
Folding Deformable Objects using
Predictive Simulation and Trajectory Optimization

Yinxiao Li, Yonghao Yue, Danfei Xu, Eitan Grinspun, Peter K. Allen

Abstract— Robotic manipulation of deformable objects re-
mains a challenging task. One such task is folding a garment
autonomously. Given start and end folding positions, what is an
optimal trajectory to move the robotic arm to fold a garment?
Certain trajectories will cause the garment to move, creating
wrinkles, and gaps, other trajectories will fail altogether. We
present a novel solution to find an optimal trajectory that
avoids such problematic scenarios. The trajectory is optimized
by minimizing a quadratic objective function in an off-line
simulator, which includes material properties of the garment
and frictional force on the table. The function measures the dis-
similarity between a user folded shape and the folded garment
in simulation, which is then used as an error measurement to
create an optimal trajectory. We demonstrate that our two-arm
robot can follow the optimized trajectories, achieving accurate
and efficient manipulations of deformable objects.

I. INTRODUCTION

Robotic folding of a garment is a difficult task because it
requires sequential manipulations of a highly unconstrained,
deformable object. Given the garment shape, the robot can
fold it by following a folding plan [14][13]. However, the
layout of the same folding action can vary in terms of the ma-
terial properties such as cloth hardness and the environment
such as friction between the garment and the table. Given
the starting and ending folding positions, different folding
trajectories will lead to different results. In this paper, we
propose a novel method that learns optimal folding trajectory
parameters from predicted thin shell simulations of similar
garments, which can then be applied to a real garment folding
task (see Figure 1). The contributions of our paper are:

- A fast and robust algorithm that can detect garment
key points such as sleeve ends, collar, and waist corner,
automatically. These key points can be used for folding
plan generation.

- An online optimization algorithm that learns optimal
trajectories for manipulation from mathematical model
evolution combined with predictive thin shell simula-
tion.

- A novel approach that adjusts the simulation environ-
ment to the robot working environment for the purpose
of creating a similar manipulation result.

- The trajectories are general in that they can be scaled
to accommodate similar garments of different size.

- Experimental results with a Baxter robot showing suc-
cessful folding trajectories for a number of different
garments including sweaters, pants, and towels.

All the authors are with Department Computer Science, Columbia Univer-
sity, New York, NY, USA {yli@cs., yonghao@cs., dx2143,
eitan@cs. allen@cs.}columbia.edu

Fig. 1. Comparison of our simulation of robotic manipulation (TOP) and
real robot implementation (BOTTOM). The green curves show the virtual
and the real trajectories for folding.

Figure 2 shows the complete pipeline of garment ma-
nipulation, as well as the key steps of garment folding.
The garment folding is the final step of the entire pipeline
of garment manipulation which contains grasping, visual
recognition, regrasping, unfolding, placing flat, and folding.
Our previous work [9][10][11] has successfully addressed
all the stages of the pipeline with the exception of the final
folding task. This paper specifically addresses the robotic
folding task (purple rectangle in Figure 2) with the goal of
finding optimal trajectories to successfully fold garments.

We begin by assuming the garment is placed flat on
the table initially, as shown in our previous work [11]. By
detecting the key points of the garment (see section V-A), a
pre-defined folding plan is used to create optimal trajectories
for folding the garment. After several steps, we obtain a
desired folding result in the real world using the Baxter robot,
which is comparable to the result from the simulation.

II. RELATED WORK

There are many challenges associated with the manipu-
lation of a deformable object such as a garment. One of
the challenges is unfolding a garment from an arbitrary
state and placing it flat on a table. Many researchers start
with simple garments such as a towel [6]. By iteratively
looking for the lowest corner point of the towel, the robot

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9993-4/15/$31.00 ©2015 IEEE 6000

Initial state Initial grasp Pose estimation Place flat Fold

Regrasp

Proper pose

Improper
pose

 Unfold

q(y)y

q(y)yTrajectory

P3

P2 P
1

P0

Sim
ulation

Re
al

 W
or

ld

Iterative Trajectory Optimization
Trajectory

 Adaptation

Trajectory

P3

P2
P1

P0

Fig. 2. TOP ROW: The entire pipeline of dexterous manipulation of deformable objects. In this paper, we are focusing on the phases of garment folding,
as highlighted in the purple rectangle. BOTTOM ROW: Details of the folding procedure. We apply off-line simulation with iterative trajectory optimization
to find the best trajectory for a specific folding action by comparing the result (light blue contour) with template (black contour). Similar steps are repeated
until the garment is folded in the simulator. Then all the folding trajectories are exported, adapted, and implemented on a real robot. Green arcs illustrate
the actual trajectories of robotic arms.

