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Abstract Brain-Computer Interfaces are promising technologies that can improve
Human-Robot Interaction, especially for disabled and impaired individuals. Non-
invasive BCI's, which are very desirable from a medical and therapeutic perspective,
are only able to deliver noisy, low-bandwidth signals, making their use in complex
tasks dif®cult. To this end, we present a shared control online grasp planning frame-
work using an advanced EEG-based interface. Unlike commonly used paradigms,
the EEG interface we incorporate allows online generation of a exible number of
options. This online planning framework allows the user to direct the planner to-
wards grasps that re ect their intent for using the grasped object by successively se-
lecting grasps that approach the desired approach direction of the hand. The planner
divides the grasping task into phases, and generates images that re ect the choices
that the planner can make at each phase. The EEG interface is used to recognize the
user's preference among a set of options presented by the planner. The EEG signal
classi®er is fast and simple to train, and the system as a whole requires almost no
learning on the part of the subject. Three subjects were able to successfully use the
system to grasp and pick up a number of objects in a cluttered scene.

1 Introduction

People with restricted mobility currently require signi®cant infrastructural support
in order to perform activities of daily living (ADL), including things like manipu-
lating objects, opening doors, and other basic actions that able-bodied people often
take for granted. With the current state-of-the-art robotic arms, hands, and percep-
tion systems, it is clear that robotic grasping systems could help reduce the depen-
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dency severely disabled individuals have on live-in caretakers, and provide them
with the ability to actively interact with their environment.

However, the robotic grasping systems which show the greatest promise in per-
forming ADL tend to be highly complex, involving high degree of freedom manip-
ulators and precise control to achieve their objectives. It is therefore important to
present users with a high-level interface to these grasping systems that can operate
with relatively little training.

In previous work [22, 23, 21], we have presented a shared-control online grasp
planner that collaboratively determines feasible grasps under the active direction of
a user through a low-bandwidth interface. We have demonstrated the ef®cacy of this
system using a variety of facial EMG-based devices in moderately cluttered scenes.
However, this interface depends on the ability of the user to trigger relevant facial
muscles repeatably and reliably.

In this work, we extend this system to an EEG-based system, which has a number
of advantages. Firstly, the neurological phenomena used in the system is a subcon-
scious reaction to visual stimuli, and therefore needs very little relevant user exper-
tise to operate. Secondly, the planner can take advantage of visual ambiguity be-
tween functionally similar grasps to achieve fast convergence in the shared-control
paradigm. The user acts as a ®lter for the planner, directing it to a desired approach
direction and ®ltering proposed candidates until a reasonable one is found. Three
users were able to use this system with minimal training to pick up a variety of
objects in a semi-cluttered scene.

2 Prior Work

Brain-Computer Interface (BCI) control over prosthetic and assistive manipulators
has been the subject of a great deal of research, through many different strategies
and input modalities. Recently there has been a resurgence of interest in this ®eld.
One widely cited recent advance was reported by Vogel et al. [19], who showed that
a subject with a BrainGate cortically-implanted electrode can use a robotic manip-
ulator to retrieve a drink container by controlling the end-effector location and the
opening and closing of the hand. However. this approach requires an invasive device
capable of recording a large number of high quality signals.

Noninvasive EEG systems have been demonstrated in a number of simpler tasks.
In [15], surface electrode signals related to eye gaze direction are used to control
2D arm position and EEG signals are used to detect eye blinks to control gripper
closing. In [11], hand opening/closing and elbow “exion/extension are controlled
by EEG signals.

The majority of previous work using EEG control concentrates on trajectory
control. However, it has been shown that users ®nd BCI control easier using even
higher-level, goal-oriented paradigms [16]. We have begun to see work that attempts
to exploit higher-level abstractions to allow users to perform more complex tasks
with robotic arms. In [4], EEG signals were used to select targets for pick and place
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operations for a small humanoid robot. In [20], the authors used EEG signals to con-
trol pick and place operations of a 4-DOF Staubli robot. Bryan et al.[5] presented
preliminary work in extending this approach to a grasping pipeline on the PR2 robot.
In that work, a 3D perception pipeline is used to ®nd and identify target objects for
grasping and EEG signals are used to choose between them.

