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Abstract— In this paper, we build upon recent advances
in neuroscience research which have shown that control of
the human hand during grasping is dominated by movement
in a configuration space of highly reduced dimensionality.
We extend this concept to robotic hands and show how a
similar dimensionality reduction can be defined for a number
of different hand models. This framework can be used to
derive planning algorithms that produce stable grasps even for
highly complex hand designs. Furthermore, it offers a unified
approach for controlling different hands, even if the kinematic
structures of the models are significantly different. We illustrate
these concepts by building a comprehensive grasp planner that
can be used on a large variety of robotic hands under various
constraints.

I. INTRODUCTION AND RELATED WORK

One of the hardest problems in robotic grasping is the
creation of control algorithms for new hand designs that are
beginning to rival the human hand in complexity. Researchers
studying robotic grasping have struggled to at least partially
replicate human versatility when designing artificial counter-
parts. However, if we wish to reproduce human-like grasping
it would seems natural to draw inspiration not only from the
hardware of the human hand, but also from the software;
that is, the way the hand is controlled by the brain. This
may initially sound like an overly lofty goal: a large part of
the human cortex is dedicated to grasping and manipulation,
and it would seem reasonable to assume that all of this cog-
nitive machinery is dedicated to finely controlling individual
joints and generating highly flexible hand postures. However,
results in both robotics and neuroscience research point to
the contrary, emphasizing that a majority of the human hand
control during common grasping tasks lacks individuation in
finger movements.

Attempts to formalize human tendency to simplify the
space of possible grasps can be traced back to Napier’s pio-
neering grasp taxonomy [1], updated later by Cutkosky [2].
In [3], Iberall reviewed a large field of work on grasp
taxonomies, from areas such as anthropology, medical, reha-
bilitation and robotics. These studies suggest that, while the
configuration space of dexterous hands is high-dimensional
and very difficult to search directly, most useful grasps can
be found in the vicinity of a small number of discrete points.

Santello et al. [4] tested this hypothesis by using a
Cyberglove to record joint angle information from human
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subjects during grasping tasks. Their results suggest that a
continuous subspace, rather then a finite number of discrete
postures, can be used to approximate human hand control
during grasping. We will expand upon this topic later in
this paper. Peters and Jenkins [5] compared a number of
dimensionality reduction techniques used to extract relevant
two-dimensional manifolds from datasets recorded from hu-
man operators. Tsoli and Jenkins [6] showed that, once such
a manifold is obtained, two dimensional control is sufficient
for teleoperation involving tasks such as power and precision
grasps and tapping motion.

The body of work exploring human hand control has also
been applied to the problem of automatic grasp planning.
Miller et al. [7] used the grasp taxonomy concept to define
a number of starting positions, or pre-grasps, when searching
for good grasps of a given object using a robotic hand. Aleotti
and Caselli [8] used a Cyberglove to record grasp trajectories
and postures used by test subjects on a set of example objects
and replicated those trajectories on the same objects using
NURBS. Li and Pollard [9] used a shape matching approach,
sampling an object into a dense cloud of oriented points and
matching against a small database of known human hand
poses. For a general review of the robotic grasp planning
problem we also refer the reader to [10], [11].

In the work presented in this paper, we build upon
Santello’s analysis of human hand motion during grasping
to produce control algorithms for robotic hands. We show
how using this approach reduces the dimensionality of the
problem to the point where it is reasonable to search the
hand configuration space for good grasps of a given object.
The resulting grasp planner can be applied to a number of
different hand designs, including a model of the human hand.

II. EIGENGRASPS

Any hand posture is fully specified by its joint values, and
can therefore be thought of as a point in a high-dimensional
joint space. If d is the number of degrees of freedom (DOF)
of the hand, than a posture p can be defined as

p = [θ1 θ2 . . . θd] ∈ Rd (1)

where θi is the value of i-th degree of freedom.
As we have discussed in our literature review, previous

research suggests that most human grasping postures derive
from a relatively small set of discrete pregrasp shapes. This
would imply that the range of postures used in everyday
grasping tasks will exhibit significant clustering in the d-
dimensional DOF space. Santello et al. [4] verified this hy-
potheses by collecting a large set of data containing grasping



poses from subjects that were asked to shape their hands as if
they were grasping a familiar object. Principal Component
Analysis of this data revealed that the first two principal
components account for more than 80% of the variance,
suggesting that a very good characterization of the recorded
data can be obtained using a much lower dimensionality
approximation of the joint space.