is able to unfold it and place flat on a table. Then the towel
can be quickly folded by symmetric information. For more
complicated garments such as sweaters and pants, their states
(poses) have to be recognized first by either image-based
perception [21][9][4] or 3D shape matching [8][10], etc..
Deformable objects such as a garment have large dimensional
state spaces which are hard to track and recognize. Therefore,
for such tasks, many researchers employ a large database
which contains exemplars of different states of an object from
off-line simulation or real garments as the training data. By
using SIFT feature [21][9] or volumetric features [4][10], the
state of a garment is recognized and tracked. After regrasping
several times, the garment can be unfolded and placed flat
on a table by a dual-arm robot [3][18][11], a prerequisite for
garment folding.

With the garment fully spread on the table, attention is
turned to parsing its shape. S. Miller et al. have designed a
parametrized shape model for unknown garments [14][13].
Each set of parameters defines a certain type of garment such
as a sweater or a towel. The contour-based garment shape
model was further improved by J. Stria et al. using polygonal
models [17]. The detected garment contour is matched to
a polygonal model by removing non-convex points using
a dynamic programming approach. Folding is the ultimate
goals of garment manipulation and only a few researchers
have achieved this. F. Osawa et al. used a robot to fold a
garment with a special purpose table that contains a plate that
can bend and fold the clothes assisted by a dual-arm robot.
Another folding method using a PR2 robot was implemented
by J. van den Berg et al. [19]. The core of their approach
was the geometry reasoning with respect to the cloth model
without any physical simulation. Similar work done by J.
Stria et al. [18] using two industrial arms and a polygonal
contour model. Kita, et al. [7] use a humanoid robot to fold

a garment starting from a random configuration.

None of the previous works focus on trajectory optimiza-
tion for garment folding, which brings uncertainty to the
layout given the same folding plan. One possible case is that
the garment shifts on the table during one folding action
so that the targeted folding position is also moved. Another
case is that an improper folding trajectory causes additional
deformation of the garment itself, which can accumulate.

Fig. 3. Failure example with improper folding trajectories. FIRST ROW:
Folding trajectory is low and flat that causes drift to the towel and long-
sleeve T-Shirt. SECOND ROW: Folding trajectory is too high when the
gripper approaching the target folding position that piles up the towel.
THIRD ROW: Dual-arm folding. If the distance between the two arms is
too close, the folding may fail.

6001

Figure 3 shows a few failure examples with improper tra-
jectories. We use green tape on the table to show the original
position of the garments. The first two rows show that if the
moving trajectory is too low and close to the garment, the
folded part will fall down, pull the rest, and cause drift of the
whole garment. These cases usually happen when the folding
step is lengthy without trajectory optimization. The third row
shows a case where the folding trajectory is too high, which
will cause extra wrinkles or even piling up. The last row
shows two cases using two arms to fold. If the arms are
close, the part in between loses tension, and will fall down
and pull the rest away. The focus of this paper is to create
trajectories for folding that will overcome these problems.

III. SIMULATION ENVIRONMENT

A. Folding Pipeline in Simulation

In the model simulation, we use a physics engine [1]
to simulate the movement and deformation of the garment
mesh models. We assume there is only one garment for each
folding task, which has been placed flat on a table. A virtual
table is added to the scene which the garment lies on, as
shown in Figure 1, top.

During each folding step, the robot arm picks up a small
part of the mesh, moves it to the target position following
a computed trajectory, and places it on the table to simulate
an entire folding scenario. If the part of the garment to be
folded is relatively wide, then both left and right arms may
be involved. The trajectory is generated using a Bézier curve,
which will be discussed in section IV.

Most of the garment mesh models are built from our test
garments. A garment mesh is created by first extracting the
contour of the garment (see section V-A). Then by inserting
points on the inside of the garment contour, we triangulate a
mesh by connecting these points. Lastly, we mirror the mesh
to construct a two-sided garment mesh.