Recently, some authors including [13, 12] have explored shared control paradigms
which integrate computer vision, intra-cortical EEG recording, and online planning
to perform reaching, grasping, and manipulation tasks. These works are promising,
but rely on the higher ®delity control available from implanted devices. In [6], the
planner presented in our work, which is focused on acquiring an appropriate grasp
of the object with arbitrarily complex hands, was integrated with a similar system.
In this work, we introduce an interface to the user which allows them to control
higher level, more abstract goals with lower throughput devices, which could be
made complimentary to these other shared controlled paradigms.

3 Methods

3.1 Overview

We present here a prototype of an assistive grasping system which integrates a BCI
driven user interface with a perception pipeline, a lightweight mountable manipula-
tor, in this case the 6-DOF Mico arm with a two-®nger underactuated gripper [2],
and an online grasp planning system to allow a user to grasp an object in moderately
cluttered scenes. It decomposes the grasping task into a multi-step pipeline where
each step generates a visual representation of the options the user can take. Some
options which cannot be visually represented, such as returning to a previous state,
are presented as white text on a black background. At each stage, the online plan-
ning system derives a set of reasonable possible actions and presents them to the
user, reducing the complex task of grasping an object in cluttered scenes to a series
of decision points that can be navigated with a low throughput, noisy input such as
an EEG headcap. Fig. 1 shows a healthy subject in our validation study using the
system to grasp a bottle of laundry detergent in a typical scene.

3.2 Grasp Planning

This system uses the Online Eigengrasp Planner introduced by Ciocarlie et al. in [7].
This planner uses simulated annealing to generate grasp candidates by projecting
desired contacts points on to the target object to ®nd grasps likely to result in a
force closed grasp. In order to make this task computationally tractable, a reduced
subspace of the hand's full con®guration is sampled. In the case of the a simple
gripper such as that on the Mico, this may not be necessary, but the use of this
planner makes the computational cost of using a more complex hand nearly the
same as this simpler hand. Candidate grasps in near contact positions are re®ned to
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Fig. 1: The subject guiding the system through the active re®nement phase. On the
left side is the robotic manipulator and three containers in the grasping scene. On the
right is a subject using the system through the B-Alert EEG cap, which is relatively
unobtrusive and can be worn for long periods of time. The options for the active
re®nement stage are presented on the monitor in front of the subject in a grid to
allow the subject to pick the one they intend to select during the serial presentation.
In this example, at least one of the grasps found in the database for the object was
reachable, and is highlighted in blue in the upper left corner of the grid. The user
may choose to execute the highlighted grasp, or to re-seed the planner with one
of the other nine grasps and then re-enter the active re®nement phase with a new
highlighted grasp.

completed grasps by kinematic simulation of closing the hand at a prede®ned set of
joint velocities.

The resulting contacts are ranked by the maximum wrench perturbation force
they are capable of resisting, as described in [8], and the closeness of the align-
ment between the hand and the object's surface. If the quality metric is atidve 0
and all of the dot products of the normal direction of the hand and object is above
0:8 for all of the contact points, the grasping pose is tested for reachability using
the PRM planner oMovelt[18]. When the scene is cluttered, the motion planner
for the reaching motion is slow and likely to fail. In order to make this problem
more computationally tractable, we cache previous solutions as grasps are planned.
Whenever a previous solution ends near the new candidate grasp pose, we plan from
its end point to the new grasp candidate. Since the nature of our grasp planner pro-
duces many nearby solutions, this makes the reachability ®lter signi®cantly faster
and more robust. Grasps are ranked ®rst by reachability, then by the grasp quality,
and ®nally by the maximal surface misalignment.
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The neighbor generating function of the simulated annealing planner is biased
towards a con®guration demonstrated by the user. By controlling this seed con®gu-
ration, the user controls the resulting set of candidates that will presented to them.
This allows the user to ®nd a grasp for a particular purpose by iteratively picking
the grasp whose pose is nearest to the grasp that they are looking for.