In our work, we will refer to the Principal Components
of these postures as eigengrasps. The implication is that
they form a low-dimensionality basis for grasp postures,
and can be linearly combined to closely approximate most
common grasping positions. Each eigengrasp ei is a d-
dimensional vector and can also be thought of as direction of
motion in joint space. Motion along one eigengrasp direction
will usually imply motion along all (or most) degrees of
freedom of the hand.

ei = [ei,1 ei,2 . . . ei,d] (2)

By choosing a basis comprising b eigengrasps, a hand
posture placed in the subspace defined by this basis can
be expressed as a function of the amplitudes ai along each
eigengrasp direction:

p =
b∑

i=1

aiei (3)

and is therefore completely defined by the amplitudes vector
a = [a1 . . . ab] ∈ Rb.

A. Effective Degrees of Freedom

An important question to consider is how many eigen-
grasps need to be used so that the subspace that they define
closely approximates the required range of hand postures.
Based on the results of Santello et al. discussed above,
we have used the two dominant eigengrasps of the human
hand in our work, and will show how they produce good
results. It is important to note that our study is primarily
concerned with grasp synthesis for common everyday objects
and that another choice of eigengrasps might be necessary
in a different problem domain such as object manipulation
or with another dataset, containing unusually complex or
difficult to grasp objects.

An intriguing corollary question is whether the results
obtained using such a small set of eigengrasps imply that
the other DOF’s of the hand are useless. We can provide
a number of arguments to the contrary: as shown in [4],
eigengrasps 3 through 6 (in decreasing order of importance),
while accounting for less than 20% of the variance in hand
posture, do not represent noise and are shown to be related
to the object to be grasped. Furthermore, the study presented
by Santello et al. was performed in the absence of the real
object, as subjects reproduced grasps from memory. This
suggests that initial grasp planning stages do indeed take
place in a low dimensional space, but during the final stages
the shape of the object forces the hand to deviate from
eigengrasp space in order to conform to the object surface.
From this perspective the space defined through eigengrasps

can be seen as a pregrasp or grasp planning space, as we shall
expand upon below. Finally, complex manipulation tasks are
also likely to require usage of the entire range of motion of
the hand.

B. Application for Robotic Hand Models
Although the work of Santello et al. is centered on the

study of the human hand, we have found this approach
to be extremely useful for robotic hands as well. In our
study, we have applied the eigengrasp concept to a total of
5 hand models: a simple gripper, the Barrett hand, the DLR
hand [12], the Robonaut hand [13] and finally a human hand
model. All our hand models, as well as the eigengrasps used
in each case, are presented in table I.

For the human hand we have chosen eigengrasp directions
based on the published results in [4], taking advantage of
the fact that they have been derived through rigorous study
over a large number of recorded samples. Since such data
is not available for robotic hand models, we have derived
eigengrasps attempting to define grasp subspaces similar to
the one obtained using human hand eigengrasps. In most
cases, such decisions could be made based directly on the
similarities with the human hand. For example, the MCP and
IP joints can be mapped to the proximal and distal joints of
robotic fingers. In the case of the Barrett hand, changes in the
spread angle DOF were mapped to human finger abduction.
While we found our choices to produce good results, the
optimal choice of eigengrasps for non-human hands, as well
as the choice of which eigengrasps to use for a particular
task, are open questions and interesting directions for future
research.

