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Abstract BCI (Brain Computer Interface) technology shows great promise in the
field of assistive robotics. In particular, severely impaired individuals lacking the
use of their hands and arms would benefit greatly from a robotic grasping system
that can be controlled by a simple and intuitive BCI. In this paper we describe an
end-to-end robotic grasping system that is controlled by only four classified facial
EMG signals resulting in robust and stable grasps. A front end vision system is used
to identify and register objects to be grasped against a database of models. Once
the model is aligned, it can be used in a real-time grasp planning simulator that is
controlled through a non-invasive and inexpensive BCI interface in both discrete
and continuous modes. The user can control the approach direction through the BCI
interface, and can also assist the planner in choosing the best grasp. Once the grasp
is planned, a robotic hand/arm system can execute the grasp. We show results in
using this system to pick up a variety of objects in real-time, from a number of
different approach directions, using facial BCI signals exclusively. We believe this
system is a working prototype for a fully automated assistive grasping system.

1 Motivation

With recent advances in robotics and computer vision, it is possible to imagine a
robotic system to assist people with severely limiting disabilities in activities of
daily living (ADL), improving their quality of life. ADL frequently require the user
to grasp an object stably in a context aware way. Complex hands and manipulators
increase the flexibility and grasping capabilities of a robotic assistant, but at the cost
of requiring more complex control of many DOFs. Our goal is to create a robust
system that can control a dexterous grasping system in real-time using only a small
number of signals from an inexpensive and non-invasive BCI device with minimal
training.
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Online, interactive control of robotic arms and hands for grasping in natural en-
vironments is a difficult problem. Typically, most systems use simple, parallel jaw
grippers which simplifies the grasping process. Using more complex and higher
DOF robotic hands increases the versatility of the system but at the cost of higher
complexity for control. This generally requires more input from the user. More in-
put, however, requires more channels, more processing, higher latencies, and gen-
erally higher cost. Our solution to this trade-off is to use a higher DOF hand with
an accompanying high level interface that offloads the complexity of input require-
ments for the user to a simple and intelligent user interface. To avoid the issue of
increasing the complexity of the input to the hand but maintain the flexibility of the
more complex hand, the user needs a high level and intuitive interface.

2 Prior Work

A significant proportion of BCI-robotics research has focused on manipulating
robotic arms and hand and different strategies for Simplementing solutions via elec-
trophysiological signals have been investigated. Vogel et al. [26] showed that using
the BrainGate cortically implanted electrode a subject was able to exercise Carte-
sian velocity control over an end effector and control opening and closing of the
hand. However. this approach requires an invasive device capable of recording a
large number of high quality signals.

It has also been shown that non-invasive devices can exercise effective control
over robotic arms. For example, distal limb surface EMG signals have been used to
control robotic arms in several applications [1, 4]. However, thus far accurate real
time control has only been demonstrated for simple trajectory tracking tasks while
using a large number of signals.

In order to reduce the number and quality of human signals needed, some inter-
mediate level abstractions have been used. In [23], Shenoy et al. demonstrated basic
cartesian control of a robot arm and gripper from 9 forearm electrodes to perform ba-
sic pick and place tasks. Another approach to abstraction is the use of forearm EMG
signals to quickly switch between preset discrete states of various robotic hands
[29, 28, 10, 6, 13]. In many situations in which assistive BCI-robotics would be ap-
plicable, limb EMG signals may not always be available or convenient. Therefore,
various authors have proposed control schemes using face and head EMG signals to
control robotic arms and grippers [20, 8, 18].

EEG has also been developed for BCIs to control robotic arms and hands in sim-
ple tasks. In [24, 9] BCI signals are used to control functional electrical stimulation
to close and open a subject’s wrist. In [17], surface electrode signals related to eye
gaze direction are used to control 2D arm position and EEG signals are used to de-
tect eye blinks to control gripper closing. In [11] hand opening/closing and elbow
flexion/extension are controlled by EEG signals.

The majority of this previous work concentrates on trajectory control. However,
it has been shown that users find BCI control easier using even higher level, goal
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oriented paradigms [19]. We have begun to see work that attempts to exploit higher
level abstractions to allow users to perform more complex tasks with robotic arms.
In [2], EEG signals were used to select targets for pick and place operations for a
small humanoid robot. Waytowich et al. [27] used EEG signals to control pick and
place operations of a 4-DOF Stäubli robot. Bryan et al. [12] presented preliminary
work extending this approach to a grasping pipeline on the PR2 robot. In that work,
a 3D perception pipeline is used to find and identify target objects for grasping and
EEG signals are used to choose between them. In [15], grasping is decomposed to a
4 stage pipeline where EEG signals are used to control transitions between stages.
And in [22], the authors demonstrate an interface to navigate in two dimensions and
select goals in a complex virtual environment and propose a hierarchical control
scheme for learning high level tasks dynamically.

