Hence, any errors in scan-to-scan registration
will also affect the texture registration. In addition, our ini-
tial calibration was accurate at the depths at which calibra-
tion points had been measured, but not as accurate at other
ranges. To solve these misalignments, we developed a new
method based on the shadows cast by the sun. Our method
performs a global texture registration; it registers the texture
with respect to the model’s coordinate system, as opposed to
the scanner’s coordinate system. Since we have the latitude
and longitude of the site and the time at which each pho-
tograph was taken, we can compute the location of the sun
and find portions of the 3D model that should be in shadow.
By matching these with the shadows in the image we solve
the 2D to 3D registration problem.

Texture-map generation. The final texture mapped
model was created using a software package we developed,
which, given a mesh and a set of calibrated images, assigns
each mesh triangle a suitable texture. Our software can also
integrate GIS data and panoramic images, as shown in Fig-
ure 1.

4. Using shadows for 2D to 3D registration

The main contribution of this paper is a novel technique
for image to model registration based on the shadows cast
by the sun. Assuming the internal parameters of a camera
are known, we find the camera position with respect to the
3D model:

c = (φx, φy , φz, tx, ty, tz)

This is a 6 parameter rigid body transform that maps a
point Xw in world coordinates into its corresponding point
Xc in the camera reference frame. The first three param-
eters (Euler angles) represent the angles of rotation about
each of the coordinate axes and form a rotation matrix
R(φx, φy, φz) = Rx(φx)Ry(φy)Rz(φz). The remaining
three are the components of a translation vector t. Together,
they satisfy the following relationship:

Xc = R(φx, φy, φz)Xw + t

If we knew the correct set of external camera parame-
ters (φxf

, φyf
, φzf

, txf
, tyf

, tzf
) then an orthographic ren-

�
�
�
�
��

Es

Shadow
cone

Figure 3. An orthographic view from the point Es looking at the
model in the direction of the sun rays should contain no shadows.

dering of a textured version of the model with the eye set at
some point Es above the ground and looking in the direction
of the sun rays should show no texture representing shad-
ows (see Figure 3). However, if the texture is misaligned
such a rendering will show a number of shadow pixels. Our
method exploits this idea by searching the parameter space
of camera positions for a point that minimizes the number
of pixels representing shadows in the rendered image of the
model.

The problem is properly stated as follows. Let I denote
the image to be registered and M the model, then f , our
cost function, is defined as

f(Ir) =
∑

x,y∈Ir

shadow(Ir , x, y)

where Ir stands for a rendered image of M as seen from
Es textured with I using a texture camera with external pa-
rameters set to c and

shadow(Ir , x, y) =

1 if pixel(x,y) of Ir

is a shadow pixel
0 otherwise.

Given an initial estimate of the camera position c0, then
the problem is to find a point cf that minimizes f . In our
case, we already have the initial estimate. But if we wanted
to generalize this method to cases where images are ac-
quired by a camera whose position is unrestricted, a user
could provide an initial estimate before starting the mini-
mization.

The complete registration pipeline consists of 2 stages: a
pre-processing stage and a minimization stage. In the pre-
processing stage the shadows in the image are found and
masked out with a given color. In the minimization stage,
an optimization algorithm searches for a global minimum
of f starting from the initial estimate.

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

Figure 4. Left: Image of the Acropolis at Monte Polizzo. Right: The same image after shadow pixels have been masked in green

4.1. Preprocessing

The computational cost of evaluating f depends on the
ease of counting shadow pixels in the rendered scene. A
simple evaluation algorithm for f is possible if all the pixels
in I that represent regions in shadow are first masked out
with a known color (see Figure 4). Then, the evaluation of
f reduces to counting these masked pixels in Ir. We find the
shadows in I by selecting those pixels whose gray value lies
below a threshold. Our system suggests a threshold based
on the histogram of the image, which the user can adjust if
necessary.