B. Parameter Adaptation

There are two key parameters needed to accurately sim-
ulate the real world folding environment. The first is the
material properties of the fabric, and the second is the
frictional forces between the garment and the table.

1) Material properties: Through many experiments, we
found that the most important property for the garments in
the simulation environment is shear resistance. It specifies the
amount the simulated mesh model resists shear under strain;
when the garment is picked up and hung by gravity, the total
length will be elongated due to the balance between gravity
force and shear resistance. An appropriate shear resistance
measure allows the simulated mesh to reproduce the same
elongation as the real garment. This parameter will bridge
the gap between the simulation and the real world for the
garment mesh model.

For each garment, we follow the steps described below to
measure the shear resistance. Figure 4 shows an example.

- Manually pick one extremum part of the garment such
as the sleeve end of a T-shirt, the waist part of a pair
of pants, and a corner of a towel.

- Hang the garment under gravity and measure the length
between the picking point and the lowest point as L1

- Slowly put down the garment on a table and keep the
picking point and the lowest point in the previous step
at maximum spread condition. Measure the distance be-
tween these two points again as L2. The shear resistance
fraction is defined as the following

shear frac = (L1 − L2)/L2 (1)

- We then pick up and hang the virtual garment in Maya,
adjusting the Maya shear parameter such that the shear
fraction as calculated in the simulator is identical to the
real world.

Fig. 4. Method for measuring the shear resistance. LEFT: Diagonal length
measurement. MIDDLE: Zoomed in regions. RIGHT: The garment is hanging
under gravity.

2) Frictional forces: The surface of the table can be rough
if covered by a cloth sheet or slippery if not covered, which
leads to variance in friction between the table and garment.
A shift of the garment during the folding can possibly
impair the whole process and cause additional repositioning.
Adjusting the frictional level in the simulation to the real
world is crucial and necessary for trajectory optimization.

To measure the friction between the table and the garment,
we do the following steps.

- Place a real garment on the real table of length Lt.
- Slowly lift up one side of the real table, until the

garment in the real world begins to slide. The lifted
height is Hs. The friction angle is computed as,

∠Friction = sin−1(Hs/Lt) (2)

- In the virtual environment, the garment is placed flat
on a table with gravity. Assign a relatively high friction
value to the virtual table. Lift up one side of the virtual
table to the angle of ∠Friction.

- Gradually decrease the frictional force in the virtual
environment until the garment begins to slide. Use this
frictional force in the virtual environment as it mirrors
the real world

With these two parameters, we obtain similar manipulation
results for both the simulation and the real garment.

IV. TRAJECTORY OPTIMIZATION

The goal of the folding task is specified by the initial
and folded shapes of the garment, and by the starting and

6002

target positions of the grasp point (as in Figure 5). Given the
simulation parameters, we seek the trajectory that effects the
desired set of folds. We first describe how to optimize the
trajectory for a single end effector, and then discuss the case
of two end effectors.

A. Trajectory parametrization

We use a Bézier curve [5] to describe the trajectory. An
n-th order Bézier curve T(u) has (n + 1) control points
Pk = (Pk,x, Pk,y, Pk,z)T ∈ R3, defined by

T(u) =

n∑
k=0

Bn
k (u)Pk, (3)

where Bn
k (u) =

(
n
k

)
(1− u)n−kuk are the Bernstein basis

functions.

gripper Trajectory

P3

P2
P1

P0starting positiontarget position

Fig. 5. An example of the folding task: we want to fold a sleeve into the
blue target position, by using a robotic gripper to move the tip of the sleeve
(grasp point) from the starting position (P0) to the target position (P3),
following a trajectory, shown as the red curve. P1 and P2 are knot points
that form the Bézier trapezoid.

We use n = 3 for simplicity, but our method can be easily
extended to deal with higher order curves. P0 and P3 are
fixed to the specified starting and target positions of the grasp
point (as in Figure 5). The intermediate control points x =
(PT

1 ,P
T
2)T can then be adjusted to define a new trajectory

using the objective function defined below. The update rule
is described in section IV-B.

xopt = argmin
x
{lx + αD(St,Sx)︸ ︷︷ ︸

C(x)

}2. (4)

St

Sx

q(y)y

Fig. 6. The dissimilarity
captures the misalignment be-
tween St and Sx by integrating
the distance between the corre-
sponding points y ∈ St and
q(y) ∈ Sx over the garment.

