
Generating Multi-Fingered Robotic Grasps
via Deep Learning

Jacob Varley, Jonathan Weisz, Jared Weiss, Peter Allen

Abstract— This paper presents a deep learning architecture
for detecting the palm and fingertip positions of stable grasps
directly from partial object views. The architecture is trained
using RGBD image patches of fingertip and palm positions from
grasps computed on complete object models using a grasping
simulator. At runtime, the architecture is able to estimate
grasp quality metrics such as force closure without the need to
explicitly calculate the given metric. This ability is useful as the
exact calculation of these quality functions is impossible from
an incomplete view of a novel object without any tactile feed-
back. This architecture for grasp quality prediction provides
a framework for generalizing grasp experience from known to
novel objects.

I. INTRODUCTION

Despite the existence of a vast amount of literature on
robotic grasping, grasp planning for objects from partial
views remains a very challenging task. This paper presents a
system relying on deep learning methods in order to generate
grasps for objects that may or may not have been seen
before and whose current full geometry is unknown. The
proposed system uses a Convolutional Neural Network to
quickly calculate grasp affordances such as force closure
[3] directly from RGBD images. These methods make our
system efficient, allow the use of a large context window
for determining grasp quality, and enable the system to
effectively generalize precomputed grasps of known models
to novel 3D objects.

The proposed approach involves training a deep learning
network on thousands of quality grasps generated using
known object models from BigBIRD[16], the Berkeley In-
stance Recognition Dataset. Training grasps are generated
in an environment where the full object geometry is known
using GraspIt![12], a grasp simulator. For each grasp, the
locations of the fingertip positions and palm are recorded
along with the grasp quality score representing the stability
of the given grasp for this known environment. Then, RGBD
images of the grasp can be rendered, and RGBD image
patches centered on the fingertip and palm locations can
be extracted. These patches paired with the recorded grasp
quality score are then used to train a deep network to quickly
recognize stable fingertip and palm locations for different
canonical grasp types directly from RGBD images.

At runtime, both an RGBD image and a pointcloud for
a scene are generated from a single point of view. The
pointcloud is segmented and meshes are created for the
segmented objects. Since the pointcloud was generated from
a single view, these meshes are incomplete, and represent
only the faces of the object that were visible to the camera.

At the same time that the pointcloud is being processed, the
RGBD image is passed through the deep learning network in
order to generate heatmaps or dense per pixel labels revealing
how well every location in the image would act as a fingertip
or palm location for a number of different canonical hand
configurations. The incomplete meshes are then imported
into GraspIt!, and Simulated Annealing is run to find stable
grasps that both align well with the visible portions of the
mesh model to be grasped, and whose fingertips and palm
positions project into low energy locations in the heatmaps
produced by the deep network.

II. RELATED WORK

There is a significant body of work related to grasping
with incomplete sensor data as well as different metrics for
generating grasps for known objects. For a more detailed
summary, we refer the reader to [1]. The following is a brief
overview of some of the work most relevant to the presented
system.

1) Data Driven Grasping: In the approach taken by
[5][4], a grasping simulator plans grasps that maximize a
given quality metric offline to generate grasp for known 3D
objects. Then, when attempting to grasp an object in a scene,
the scene is segmented, and the segmented object’s closest
model is found in the database and the precomputed grasps
from the closest matching model are used on the new object.
This approach works reliably when the object to be grasped
can easily be segmented out of the scene and is not markedly
different than models in the database. A problem with this
approach is that it is difficult to fine tune a retrieved grasp in
this situation especially when the full geometry of the object
is not known.

2) Deep Learning for Parallel Jaw Grippers: In another
approach [10]. The grasping system learns grasps for a
parallel jaw gripper from manually labeled RGBD images.
The labels consist of rectangles with two of the edges repre-
senting where the gripper should be placed. This approach,
while able to learn arbitrary grasp types based on whatever
training data is given, has three major drawbacks. First each
image has to be hand labeled, which can be burdensome.
Second, the grasp rectangles that are evaluated to determine
grasp quality only contain the region of the image that
will lie inside of the gripper. There is no wider context in
which to evaluate the grasp. Third, and most importantly, the
grasping rectangles concept is not easily extensible to more
complicated robotic hands and fingers.

Fig. 1: Overview of the grasp training data generation stages.

3) Fingertip Space and Precision Grasping: The concept
of a Fingertip Space and an efficient algorithm for producing
stable grasps within this space has been proposed by a
number of researchers including [7][13][11]. For example,
in [7], their approach provides a useful grasping strategy
when there is a proficient amount of information about
the geometry of the object to be grasped. This stands in
contrast to this work which provides a framework enabling
the transfer of knowledge from grasps generated with object
geometries known to situations where only a partial view of
the object is available.