In addition, before starting the minimization, the posi-
tion of the viewpoint point Es is computed. From the time-
stamp of the image and the latitude and longitude coordi-
nates of the surveyed area we compute the elevation and
azimuth (θ, φ) coordinates of the sun on the sky [12]. Then
the eye point is defined as,

Es = Pc + V (θ, φ) ∗ d

where Pc is the point where the optical axis of the cam-
era’s initial estimate as defined by c0 intersects the model,
V (θ, φ) is a 3D vector on the unit sphere that corresponds
to the elevation θ and azimuth φ, and d is the distance from
the eye to the model, which is interactively selected by the
user in such a way that the model is seen at a reasonable
size.

4.2. Minimization

For the minimization stage we use an iterative nonlinear
minimizer. The cost function f is not only non-linear, but
also highly dependent on the geometry of the model M . In
addition, it has no analytical derivatives and it usually con-
tains several local minima, which makes the search process
more difficult.

We use simulated annealing [7] to drive the minimization
process. Simulated annealing has the advantage of avoiding
local minima by randomly sampling the parameter space
and occasionally accepting parameters that drive the search
uphill to a point of higher cost, as opposed to gradient de-
scent methods that only allow downhill steps.

There are several other minimization algorithms for non-
linear functions, some of which require partial derivatives.
For our cost function, these derivatives could be computed
using finite differences at the expense of extra function eval-
uations per iteration. But these still can converge to a local
minimum if the initial estimate is not good enough.

4.3. Cost function evaluation

On each iteration k of the non-linear optimization a set
of camera parameters ck are provided by the minimization
algorithm and the cost function is evaluated.

One might be tempted to simply render the model with
texture mapping enabled and count the number of shadow
pixels in the rendered image. However, not every scene
point is visible from the texture camera, a fact which must
be accounted for in order to avoid incorrect results. It is then
necessary to compute on each iteration a visibility map that
will define which scene points are visible from the texture
camera. Fortunately, today’s graphics hardware allows us
to compute this visibility map in real-time by following an
approach similar to that of shadow mapping [14].

Function evaluation is a two pass rendering process, con-
sisting of the following steps

1. Visibility computation (rendering pass 1)

(a) Set eye to camera position and orientation ck

(b) Set the projection model as specified by the cam-
era’s internal parameters

(c) Render the model using depth buffering

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

Translated camera frame

World Frame

Camera frame

φ

Pc

Figure 5. Cost function reparametrization. The camera frame is
translated to the point where the initial camera’s optical axis inter-
sects the scene. Rotations and translations are described wrt to this
translated camera frame.

(d) Store the depth values into a texture V . This will
be our visibility map.

2. Model rendering with I as texture (rendering pass 2)

(a) Set eye to Es, the position of the sun.

(b) Set an orthographic projection.

(c) Set V and I as textures. Use V to decide which
areas are visible from the camera.

(d) Render the scene.

(e) Capture the frame buffer and store it in Ir

3. Compute cost. Count the number of shadow pixels in
Ir

4.4. Cost function reparametrization

The optimization search has been described over a vector
of 6 parameters (φx, φy, φz , tx, ty, tz). This is not a suit-
able parametrization for a minimization search for several
reasons. First, the parameters are interdependent. Rotations
parametrized using Euler angles can suffer from singulari-
ties (e.g. Gimbal lock). Also, the use of a translation vector
adds a dependency between the rotation parameters and the
position of the camera. And as cited by Lensch et al. [9],
this parametrization has the disadvantage that a small ro-
tation around the camera results in a large displacement in
camera coordinates of distant points.

Instead of using Euler angles to represent a rotation, we
use a rotation axis q and rotation angle ω, just as quater-
nions do. We represent the rotation axis by its spherical co-
ordinates (θ, φ) on the unit sphere, and then a complete rota-
tion is described by the three parameters (θ, φ, ω). We also
change the center of rotation. Instead of rotating about the
origin of the world coordinate frame, we will rotate around
the point Pc (see Figure 5).