Here C(x) is a cost function
with two terms. The first term
penalizes the trajectory length
lx, thus preferring a folding path
that is efficient in time and en-
ergy. The second term seeks
the desired fold, by penaliz-
ing dissimilarity D(St,Sx) be-
tween the desired folded shape
St, compared to the shape Sx
obtained by the candidate fold-
ing trajectory x, as predicted by
a cloth simulation; we used a
physical simulation engine [1], for the cloth simulation. The
weight α balances the two terms; we used α = 103 in our
experiment. See section IV-B for optimization details.

Intuitively, dissimilarity measures the difference between
the desired folded shape and the folded garment in simula-
tion. We define the dissimilarity term as

D(St,Sx) =
1

|St|

∫
St
‖q(y)− y‖dA, (5)

where |St| is the total surface area of the garment mesh
including both sides of the garment, y ∈ St is a point on the
target folded shape St, q(y) ∈ Sx is the corresponding point
on the simulated folded shape, and dA is the area measure,
see Figure 6. Our implementation assumes St and Sx are
given as triangle meshes, and discretizes (5) as

D̃(St,Sx) =
1

|St|
∑
i

‖qi − yi‖Ai, (6)

where yi is the barycenter of i-th triangle on the target shape,
qi is the (corresponding) barycenter of i-th triangle on the
simulated shape, and Ai is the area of the i-th triangle on
the target shape.

To compute the trajectory length lx, we use the De
Casteljau’s algorithm [5] to recursively subdivide the Bézier
curve T into a set of Bézier curves T(j), until the deviation
between the chord length (‖P(j)

0 − P
(j)
3 ‖) and the total

length between the control points (
∑2

i=0 ‖P
(j)
i −P

(j)
i+1‖) for

each subdivided curve T(j) is sufficiently small. Then, lx is
approximated by summing up the chord lengths of all the
subdivided curves: lx ≈

∑
j ‖P

(j)
0 −P

(j)
3 ‖.

We initialize P1 and P2 as

P1 =
2

3
P0 +

1

3
P3 + h‖P0 −P3‖ev, (7)

P2 =
1

3
P0 +

2

3
P3 + h‖P0 −P3‖ev, (8)

where ev is the unit vector in the upward vertical direction, h
is a constant value of 1/3, which means the initial trajectory
will have equal horizontal extent between knot points.

B. Optimization.

To optimize equation (4), we apply a secant version of
the Levenberg-Marquardt algorithm [12][15]. For the current
trajectory generated by x, we estimate the derivative ∇C(x)
of the cost function C(x) numerically, by sampling slightly
modified trajectories x + δej , where ej , 1 ≤ j ≤ dim(x),
are the orthonormal bases, and we used δ = 10−1 in our
implementation.

The secant version of Levenberg-Marquardt algorithm
iteratively builds a local quadratic approximation of {C(x)}2
based on the numerical derivative, and then takes a step
toward an improved state. The direction of the step is a
combination of the steepest gradient descent direction and the
conjugate gradient direction. We use the specific approach
described by Madsen et al. [12] (see §3.5 therein). The
iterative procedure terminates when the improvement in
{C(x)}2 becomes sufficiently small.

C. Multiple arms.

In the case of using multiple arms, we associate an
individual trajectory xi to each of the arms Ri. We then

6003

extend the state variable to x = (xT
1 , ...)

T . The rest of the
optimization procedure is the same as the single arm case.
Note that both single and dual-arm trajectories are in 3D
space. The optimization for dual-arm trajectories is able to
find a solution which will overcome failures such as shown
in Figure 3 bottom.

V. APPLICATION TO GARMENT FOLDING

A. Key Points Localization

We assume the garment is placed roughly in the center
of the table, as shown in the Figure 7, bottom. Our first
step is to segment the garment from the background. Since
we can easily obtain a table or a surface with homogeneous
color [14][17], a fast color-based supervised image segmen-
tation method is suitable for our task. We apply a marker-
based watershed method [20] with the four corners of the ta-
ble initialized as background and the center initialized as the
foreground. More complicated scenes can employ advanced
image segmentation algorithms such as GrabCut [16].