The eigengrasp concept allows us to design flexible control
algorithms that operate identically across all the presented
hand models. The key to our approach is that the eigen-
grasps encapsulate the kinematic characteristics of each
hand design. This enables control algorithms that operate
on eigengrasp amplitudes to ignore low-level operations
and concentrate on the high-level task. We believe this
method to be similar in spirit to certain aspects of human
brain operation, with individual function grouped together
in control synergies. Another advantage is the significant
dimensionality reduction (by as much as a factor of 10 for
complex hands) obtained by operating in the reduced basis
eigengrasp space as opposed to the full joint space. In the
next section we will derive a grasp planning algorithm that
makes use of both these concepts.

III. GRASP PLANNING USING EIGENGRASPS
In essence, the grasp planning task can be thought of as

an optimization problem in a high-dimensional space that
describes both hand posture (intrinsic DOF’s) and position
(extrinsic DOF’s). Consider the goal of minimizing an energy
function of the form:

E = f(p,w) (4)

If d is the number of intrinsic hand DOF’s then p ∈ Rd

represents the hand posture and w ∈ R6 contains the
position and orientation of the wrist.



Eigengrasp 1 Eigengrasp 2 Model DOFs Description min max Description min max 

Gripper 4 Prox. joints flexion 

 

Dist. joints flexion 

 

 

Barrett 4 Spread angle opening Finger flexion 

 

DLR 12 Prox. joints flexion 
Finger abduction 

 

Dist. joints flexion 
Thumb flexion 

  

Robonaut 14 
Thumb flexion 
MCP flexion 

Index abduction 

 

 

Thumb flexion 
MCP extension 

PIP flexion 

 

Human 20 
Thumb rotation 
Thumb flexion 
MCP flexion 

Index abduction 
 

Thumb flexion 
MCP extension 

PIP flexion 

 

 

 
TABLE I

EIGENGRASPS DEFINED FOR THE ROBOTIC HAND MODELS USED IN THIS PAPER.

Intuitively, this energy function has to be related to the
quality of the grasp, and we will review a number of
possible formulations later in this section. However, most
formulations pose a number of problems. First, it can be
very difficult, or even impossible, to compute an analytical
gradient. Second, such functions are highly non-linear, as
small changes in both finger posture and wrist position can
drastically alter the quality of the resulting grasp. Finally, the
legal parameter space is complex, having to satisfy multiple
constraints: prevent inter-penetration with the object to be
grasped as well as potential obstacles, and maintain joint
values within their acceptable ranges.

A. Optimization Algorithm

We directly address all of these problems by using sim-
ulated annealing as the preferred optimization method (for
a general review of the simulated annealing algorithm we
refer the reader to [14]). Its stochastic nature makes it
a particularly good choice for our task: since new states
are generated as random neighbors of the current state,
computation of the energy gradient is not necessary, and the
algorithm works well on non-linear functions. Furthermore,
the possibility of an “uphill move” to a state of higher
energy allows it to escape local minima which can trap
greedier methods such as gradient descent. However, the
random exploration of the input domain means that high
dimensionality of the parameter space will severely affect
the computational efficiency of this algorithm.

We therefore propose performing the optimization in

Fig. 1. Desired contact locations for DLR, Robonaut and Human hands

eigengrasp space, as opposed to DOF space. The energy
function takes the form

E = f(a,w) (5)

where a ∈ R2 is the vector of eigengrasp amplitudes. This
effectively reduces the parameter space to 8 dimensions (2
eigengrasp amplitudes plus 6 extrinsic DOF’s) from as high
as 26 dimensions in the case of the human hand.

B. Energy Function

The first energy function formulation that we propose
simply attempts to bring a number of pre-selected contact
points on the robotic hand in contact with the object (figure
1). The energy contains two terms: the first one sums the
distances between the desired contact points and the object
surface while the second one sums the angular differences
between the orientation of the surface normals at the contact
locations and the closest point on the object. By sampling
the palm and all the links of the robotic hand, as in figure
1, we expect the energy function to be minimized when the



hand is wrapped around the object generating a large contact
area.

In most cases, the resulting hand posture creates an
enveloping grasp of the object, especially for complex hand
models grasping objects similar in size to the hand. However,
there exist cases where the desired contact locations are
all very close to the object surface without generating a
stable grasp. Furthermore, small objects might be impossible
to completely wrap the hand around, and an acceptable
minimum of the energy function will not exist. To address
this problem we also propose a modified version of the
energy function that includes a built-in notion of grasp
quality as described below.