To establish the position of the camera, we use a dis-
placement vector d which describes the position of the cam-
era in the translated coordinate system. The reparametrized
camera is then described by,

c = (θ, φ, ω, dx, dy, dz)

4.5. Cost function optimization

Even after reparametrization, the search process might
place the camera in a configuration where it does not see
any point in the model. In such a case, the value of f will be
0 and the minimization will converge to an incorrect result.

To avoid these situations, one can to take into account
the number of textured pixels in Ir. This number is propor-
tional to the number of scene points that are visible from the
texture camera and it is to be expected that the correct cam-
era configuration will cover a large area of the scene. We
can compute the number of textured pixels at the same time
we count the shadow pixels if we set the screen background
to a given color (e.g. black) and use this color to render
scene points that are not visible from the texture camera.
This adds no computational cost to the evaluation of f .

There are several ways in which this information can be
used. We define a new cost function f1 as

f1(Ir) =

{
f(Ir)

number of pixels in Ir
if v(Ir) ≥ kv.visible0

1.0 otherwise.

where

v(Ir) =
∑

x,y∈Ir

visible(Ir, x, y)

and

visible(Ir, x, y) =

1 if pixel(x,y) of Ir

is a non-black pixel
0 otherwise.

Here f(Ir) is the count of shadow pixels, v(Ir) is the count
of textured, kv is a threshold value and visible0 is the num-
ber of visible pixels at the initial configuration. This form
has the advantage of favoring camera configurations with a
larger coverage of the scene.

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

-6

-5.5

-5

-4.5

-4

-3.5

 0 1 2 3 4 5 6 7 8 9

lo
g(

f)

log(iteration)

log(f) vs log(iteration)

Figure 6. This figure shows a plot of the log(f1) against the log
of the number of minimization iterations. The 20 series correspond
to 20 simulation iterations.

5. Results

To test the performance of our algorithm we ran a set
of simulation experiments for which we knew the camera
calibration. The simulations were performed on a mesh
obtained from a single scan, thus avoiding mesh averag-
ing errors caused by merging multiple scans. This mesh
consisted of 20367 vertices and 34807 triangles. The size
of the texture image was of 3008 by 2000 pixels. An ac-
curate calibration was achieved by placing targets on the
scene and acquiring their position with the 3D scanner and
a geo-referenced total station. Using this camera calibration
as ground truth, we created a sequence of initial positions
by randomly perturbing the orientation of the camera by as
much as -5 to 5 degrees in each rotation angle and the trans-
lation by -0.25 to 0.25m in each axis. From each of these
initial positions, we ran our algorithm using cost function f1

with kv set to 0.6 and then compared the resulting camera
with the original one.

Table 1 shows the results of 20 simulation iterations. To
accurately compare the camera obtained from our algorithm
with the control camera, we project the mesh vertices to the
image plane of each camera and define the reprojection er-
ror as the distance between these two points. Columns two
and three on Table 1 list the average reprojection error and
columns four and five the number of shadow pixels at the
start and end of the minimization. Notice that the average
reprojection error over the 20 iterations is 7 pixels, which
is acceptable. In the worst case, the average reprojection
was 15 pixels, which is still good. The running time for
each iteration was approximately 12 minutes on a Pentium
IV machine. This time corresponds to 3000 iterations of
our minimization. Simulated annealing is not fast, but in
our case provides accurate results in the presence of a large

Table 1. Simulation results
Avg. reprojection error Shadow pixels

Iteration Initial End Initial End
0 661.74 5.63 3405 531
1 823.03 15.05 2945 619
2 711.32 10.43 3699 663
3 639.82 6.15 4486 530
4 707.36 6.14 2876 522
5 611.09 6.93 3699 523
6 711.28 6.87 3200 524
7 817.58 6.81 3109 568
8 606.78 7.57 3556 522
9 737.70 4.28 4297 538