While previous work has shown that complex interactions can be mediated by
BCI signals, thus far a fully developed, end-to-end, real-time, BCI-based grasp-
ing system for complex hands has not been demonstrated. A full grasping pipeline,
which our system addresses, must integrate target selection and localization, multi-
DOF hand configuration planning, and approach trajectory planning with user intent
decoded from a noisy low dimensional BCI signal.

3 Technical Approach

Figure 1 is an overview of our system. A 3D range camera is used to image an ob-
ject to be grasped. This range image is used to both identify and align the object
from a database of existing models [7]. Once the model is chosen and aligned, we
show that four simple signals are sufficient to supervise an online grasp planning
system resulting in robust grasps using real sensor data for object localization. By
carefully reducing the configuration space of our planning and control architecture,
our system enables subjects to select grasps appropriate to the desired task. The user
interacts in real-time with the robot through a kinematic simulator which allows the
user to visualize and supervise all of the elements necessary to plan a task specific
grasp. The goal of this approach is to make simple, inexpensive BCI devices pow-
erful enough to allow users to grasp many objects that are important for everyday
living in a context aware way.

The grasping pipeline is divided up into four stages: object identification and
alignment, grasp planning, grasp review, and grasp execution, which are described
below. This pipeline is controlled using only four facial gestures. The use of these
gestures in each stage of the pipeline is explained in Table 1. In general, gesture 1
serves as a ”click” and moves the user through the pipeline. The exception to this is
at points of decision for the user. In these cases, gesture 2 serves as the ”YES” option
and gesture 1 becomes ”NO” and returns the user to an earlier point in the pipeline.
Because false positive readings of gesture 1 and 2 have strong consequences, we
found that both are best associated with a concise and strong gesture such as clos-
ing one eye or clenching the jaw. Gestures 3 and 4 control the approach direction
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of the hand relative to the object during the grasp planning stage of the pipeline.
These gestures can be maintained to generate continuous motion of the hand over
two degrees of freedom and therefore are best associated with gestures that can be
contracted for several seconds without too much twitching or fatigue.

Gesture Run Planner Review Grasps Execution
1 start/stop planner cycle through grasps restart
2 n/a select grasp confirm grasp
3 rotate around x-axis n/a n/a
4 rotate around z-axis n/a n/a

Table 1 A description of the user interface as the user progresses through phases of the pipeline.

Object Identification and Localization: Our grasp planner requires a complete
description of the geometry and location of the target object. The raw point cloud
data is gathered by a Microsoft Kinect. In this work, we assume the target is a
member of a known set of objects. We use the method described in [16] to identify
and localize the target object in the scene. Briefly, this method generates features
from pairs of oriented points on the surface of the object. Prospective models are
processed offline and put in to a hash table. Features are sampled from the sensor
data and tested for collision in the hash table. If a sufficient number of collisions
occurs with points on the same model, a varient of RANSAC is used to test the
hypothesis that a set of points in the sensor data corresponds to a particular model at
a particular location. Fig. 2 shows a correctly chosen model aligned with the range
scan. This method is robust and fast enough to demonstrate the efficacy of our BCI-
grasping pipeline.

Grasp Planning Phase: In this work we use the Eigengrasp Grasp Planner de-
veloped by Ciocarlie and Allen, the details of which can be found in [5]. In this
system, grasps are planned through stochastic optimization using simulated anneal-
ing. Recent advances in neuroscience research have shown that control of the human
hand during grasping is dominated by movement in a configuration space of highly
reduced dimensionality[25, 21]. The Eigengrasp Grasp Planner uses these insights
to reduce the the dimensionality of the hand’s joint postures to a subspace with a
lower dimensionality. This allows the planner to function in real time with a human
user in the loop by guiding the planner by partial demonstration. The planner allows
the operator to specify how much the stochastic optimization process can vary each
parameter that describes the demonstration pose against the gradient of the grasp
energy function in searching for a valid, complete grasp. The planner optimizes a
grasp energy function as the sum of two parts, a measure of how nearly a hand con-
forms to the object, and a continuous approximation of the canonical Ferrari-Canny
grasp quality measure. Hand configurations with a high enough quality function are
marked as potentially good grasps. These configurations will put the hand in a po-
sition which is near the object but where the finger configuration is restricted to the
postural subspace described above. The quality of these configurations as starting
grasp poses is then reassessed after a kinematic simulation of grasping. The hand



Grasping With Your Face 5

Fig. 1 An overview of the grasping pipeline. In the first phase, the system uses the kinect to
identify and localize the object in the scene. In the second phase, the user guides the planner to
an appropriate approach direction. In the third phase, the user stops the planner and reviews the
available grasps. In the fourth phase, the user sends the grasp to the robot for execution.
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Fig. 2 The point cloud with RGB texture from the vision system. The blue bottle is the object
point cloud, while the green represents the detected model overlain on the scene.

approaches the object and closes all of its joints, leaving the postural subspace as
necessary to conform to the object.