While a number of grasp quality metrics have been pre-
sented in the literature, our context is somewhat different:
we require a metric that can take into account not only
existing contacts between the hand and the object, but also
potential contacts that can be realized by small changes
in the current state. In this sense, the ideal metric would
assess the potential of a hand posture, and determine whether
the annealing algorithm will search its neighborhood for
progressively better states.

One possible quality metric that can be modified according
to these requirements is the one described by Ferrari and
Canny [15]. In its original form, the process involves building
the space of wrenches that can be applied by a grasp (the
grasp wrench space, or GWS) by taking the convex hull of
the wrenches that can be applied through each contact. If
the origin is not contained in this space, the grasp does not
have force-closure (F-C) and the quality is 0. Otherwise,
the quality of the grasp is is equal to the distance from
the origin to the closest boundary of the GWS. In our
implementation, object contacts are replaced by the desired
contact locations exemplified in figure 1. When computing
the GWS, we scale the wrenches that can be applied at each
desired contact location depending on the distance between
the desired contact and the object surface. Thus, if this
distance is small, the contact will have a positive contribution
to the grasp, and states that bring it closer to the object
surface will be rewarded by a higher quality value. If, on the
contrary, the desired contact is far from the object, it will
not significantly affect the grasp quality measurement.

Once the grasp quality term is computed, it is included in
the energy function in negated form, as the annealing algo-
rithm attempts to minimize the energy value. Its contribution
biases the search algorithm toward states that not only bring
the hand in contact with the object, but also create stable
grasping postures. We have found that these formulations
work well in practice, as shown in the following sections.
However the ideal energy function formulation, which would
guarantee stable grasps and eliminate the need to pre-specify
desired contact locations on the hand, is the subject of further
research.

C. Simulated Annealing example

We have implemented the simulated annealing approach
using the publicly available GraspIt! simulation engine [16].

k = 5000 k = 15000 k = 25000 k = 29000

k = 30000 k = 40000 k = 60000 k = 10000
Fig. 2. Simulated annealing example over 100,000 iterations. Each image
shows the best state found until iteration k.

For each state generated during the annealing schedule,
GraspIt! uses forward kinematics to place the robotic hand
model in the correct posture and checks for collisions against
the object to be grasped as well as other obstacles. If the
state is found to be legal, the corresponding energy function
is computed and the annealing algorithm continues. This
process can be repeatead until a satisfactory energy level
has been reached, or a pre-specified number of iterations
has been exceeded.

Before presenting an extensive test of this optimization
method, involving multiple hand models as well as different
objects, we will discuss a typical example, in order to
analyze the behavior of the simulated annealing algorithm
in more detail. This example involves the Robonaut hand
grasping a glass. The optimization was performed over
100,000 iterations, which is the case for all examples shown
in this paper. Figure 2 shows the temporary solution (best
state found so far) at various points during the optimization.
We can observe what is considered typical behavior for
a simulated annealing implementation: at first, the search
goes through random states, accepting bad positions as well
as good positions. As the annealing schedule progresses,
the search space is sampled more often in the vicinity of
the good states, while bad states are no longer accepted.
Finally, in the later stages, the search is confined in a small
neighborhood around the best state, which is progressively
refined. The total time required for the optimization was 173
seconds, or 1.73 milliseconds / iteration. The most significant
amount of computation was spent checking the feasibility of
each generated state (i.e. checking for collisions and inter-
penetrations).