10 718.43 6.31 3211 533
11 626.94 8.50 2573 562
12 742.79 6.29 2635 517
13 688.23 10.65 3244 559
14 638.68 6.05 3354 522
15 572.92 6.24 3708 555
16 699.08 5.74 1754 531
17 743.26 5.83 2979 527
18 827.53 9.06 4532 538
19 795.37 6.18 4628 520

avg 704.05 7.34 3394 545

Table 2. Realignment results
Shadow pixels

Image Initial End Improvement %
1 3971 1535 61.34%
2 4641 2454 47.12%
3 4140 1926 53.48%
4 811 705 13.07%
5 3760 770 79.52%
6 2171 308 85.81%
7 2573 1382 46.29%
8 2838 1329 53.17%
9 1081 356 67.07%

10 4528 2975 34.30%
avg 3051 1374 54.12%

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

Figure 7. Acropolis 1. Left: An initial configuration as generated during our simulation experiments. Note that the image does not align
well with neighboring textures. In particular, the area enclosed within the ellipse is misaligned. A white line has been drawn over the border
between separating the textures. Right: Result obtained after running our algorithm.

Figure 8. Realignment of the textures of our Acropolis model. Left: The textures are misaligned and artifacts can be observed (enclosed
within white ellipse). Right: View after the textures have been re-aligned using our algorithm.

number of local minima. The running time depends on two
main factors: the number of iterations and the size of the
rendering window. A maximum of 3000 iterations might be
excessive as Figure 6 suggests. This figure shows the log
of the cost of the the best configuration found so far against
the log of the number of minimization iterations for each
of the 20 simulations. The reason for choosing a logarith-
mic scale is because simulated annealing has an exponential
temperature (cooling) schedule. This type of plot is useful
to estimate the number of iterations required for the mini-
mization to converge, which in this case is between e7 and
e8 or 1096 and 2980 iterations, closer to the 1096 end.

Figure 7 shows two rendered models of the Acropolis at
Mt. Polizzo, the first one setting the texture camera to the
initial position of one of the simulation iterations and the
second one with the same camera set to the results of our
algorithm. Notice how the region within the ellipse, that is

misaligned and does not agree with its neighbor texture is
correctly aligned after running our algorithm.

In addition, we used our registration method to realign
the images of our Acropolis model (Figure 8). The model
consists of a mesh of 138,000 triangles and is textured using
twelve 3008 x 2000 pixel images. We were able to success-
fully re-align 10 of the 12 images. In one case, due to holes
in the acquired scan our algorithm failed to find the inter-
section of the camera’s optical axis and the scene. In the
other case, the algorithm failed because the texture image
was taken late in the afternoon, close to sun set , and ar-
eas which were not in shadow were incorrectly masked as
shadow areas during the shadow detection phase. Table 2
shows the count of shadow pixels at the start and end of our
algorithm and the percentage improvement.

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

6. Discussion

In this paper we have presented a complete pipeline for
building a a photorealistic 3D model of an archaeological
site, with emphasis on a novel method for 2D to 3D registra-
tion based on the shadows cast by the sun. We showed how
we successfully applied the proposed algorithm to solve for
texture misalignments. There are several areas in which our
method can be improved. One of them is shadow detec-
tion in the images. This is important because misidentified
shadow pixels can drive the search to an incorrect result. We
are also looking at different ways of improving the running
speed. The speed is highly dependent on the size of the
rendered image Ir so we are experimenting with different
window sizes and evaluating how the speed and accuracy
are affected.

Our shadow based method can be used in different con-
texts. One of them is robot localization: a robot could use
a camera to take an image and then use our shadow based
algorithm to find its position.

Finally, this is just a piece of the on going research in the
area of 3D modeling. We are beginning to look at further
ways of improving the final textured model. One problem
that we are looking at is simultaneous texture alignment.
The algorithm presented in this paper takes a single texture
image at a time and aligns it with respect to the 3D model.
But it does not take into account how well this alignment
corresponds with previously aligned texture images. An-
other problem we need to address is the color constancy
problem: the colors of overlapping images do not match.
This is due to the images being taken under different times
of the day and different illumination conditions.