The user is presented with a world in our grasping simulator, GraspIt! [14], that
contains the hand, the object detected by the vision system, and the surface on which
the object sits. Elements of the user interface for the planning phase are shown in
Fig. 3. When planning begins, two clones of the hand are placed into the world,
and the transparency of each of the three hands identifies it to the user. The most
transparent hand represents the planning process and shows samples of the grasp
space region the planner is exploring. This online feedback helps the user choose an
approach direction that best communicates their intent to the planner.

The input hand has intermediate transparency, and the user can control the ro-
tation of the input hand around the x and z axis of the object, respectively. This
effectively moves the hand around the surface of a sphere while maintaining that
the approach direction of the hand faces the center of the object. The third hand
during the planning phase is the solution hand which is fully opaque. As the planner
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Fig. 3 An illustration of the grasp planning user interface in GraspIt!. Here we demonstrate the
three hands of the system. The ’Planner Hand,’ which is most transparent hand, demonstrates the
current state of the planner. The ’Input Hand,’ which is of intermediate transparency, is the hand
through which the user directs the planning system. Here you can see the rotational guides which
allow the user to visualize their available control directions. The ’Solution Hand’, which is fully
opaque, demonstrates the best grasp currently available. This is the grasp which is closest to the
approach direction that the Input Hand is demonstrating and which also has the minimal grasp
energy.

runs, it stores the ten best grasps in a list. The solution hand demonstrates the current
best grasp. The list of best grasps is sorted such that preference is given to solutions
that reflect the user’s desired approach. When the user is satisfied, they can stop the
planner and progress into the review process using gesture 1.

Review Phase: Once the planner is stopped the user has an opportunity to review
the list of best grasps and choose one for execution. As in the previous stage, the
solution hand is used to display the grasps to the user. At any point, the user can
select a grasp which removes the solution hand from the world and closes the input
hand into the chosen grasp. Now the user can evaluate the grasp more closely and
examine the quality metrics for the grasp. If the user is satisfied, they can confirm
selection of the grasp and send it to the next stage of the pipeline. If the user does
not want to execute any of the found grasps, they can select the grasp that is closest
to what they have in mind and restart the planning process. Importantly, the next
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Fig. 4 An illustration of the review phase. Using one of the facial gestures, the user can cycle
through the available grasps and visualize them in the simulator. The grasps are sorted by their
closeness to the last demonstrated approach vector. If none of the grasps are suitable, the user can
go back to the planning phase with a second facial gesture. Otherwise, the user selects a grasp to
be executed using a third gesture.

iteration of planning will not only take the input hand’s position as a constraint but
also the eigengrasp values of this selected grasp.

Execution Phase Once the robotic control software receives the selected grasp
which is planned relative to the object’s coordinate system, the arm planner decides
if that grasp is achievable given the kinematic constraints of the arm and the vision
system’s estimate of the object’s position in the world. If the planner cannot find a
solution to execute the grasp, it will send a message back to GraspIt! which then
notifies the user. If this occurs, the user can restart the planning phase to find a new
grasp. If the planner can find a solution, then the grasp is executed with the actual
arm and hand.

4 Experimental Results

4.1 Brain-Computer Interface

Hardware: The BCI hardware used for this experiment was the Emotiv EPOC which
is is a low-cost 16 electrode headset. Of the 16 electrodes, 14 are positioned at the
International 10-20 locations corresponding to AF3, AF4, F3, F4, F7, F8, FC5, FC6,
P7, P8, T7, T8, O1, O2. The remaining 2 channels are references and are positioned
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Fig. 5 Two sets of video stills from the actual execution of the system. Top: Clockwise from the
top-left are an image of the user wearing the Emotiv headset and operating the system, the computer
monitor with user interface, and a screen capture of the simulation. Bottom: User watching the
robotic arm implementing the selecting grasp as shown in the simulator window on the lower left.
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at P3 and P4. Each electrode has a sampling rate of roughly 128 hz and a resolution
of 16 bits (14 bits effective). The headset communicates with the computer via a
bluetooth connection.