IV. GRASP PLANNING EXAMPLES

In order to test the effectiveness of our framework, we
have applied the eigengrasp planning algorithm using all five
previously discussed robotic hand models on a set of six
objects. Figure 3 shows the result of the annealing search
for each hand-object combination. In order to allow a direct
assessment of the planning method through visual inspection



G
ri

pp
er

 
4 

D
O

F 

 
   

B
ar

re
tt

 
4 

D
O

F 

 

D
L

R
 

12
 D

O
F 

  

R
ob

on
au

t 
14

 D
O

F 

 
 

H
um

an
 

20
 D

O
F 

 
 

Fig. 3. Eigengrasp planner test using 5 hand models to grasp each of 6 objects

of the results, figure 3 presents the best hand posture found
by the planner without any additional refinements. We note
that, in most cases, planning in the reduced space spanned
by only two eigengrasps does not result in a posture where
the robotic hand conforms perfectly to the surface of the
object. However, the result is often close enough to such a
posture that a stable grasp can be obtained by using simple
heuristics. One possible heuristic involves closing each finger
until contact with either the object or another finger prevents
further motion. This method produces a force-closure grasp
in 23 out of the 30 cases presented in figure 3.

For the results presented in figure 3, we have specified
desired contact locations on the entire surface of the robotic
palm. However, it is also possible to use only a subset of
these. For example, we can choose to use only the fingertip
contacts, thus removing the requirement of wrapping the
hand around the object. In this case, the grasp quality
component of our energy function (section III-B) takes vital
importance, as it is generally easy to simply place the
fingertips on the object surface without necessarily creating
a strong grasp. This approach can be regarded as an attempt

to find good manipulation grasps and, especially in the case
of robotic hands equipped with human-like fingertips, it
produces stable results. Examples are shown in figure 4.a.
for the DLR, Robonaut and Human hand models, with the
note that all presented grasps have force-closure.

Finally, we have used the method presented in this paper
to plan grasps in the presence of obstacles. Figure 4.b. shows
a situation in which a table surface prevents the execution of
the best grasps, thus forcing the algorithm to find alternative
solutions. The only additional cost incurred by the grasp
planner is that of collision detection against the obstacle for
each newly generated state. Again, all the grasps presented
in the image have force-closure.

One object in our test set that requires additional consider-
ation is the toy airplane model. It differs from the rest of the
set in the sense that it can not be well approximated using
a single convex component, as it is the sum of a number of
dominant shapes (fuselage, wings, etc.). The grasp planner
that we have presented poses no hard convexity constraint on
the object, and it produces a number of convincing grasps on
the airplane model. However, an intuitive method to simplify



a) Planning results using only fingertip contacts

b) Planning results with external obstacles, such as a table surface

Fig. 4. Grasps planning with additional constraints

the search would be to decompose the object into dominant
convex sub-parts and plan individually on each of these.
In previous work we showed how approximating an object
with smooth convex primitives can be used to reduce the
complexity of the grasp search space [17]. Psychological
research [18] suggests that such ”grasping by parts” is similar
to the cognitive approach humans use for grasping, and as
such we are interested as future work in combining this type
of humanlike cognitive modeling with our humanlike hand
control.

V. CONCLUSIONS

In this paper we have built upon recent results in neu-
roscience research, which show that human hand control
for common grasping tasks mostly takes place in a space
of much lower dimensionality than the number of degrees
of freedom of the human hand. We have extended this
concept for a number of robotic hands, ranging from a simple
gripper to highly anthropomorphic models. For each model,
we have defined a low dimensional subspace of the degrees
of freedom space, determined by a number of basis vectors
which we call eigengrasps.

As long as the eigengrasp space provides a good approxi-
mation of the hand motion required for a given task, control
algorithms can be designed to operate in this space and
take advantage of the dimensionality reduction. In the case
of human grasping, data collected through user studies has
shown that this is indeed the case. In this paper we show
that this is also the case for complex robotic hands: we have
built an automated grasp planner that can find stable grasps
for complex hand models that have traditionally been very
difficult to plan for.

The eigengrasp space acts not only to reduce control
complexity, but also as an interface between the kinematic
structure of the hand and higher-level task planning. There-
fore, for a given task, it is possible to use a unified treatment
for a number of robotic hand models, even though the
kinematic specifications may be significantly different. We
have illustrated this concept by using the eigengrasp planner

on five robotic hands, with the number of intrinsic DOF’s
ranging between 4 and 20. The results show that it is indeed
possible to apply an identical control algorithm to all of these
hand models and obtain consistent results. Furthermore, the
eigengrasp planning method we have presented can be used
to find both power and manipulation grasps, and can take
into account the presence of external obstacles.