Acknowledgments

In addition to the paper authors, the field team that went
to Mt. Polizzo was also integrated by Benjamin Smith,
Hrvoje Benko, Edward Ishak, Steve Feiner, Lynn Meskel
and James Conlon. We would link to thank them for their
invaluable effort and suggestions. This research was funded
in part by NSF grant IIS-0121239 and from gifts by Alias
Systems. Also, additional thanks go to Ian Morris and the
Stanford Archaeology Center for images and data from the
Monte Polizzo excavation.

References

[1] P. K. Allen, A. Troccoli, B. Smith, S. Murray, I. Stamos, and
M. Leordeanu. New methods for digital modeling of historic
sites. IEEE Comput. Graph. Appl., 23(6):32–41, 2003.

[2] F. Bernardini and H. Rushmeier. The 3D model acquisition
pipeline. Computer Graphics Forum, 21(2):149–172, June
2002.

[3] F. Bernardini, H. Rushmeier, I. M. Martin, J. Mittleman, and
G. Taubin. Building a digital model of Michelangelo’s Flo-
rentine Pietà. IEEE Computer Graphics and Applications,
22(1):59–67, /2002.

[4] J.-Y. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguet/calib doc, 2001.

[5] B. Curless and M. Levoy. A volumetric method for building
complex models from range images. In Proceedings of the
23rd annual conference on Computer graphics and interac-
tive techniques, pages 303–312. ACM Press, 1996.

[6] K. Ikeuchi, A. Nakazawa, K. Nishino, and T. Oishi. Cre-
ating virtual buddha statues through observation. In IEEE
Workshop on Applications of Computer Vision in Architec-
ture, volume 1 of Conference on Computer Vision and Pat-
tern Recognition, 2003.

[7] L. Ingber. Very fast simulated re-annealing. Mathl. Comput.
Modelling, 12(8):967–973, 1989.

[8] R. B. Irvin and J. David M. McKeown. Methods for exploit-
ing the relationshio between buildings and their shadows in
aerial imagery. IEEE Transactions on Systems, Man, and
Cybernetics, 19(6):1564–1575, December 1989.

[9] H. P. Lensch, W. Heidrich, and H.-P. Seidel. A silhouette-
based algorithm for texture registration and stitching.
Graphical Models, 63(4):245–262, 2001.

[10] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital michelangelo project:
3D scanning of large statues. In Siggraph 2000, Computer
Graphics Proceedings, pages 131–144, 2000.

[11] K. Pulli, M. Cohen, T. Duchamp, H. Hoppe, L. Shapiro, and
W. Stuetzle. View-based rendering: Visualizing real objects
from scanned range and color data. In Rendering Techniques
’97 (Proceedings of the Eighth Eurographics Workshop on
Rendering), pages 23–34, New York, NY, 1997. Springer
Wien.

[12] I. Reda and A. Andreas. Solar position algorithm for solar
radiation applications. Technical report, National Renew-
able Enery Laboratory, Golden, Colorado, June 2003.

[13] C. Rocchini, P. Cignomi, C. Montani, and R. Scopigno.
Multiple textures stitching and blending on 3D objects. In
Rendering Techniques ’99, Eurographics, pages 119–130.
Springer-Verlag Wien New York, 1999.

[14] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and
P. Haeberli. Fast shadows and lighting effects using texture
mapping. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 249–
252. ACM Press, 1992.

[15] I. Stamos and P. K. Allen. Automatic registration of 2-D
with 3-D imagery in urban environments. In Proceedings
of the Eighth International Conference On Computer Vision
(ICCV-01), pages 731–737, Los Alamitos, CA, July 9–12
2001. IEEE Computer Society.

[16] R. Y. Tsai. A versatile camera calibration technique for high-
accuracy 3D machine vision metrology using off-the-shelf
TV cameras and lenses. IEEE Journal of Robotics and Au-
tomation, 3:323–344, 1987.

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