Software: We used the Cognitiv Suite and Expressiv Suite software that come bun-
dled with the Emotiv Epoc to process the electrophysiological signals. The Cogntiv
Suite is designed to be trained on different cognitive states, usually associated with
mental imagery or imagined movement. However, because the EMG signals from
facial gestures are much stronger and more easily produced in a consistent manner,
we chose to train the Cogntiv Suite on these types of signals instead of cognitive
states. First, the system is trained on a neutral signal to define a baseline signal, then
a set of facial gesture states are learned. In the examples presented here, gesture 1 is
mapped to clenching the jaw muscles and is detected through the Expressiv Suite.
The remaining gestures are detected through the Cognitiv Suite. Gesture 2 is mapped
to closing the right eye, gesture 3 is mapped eyebrow movement, and gesture 4 is
mapped to tensing the muscles around the ear. This combination of classifiers and
gestures was found by trial and error to be reliable for the particular user discussed
in this paper, but the system as a whole is in no way dependent on which particular
gestures are used.

4.2 Robot Setup

Hardware: Our grasping platform is comprised of a 280 model BarrettHand mounted
on a Stäubli TX60L 6-DOF robotic arm. A Microsoft Kinect sensor is used to gen-
erate point clouds of the object.

Software: The Barrett hand is commanded in position control mode using the Open-
WAM driver. Planning for the motion of the arm is done in OpenRave using a bidi-
rectional random tree planner by Berenson et al. [3], and small linear motions near
the object are planned using the built-in inverse kinematics planner on the Stäubli
TX60L arm.

4.3 Training

One subject completed 10 successful training periods on the neutral signal and each
of the three facial gestures that would be processed by the Cogntiv Suite. Each train-
ing period lasts 8 seconds, and after each period the subject is asked whether or not
they were able to maintain the appropriate gesture for the entire time. Only sessions
in which the subject answered yes are considered successful and included in the
training data. During training, the subject is given visual feedback via the motion of
a cube and a power meter both of which represent the strength of current classifica-
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Results
Approach 1 Approach 2

Object Simulation Grasp Physical Grasp Simulation Grasp Physical Grasp

Flashlight

Detergent Bottle

Flask

Shampoo Bottle

Shaving Cream

Fig. 6 The results of ten different attempts to grasp five objects using two different user-selected
approach directions per object.. In each case, the user was able to generate an appropriate grasp
using the simulator which was then transfered to the robot.

tion. The Expressiv Suite does not need any training, however, the sensitivity of the
classifier for jaw-clenching was adjusted for best performance for the subject.

4.4 Grasping Experiments

The subject used the system to grasp and pick up five common objects: a flashlight,
a flask, a bottle of laundry detergent, a bottle of shampoo, and a canister of shaving
cream. For each setup, the Stäubli arm starts such that it is completely vertical with
the BarrettHand at the top. A simulation world consisting of the hand, the object,
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and a surface is presented to the subject who can move the input hand and start the
planner at any time. For each object, the subject executed grasps from two different
approach directions.

In Fig. 6, we show the results of ten different attempts to grasp five objects us-
ing two different approach directions per object. In each case, we demonstrate the
grasp planned in simulation and the final grasp achieved by the physical robot. We
found that using this grasp planning environment, we were easily and reliably able
to grasp objects. In each case, the physical grasp was successful on the first at-
tempt. Planning the grasp takes on the order of 10-30 seconds. The review pro-
cess takes an additional 10-15 seconds. We refer the reader to the video at http:
//robotics.cs.columbia.edu/jweisz/bciGraspingISER2012 for
an example of the entire procedure.

4.5 Discussion

In this work we have described an end-to-end system for grasping objects using a
low-cost, non-invasive BCI device. Although further refinements and user studies
still need to be done, we have shown three important ideas in this paper. First, we
have shown that a user interface using only two user controlled dimensions is ex-
pressive enough to demonstrate the user’s intent by controlling the approach direc-
tion of the hand and that the Eigengrasp planner is able to produce reliable and ap-
propriate grasps using this information alone, vastly simplifying the grasp planning
process. Second, we have shown that a low cost, non-invasive, noisy, low-bandwidth
BCI interface is sufficient to guide the grasp planner. By reducing the complexity of
the grasp planning process, we can accomodate such a BCI device. Third, a central
tenet of this work is that by keeping a human-in the-loop, we are able to support
context-aware grasping, spanning different grasps for different tasks. Although the
grasp quality measure used by the planner is sufficient to produce a reasonable list of
plausible grasps, it is not sufficient to chose the most reliable and appropriate grasp
among them, which can lead to failures. With a human adding their own intuition to
select a grasp from the candidate list, we have never seen a failure in grasping the
object.

We believe our user interface works well, but it is yet to be tested with multiple
subjects, which is the subject of ongoing research in our lab. As part of this work,
we are also analyzing how much training of the BCI control is needed to create a
competent user. Making the system easy to learn and use is an important goal of this
work. Finally, we are also experimenting with using EEG signals from the Emotiv
EPOC instead of using facial gestures which generate EMG signals.
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