While this work has been focused on the task of grasping
everyday objects, we believe that eigengrasp-like control syn-
ergies can be found for many other domains. Since the pub-
lished experimental data we draw upon was collected under
such assumptions, we found it unjustified to generalize our
particular choices of eigengrasps without further analysis.
However, the effectiveness of the grasp planning algorithm
based on relatively few eigenvectors of hand motion suggests
that identifying similar dimensionality reduction strategies
for other domains (such as manipulation) will prove a fruitful
area of future research.

REFERENCES

[1] J. R. Napier, “The prehensile movements of the human hand,” Journal
of Bone and Joint Surgery, vol. 38, pp. 902–913, 1956.

[2] M. R. Cutkosky, “On grasp choice, grasp models, and the design of
hands for manufacturing tasks,” IEEE Transactions on Robotics and
Automation, vol. 5, pp. 269–279, 1989.

[3] T. Iberall, “Human prehension and dexterous robot hands,” Interna-
tional Journal of Robotics Research, vol. 16, pp. 285–299, 1997.

[4] M. Santello, M. Flanders, and J. F. Soechting, “Postural hand synergies
for tool use,” Journal of Neuroscience, vol. 18, no. 23, pp. 10 105–
10 115, 1998.

[5] R. A. Peters and O. C. Jenkins, “Uncovering manifold structures
in robonaut’s sensory-data state space,” in IEEE-RAS Intl. Conf. on
Humanoid Robots, 2005, pp. 369–374.

[6] A. Tsoli and O. C. Jenkins, “2d subspaces for user-driven robot
grasping,” in Robotics, Science and Systems Conference: Workshop
on Robot Manipulation, 2007.

[7] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic
grasp planning using shape primitives,” IEEE Intl. Conf. on Robotics
and Automation, vol. 2, pp. 1824–1829, 2003.

[8] J. Aleotti and S. Caselli, “Grasp recognition in virtual reality for robot
pregrasp planning by demonstration,” in IEEE Intl. Conf. on Robotics
and Automation, Orlando, FL, May 2006.

[9] Y. Li and N. S. Pollard, “A shape matching algorithm for synthesizing
humanlike enveloping grasps,” in IEEE-RAS International Conference
on Humanoid Robots, Tsukuba, JP, December 2005, pp. 442–449.

[10] K. B. Shimoga, “Robot grasp synthesis algorithms: a survey,” Intl. J.
of Robotics Research, vol. 15, pp. 230–266, 1996.

[11] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
IEEE Intl. Conf. on Robotics and Automation, pp. 348–353, 2000.

[12] C. S. Lovchik and M. A. Diftler, “The robonaut hand: A dextrous robot
hand for space,” in IEEE Intl. Conf. on Robotics and Automation, 1998,
pp. 907–912.

[13] J. Butterfass, G. Hirzinger, S. Knoch, and H. Liu, “Dlr’s articulated
hand, part i: Hard- and software architecture,” in IEEE Intl. Conf. on
Robotics and Automation, 1998, pp. 2081–2086.

[14] L. Ingber, “Very fast simulated re-annealing,” J. Mathl. Comput.
Modelling, vol. 12, no. 8, pp. 967–973, December 1989.

[15] C. Ferrari and J. Canny, “Planning optimal grasps,” in IEEE Intl. Conf.
on Robotics and Automation, 1992, pp. 2290–2295.

[16] A. Miller and P. K. Allen, “Graspit!: A versatile simulator for robotic
grasping,” IEEE Robotics and Automation Magazine, vol. 11, no. 4,
pp. 110–122, December 2004.

[17] C. Goldfeder, P. Allen, C. Lackner, and R. Pelossof, “Grasp plan-
ning via decomposition trees,” in IEEE Intl. Conf. on Robotics and
Automation, Rome, Italy, April 2007.

[18] I. Biederman, “Recognition-by-components: A theory of human image
understanding,” Psychological Review, vol. 94(2), pp. 115–147, 1987.