Fig. 7. Red dots are the predefined key points for the garment, such
as sleeve ends. Left column is a long-sleeve t-shirt example, and the right
column is a pants example. TOP: Initialized contour. Each garment category
is initialized with a different contour. MIDDLE: Fitting results. The contour
shrinks onto the boundary of the garment according to the distance field.
BOTTOM: Fitting results mapped back to the original input image.

To register the feature points, such as the corner points of
sleeves, we employ a 2D registration technique to register a
pre-defined garment template (as in Figure 7 top row) with
the captured garment mask. Our 2D registration is based on
our 3D non-rigid registration code for thin shell models [11],
and can deal with garment masks that have curved contours.

We first initialize a distance field using the segmented
mask from the previous step. The category of the garment can
be easily recognized by using a template matching algorithm,
which leads to an associated garment initial template. We

register the template with the garment mask by minimizing
the following energy function:

ET (S, S̄) = Efit(S, T) + Edef(S, S̄), (9)

where T is the target garment mask, S is the current
deformed 2D contour, and S̄ is a reference 2D contour, which
is from the previous state. Efit(S, T) penalizes discrepancies
between the contour and the target mask, and Edef(S, S̄)
seeks to limit and regularize the deformation of the contour
in order to preserve the angle features.

We represent the contour as a closed loop consisting of line
segments. In this discrete representation, Efit is computed as

Ẽfit(S, T) =
∑
i

(distT (xi))
2
li, (10)

where li and xi are the length and the midpoint of the i-th
line segment of the deformed contour. Estretch is computed
as

Ẽstretch(S̄,x) =
1

2

∑
i

(
li
l̄i
− 1

)2

l̄i, (11)

where l̄i is length of the i-th line segment of the reference
contour. Ebend is computed as

Ẽbend(S̄,x) =
1

2

∑
j

(
θj
θ̄j
− 1

)2

L̄j , (12)

where θj and θ̄j are the angles between the adjacent line
segments at j-th vertex of the deformed and the reference
contours, respectively. L̄j are the average length of the
adjacent line segments at j-th vertex of the reference contour.

Our registration iteratively updates S by using the se-
cant version of the Levenberg-Marquardt algorithm [12][15].
Initially, each vertex in the template polygon is marked as
a feature point (red points in Figure 7, top row), and is
assigned a unique ID to identify its semantic meaning. At
the end of each step, we subdivide each contour segment
if its length is larger than a threshold, and mark the newly
added vertex as non-feature points (green points in Figure 7,
middle row). Next, we merge any pair of adjacent segments
if they do not share a feature point and their length is below a
threshold. The subdivide and merge operations guarantee that
the garment contour is sufficiently but not overly sampled.
Then, we update the reference contour S̄ by S.

We repeat the iteration until the reduction in ET (S, S̄)
becomes sufficiently small. Finally, the positions as well as
the semantic meanings of the feature points in the garment
mask are identified by retrieving the feature points via the
unique point ID in the registered contour.

VI. EXPERIMENTAL RESULTS

To evaluate our results, we tested our method on several
different garments such as long-sleeve t-shirts, pants, and
towels for multiple trials, as shown in Figure 8 left. These
garments require both single and dual-arm folds. A high
resolution video of our experimental results is online at
http://www.cs.columbia.edu/˜yli/IROS2015.

6004

A. Robot Setup

In our experiments, we use a Baxter research robot, which
is equipped with two arms with seven degrees of freedom.
We mount a Prime Sense Xtion range sensor [2] on top of
the Baxter head panel, which has been calibrated to the robot
base frame.To improve grasp stability and form a closed loop
controller, we add tactile sensors to the grippers.

B. Measurement of parameters

To make the off-line simulation better approximate the real
scenario, as described in Section III, we manually measure
the stretch resistance of each garment and friction on the
table. Figure 8, left shows a picture of all the test garments
we used in different colors, sizes, and material properties.
Figure 8, right table shows the measured parameters of
each test garment, including stretch percentage and Friction
angle, and corresponding Maya parameters. For common
garments, these parameters do not have a significant variance.
Therefore, we suggest that if researchers use simulators such
as Maya, the average values of each column are a reasonably
good initialization.