3.3 One-of-many selection

The EEG interface presented in this paper is based on an @interest® detector which
can be used to provide a one-of-many selection between various options. This @in-
terest° signal paradigm is based on the work in [14]. The options are presented as
a stream of images, and the subject is primed to look for particular images that
suit some criterion. This paradigm is known Rapid Serial Visual Presentation
(RSVP). Spikes in EEG activity which correlate with dinterest® are connected with
the image that was presented at the time the EEG activity was evoked, which is then
used to derive the user's desired input.

Previous work with this paradigm has asked the subject to look for objects of a
particular category. In our system, the images represent actions that are suggested
by the grasp planner, which the subject may not have had previous experience with.
In this case, the subject must be given time to analyze the options and primed to ®nd
the features which make their desired option visually distinct from similar options.

In Fig. 2, we illustrate the summary pane containing a grid of all of the options,
which are then shuf ed and presented to the user. In Fig. 1, you can see the subject
reviewing the options in a summary pane before the serial presentation of them
begins.

One major advantage of this paradigm is that it generalizes a single interaction
across all phases of the grasp planning pipeline. The system only needs to be trained
to recognize the 2interest® signal for each subject. Afterwards, the subject's inter-
action with each phase is the same, and the system does not require phase-speci®c
training.

3.3.1 EEG input

Our current implementation uses a B-Alert X10 EEG system from Advanced Brain
Monitoring (Carlsbad, CA), which provides 9 electrodes positioned according to
the 10-20 system and a pair of reference channels. The EEG data is acquired at 256
Hz, with 60 Hz notch and 0.5 Hz high-pass ®lters applied before any additional
processing. The EEG interest metric is based on that described in [14, 17, 10], with
some additional normalization and post-processing.

More information on this system can be found online at the manufacturer's web-
site [1]. As can be seen in Fig. 1, the cap and device are relatively minimalistic,
and can be comfortably worn for an hour at a time without requiring rewetting or
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Fig. 2: The grasp planning system compiles a set of images representing potential
actions, for example a set of grasps as seen in this image. The image options are
tiled together to form the summary pane seen on the left, which lets the user pick
out the one that re ects their desire. The images are then shuf ed, with repetitions,
into a stream that is serially presented to the user as described in section 3.3.3.

reseating of the electrodes. With the advent of the OpenBCI project [3] and simi-
lar efforts towards low cost, open hardware EEG devices, a low cost solution with
similar capabilities may be on the horizon.

3.3.2 EEG interest metric

The EEG interest metric is based on the one used in [14, 17, 10]. In essence, it as-
sumes that the P300 signal resulting from a particular image varies with a resolution

of 100ms. For each block, it examines the time period from 100ms to 1200ms after

the input stimulus as separate 100ms blocks, combined in a linear model:

Ysn= é WiXin Y= é VnYsn (1)
I n

where eachx, is the reading at a speci®c electrodd some time period, ysn IS
the weighted total score over a single 100 ms blockyaisdthe combined score for
the 1100ms time period following the stimulus. The weightare learned from the
training data so as to maximize the difference between target and non-target images
in each time block using Fisher linear discriminant analysis [9]. Then, the weights
Vv, are determined by applying logistic regression on the training data.

In training, we additionally compute summary statistics for both target and non-
target images, which are used later to normalize the individual readings per trial.
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3.3.3 Option generation

To generate the RSVP sequence, the system randomly selects each option to appear
between three and seven times. The sequence is then randomly shuf ed, with the
constraint that the same option does not appear in two consecutive image presenta-
tions. This method has, in experimental data, been suf®cient to trigger the 2oddball°
response that is necessary for the P300 signal.