C. Garment manipulation and folding

Figure 9 shows three successful folding examples from
the simulation and the real world, including a long-sleeve
shirt, a pair of pants, and a medium size towel. We show
six key frames for each folding task. The folding poses from
the simulation are in the first row of each group with an
optimized trajectory. We also show corresponding results
from the real world. The green tape contour on the table
indicates the original position of the garment.

Each garment is first segmented from the background
and key points are detected from the binary mask, which
takes 3− 5 secs on a regular CPU. The algorithm discussed
in Sec. V-A. Given the key points, a corresponding multi-
step folding plan is created For each garment, we have
optimized trajectories for each folding step. Here, we map
these optimized trajectories to our scenario according to the
generated folding plan. Then the Baxter robot follows the
folding plan with optimized trajectories to fold the garment.
We can see that the deformation of the real garment and
the simulated garment is very similar. Therefore, the final
folding outcome is comparable to the simulation.

Table I shows statistical results of the garment folding test.
Each time one or two robotic arms fold the garment counts
as one fold. We run 10 trials for each test garment. It turns
out that the folding performance of the Long-Sleeve T-Shirts
and Towels are very stable with our optimized trajectories.
Jeans and pants are less stable because the shear resistance
of the surface is relatively high, and sometimes is difficult
to bend, leading to unsuccessful folding. In the successful
folding cases for jeans and pants, we sometimes ended up
with small wrinkles, but the folding plan was still able to
complete successfully. We also show the average time to
fold a garment in the last row. The robot is able to fold most
garments in about 1.5 minutes.

Garment Type # of
folds

Success Rate Avg. Time
(sec)

L-S T-Shirt (large) 3 10/10 121
L-S T-Shirt (small) 3 10/10 118

Jeans 2 7/10 88
Pants 2 8/10 88

Large Towel 2 10/10 90
Medium Towel 2 10/10 88

Small Towel 2 10/10 83
Average 2.3 9.3/10 97

TABLE I. Results of folding test for each garment . We show the number of
folding steps, successful rate, and total time of each garment. Each garment
has been tested 10 times. L-S stands for Long-Sleeve. The time is the
average over all successful trials for each garment.

There is a trade-off between doing contour fitting at each
step and total time spent to fold a garment. In this work, we
start with one template and then assume that each step after
that the folded garment is close to that in the simulation.
Our results in Table I verify that this method works well
and is able to save time since we only do the contour fitting
once. With our simulated trajectories, the Baxter robot is
able to fold a garment under predefined steps correctly. An
alternative method could use the contour fitting at each step
but this would require more time and computation.

We note that some failures due to the motor control error
from the Baxter robot. When the robot executes an optimized
trajectory, its arm suffers from a sudden drop or jitter. Such
actions will raise pull forces to the garment, leading to
drift and inaccurate folding. This can be solved by using an
industrial level robotic arm with more accurate control. We
also note that failures can be recognized with the correct
sensing suite, and we are currently investigating ways to
effect online error recovery for such failures. One difference
between the simulation and the real world we found is that
moving a point on the mesh in the simulation is different
from using a gripper to grasp a small area of a real garment
and move it. In the future, we hope to be able to simulate a
similar grasp effect for the trajectory optimization.

VII. CONCLUSION

In this paper, we propose a novel solution to find an opti-
mal trajectory for manipulation of deformable garments. We
first create a simulation environment that is comparable to
the real world. By minimizing a quadratic objective function
that measures dissimilarity between simulated folded shape
and user specified shape iteratively, we obtain an optimized
trajectory. The trajectory is then mapped to a real robot
and executed accordingly. Experimental results demonstrate
that with our optimized trajectories, the Baxter robot can
manipulate the garment efficiently and accurately.

Acknowledgments We’d like to thank J. Weisz and J.
Varley, for many discussions. We’d also like to thank NVidia
Corporation, Intel Corporation, and Takktile LLC for the
hardware support. This material is based upon work sup-
ported by the National Science Foundation under Grant No.
1217904 and in part by the JSPS Postdoctoral Fellowships
for Research Abroad.

REFERENCES

[1] Maya, http://www.autodesk.com/products/autodesk-maya/.

6005

Garment Type Stretch
(%)

Friction
Angle (◦)

Maya Shear
Resistance

Maya
Friction

Long-Sleeve T-Shirt (large) 2.9 24.3 200 0.7
Long-Sleeve T-Shirt (small) 2.9 24.7 200 0.7

Jeans 2.9 19.1 200 0.5
Pants 1.7 21.9 340 0.6

Large Towel 2.2 18.7 260 0.5
Medium Towel 3.1 22.3 190 0.6

Small Towel 1.1 24.3 530 0.7
Average 2.4 22.2 274 0.6

Fig. 8. LEFT: A picture of our test garments. RIGHT: Results for each unfolding test on the garments. We show the results of stretch percentage, Friction
angle of the table, and the corresponding parameters in Maya by each test. The last row shows the average of each measurement component.

Fig. 9. Successful folding examples with optimized folding trajectories from off-line simulation. The first row of each group is from the simulation and
the second row is from the real world (Green tape shows the original garment contour position). TOP GROUP: Long-sleeve shirt folding with 3 steps.
MIDDLE GROUP: Long pants folding with 2 steps. BOTTOM GROUP: Medium size towel folding with 2 steps.

[2] Prime Sense, http://en.wikipedia.org/wiki/PrimeSense/.
[3] M. Cusumano-Towner, A. Singh, S. Miller, J. F. OBrien, and P. Abbeel.

Bringing clothing into desired configurations with limited perception.
In Proc. ICRA, 2011.

[4] A. Doumanoglou, T-K Kim, X. Zhao, and S. Malassiotis. Active
random forests: An application to autonomous unfolding of clothes.
In Proc. ECCV, 2014.

[5] G. Farin. Curves and Surfaces for Computer Aided Geometric Design.
Academic Press, 1988.

[6] J. Lei J. Maitin-Shepard, M. Cusumano-Towner and P. Abbeel. Cloth
grasp point detection based on multiple-view geometric cues with
application to robotic towel folding. In Proc. ICRA, 2010.

[7] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita. Strategy for folding
clothing on the basis of deformable models. 2014.

[8] Y. Kita, T. Ueshiba, E-S Neo, and N. Kita. Clothes state recognition
using 3d observed data. In Proc. ICRA, 2011.

[9] Y. Li, C-F Chen, and P. K. Allen. Recognition of deformable object
category and pose. In Proc. ICRA, June 2014.

[10] Y. Li, Y. Wang, M. Case, S-F Chang, and P. K. Allen. Real-time
pose estimation of deformable objects using a volumetric approach.
In Proc. IROS, September 2014.

[11] Y. Li, D. Xu, Y. Yue, Y. Wang, S-F Chang, E. Grinspun, and P. K.
Allen. Recognition, regrasping, and unfolding of deformable objects
using predictive thin shell modeling. In Proc. ICRA, May 2015.

[12] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-

linear least squares problems (2nd ed.). Technical report, Technical
University of Denmark, 2004.

[13] S. Miller, J. Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel.
A geometric approach to robotic laundry folding. IJRR, 2012.

[14] S. Miller, M. Fritz, T. Darrell, and P. Abbeel. Parametrized shape
models for clothing. In Proc. ICRA, Sept. 2011.

[15] J. Nocedal and S. Wright. Numerical Optimization Second Edition.
Springer, 2006.

[16] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: Interactive
foreground extraction using iterated graph cuts. ACM Trans. Graph.,
23(3):309–314, August 2004.

[17] J. Stria, D. Prusa, and V. Hlavac. Polygonal models for clothing. In
Proc. Towards Autonomous Robotic Systems, 2014.

[18] J. Stria, D. Prusa, V. Hlavac, L. Wagner, V. Petrik, P. Krsek, and
V. Smutny. Garment perception and its folding using a dual-arm robot.
In Proc. IROS, Sept. 2014.

[19] J. van den Berg, S. Miller, K. Goldberg, and P. Abbeel. Gravity-based
robotic cloth folding. In Proc. Intl. Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2010.

[20] L. Vincent and P. Soille. Watersheds in digital spaces: An efficient
algorithm based on immersion simulations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(6):583–598, 1991.

[21] B. Willimon, I. Walker, and S. Birchfield. A new approach to clothing
classification using mid-level layers. In Proc. ICRA, 2013.

6006