If there are less than ®ve options, the system will automatically ®II in distractor
image options to make this constraint more feasible. The images are dependent on
the phase and attempt to minimize the visual difference between the distractor and
the original, so as to avoid unintentionally triggering the P300 signal. For example,
in the object selection state, the distractor options are of the scene with no objects
selected; whereas in the active re®nement state they are images of the object with
no visible grasp.

More formally, the grasp planner generates a set of optpnsT [ G, whereT
is a set of strings representing textual options (e.g. 2Rerun object recognition®), and
G is a set of potential grasp or object imagegQf < 5, the selection system then
adds 3j Qj distractor images to result inQ°

From QP we generate the sequence of imabas follows:

I = shufe(lgy1ilay2::: 3 g, s lapti 25 g, ) (2)

wherek= jQY, g 2 Q%andc; U(3;7) 8 j 2 [1;K].

The images are each presented at 4 Hz, and preliminary EEG ss@esas-
signed. We then aggregate each of the é‘lecj images by their option, and de-
termine whether or not the user has made a selection.

To test if the user has consciously selected any of the images, we sort the images
by their EEG scores, and then split it into a group of sizmdn! x. We varyx so
as to maximize the change in the average measured EEG score:

|
n

a e (3)

i=x+1

18
X =argmax —-g &!

x2[Ln] N2y n! x

If x > max0:2n;7), we determine that the user had not made a choice. In practice,
this is a highly reliable means of checking whether the user was paying attention
and attempting to make a selection.

If x  max0:2n;7), we compute a smoothed similarity score using thextop
positions.

3.3.4 Option scoring
The options are scored using a smoothed similarity metric, represented as a sym-

metric matrixS2 R, x, computed such th&; = 1 andS; = §; 2 [! 1.0; 1:0].
We can then construct the weighted score vedtas
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s
Wo = a Suq (4)
i=0

whereqj; is the option corresponding tp and return

= XN, 5
q = argmaig (5)

This scoring method introduces a bias towards groups of similar options, and in
essence allows a near-miss selection to nonetheless help select the desired option.
From our experiments, this is particularly helpful with subjects who are less expe-
rienced with the system, as they often make minor mistakes during the selection
process.

We note that this is equivalent to a simple voting schem®@sif Iy i, i.e. the
identity matrix of sizek. Thus, for options where there is no obvious similarity
metric, such as textual or distractor options, we use the corresponding rows and
columns from the identity as default.

3.4 Grasping Pipeline

There are four states that the user progresses through when attempting to formulate
a grasp,Object SelectionGrasp SelectionGrasp Re®nemerdnd Con®rmation
The pathway is illustrated in Fig. 3.

3.4.1 Object selection state

In this stage, an object recognition system is used to retrieve models from a database
that ®t the scene. An image representing selection of each object is generated as
shown in the @3summary pane® in Fig. 4a, with the target object highlighted green
in each potential selection. Between the various images only the highlighted object
changes. An additional state is presented that allows the user to run the recognition
system again. If fewer than eight objects are detected, additional distractor images
of the scene with no highlighted object are generated to act as distractor images
which help establish the background level of EEG activity. The user is instructed to
just look for the object they want to grasp as the image stream is shown. In this state,
the similarity matrix is the identity matrix over the viable options, as the objects are
highly dissimilar.

3.4.2 Grasp selection and re®nement state

Once the object is selected, the system moves into the grasp selection state. The
user's interaction with the grasp selection state and re®nement states are very sim-
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Fig. 3: A diagram outlining the EEG RSVP-driven grasping pipeline. In each phase,

a series of images is generated representing the available options, as described in
section 3.4. A summary pane of the image options generated at each phase is pre-
sented in more detail in Fig. 4a-4d.

