III. METHOD

The description of the presented system is decomposed
into three main sections, grasp training data generation, the
deep learning model, and grasping from partial views. The
first section describes the generation of grasp data that will
be used to train the deep model to recognize good locations
for the placement of the palm and fingertips of the end
effector. The next section overviews the deep model that
was used, how it was trained, and an interpretation of the
output. The final section describes how the output of the
deep model can be used to find stable grasps in coordination
with a segmented mesh of the scene generated from a single
viewpoint.

A. Grasp Training Data Generation

The generation of training data is a multi-stage process.
Grasps are generated in GraspIt! using complete object
models. The locations of the palm and fingertips for grasps
in prototypical hand configurations are saved along with
the energy of the given grasp. RGBD images of these
palm and fingertip locations are then captured in simulation,
and patches around these locations are saved. An overview
of the data generation process is shown in Fig. 1, and
the individual steps are explained in more detail below.

Fig. 2: Barrett Hand
with virtual contacts
shown in red.

1) Grasp Generation: Training
of the grasp generation system re-
quired the generation of quality
grasps on known objects. In or-
der to generate these grasps, mod-
els from BigBIRD, the Berkeley
Instance Recognition Dataset, were
uploaded into GraspIt!. The dataset
contains mesh models for approxi-
mately 125 everyday objects. Sev-
eral of the models had large holes
due to transparent regions and were
not used as valid training grasps

Fig. 3: Image Patches extracted from a grasp on an All brand
detergent bottle. The center of each image patch corresponds
to where the palm and fingertips from the grasp project into
the image plane.

could not be generated for them. In GraspIt! each model
was uploaded along with a Barrett Hand model as shown in
Fig. 2. From each object model, a set of points was chosen
uniformly over the mesh surface and GraspIt!’s Simulated
Annealing planner was run for 30 seconds at a time seeded
over the chosen points on the object mesh. For the grasp data
generation, GraspIt!’s Contact and Potential Energy function
was used to score the generated grasps. The Potential Energy
function ensures that the generated grasps have force closure.
Only the grasps with low-energy quality scores below a
threshold were kept. This generated 272,380 grasps in all,
and of the generated grasps, 41,708 had a quality score below
our threshold and were used for training.

2) Grasp Type Labeling: The generated grasps were then
categorized into different grasp types based on the 7 joint
values and the roll of the wrist. Each joint value of the hand
and the wrist roll were given nBins = 5 bins. This provided
nBinsnJoints = 58 = 390, 625 different grasp types. The
grasp type is simply a integer between 0 and 390,624 that
is determined by the coarse configuration of the hand. The
exact formulation is given by:

joints = {j0, j1, j2, j3, j4, j5, j6, wrist roll}

grasp type =

nJoints−1∑
i=0

bin(joint[i]) ∗ nBinsi

3) Grasp Type Reduction: The vast majority of the above
grasp types had no grasp examples. For instance, the grasp
type corresponding to the hand being completely open never
results in a stable grasp. The frequency of each grasp
type within the training data was computed, and only the
n = 8 most common grasps types were kept as the set
of canonical grasps. The set of 41,708 quality grasps from
above contained 3,770 grasps of the 8 most common grasp
types. Only the top 8 were kept as the number of examples
per grasp type was no longer sufficient past the 8th most
common grasp type.

4) Grasp Rendering: For each grasp, the target object was
placed into Gazebo[9]. The position of the palm with relation
to the object was calculated and a simulated Kinect sensor

Fig. 4: Deep Model consisting of a local contrast normalization (LCN) stage, a 5 layered convolutional stage, and 3 fully
connected layers.

Layer 1 2 3 4 5 6 7 8
Stage conv + max pool conv + max pool conv conv conv full full full
channels 96 256 256 256 256 1000 100 f ∗ n
Filter Size 11x11 3x3 3x3 3x3 3x3 - - -
Filter Stride 2x2 - - - - - - -
Pool Size 2x2 2x2 - - - - - -
Pool Stride 2x2 2x2 - - - - - -
Input Size 480x640 118x158 58x78 56x76 54x74 52x72 52x72 52x72

TABLE I: Architecture for the model. The final number of channels in the final stage is the number of grasp types (n)
multiplied by the number of interest points on the hand (f) i.e the palm and fingertips.

was positioned 2 meters backed off from the object along
the approach direction of the hand and an RGBD image was
captured.

5) Training Patch Extraction: From each RGBD image,
patches around the location of the palm and fingertips are
extracted. These training patches allow the deep learning
model to learn what good fingertip locations look like
for specific grasp types, for a known object, from a spe-
cific viewing angle. Fig. 3 demonstrates how 4 patches
are generated from a single grasp of a known model.

Fig. 5: Patches and label
vectors for a single grasp
with energy e.

B. Deep Learning Model

An overview of the Deep
Network Architecture is
shown in Fig. 4

1) Training Data Labels:
The deep learning model
is trained on the RGBD
patches generated using the
process described above. For
each patch, a label vector
the length of the number
of canonical grasp types (n)
multiplied by the number of
palm and finger tip locations
(f) is created.

len(label vec) = n ∗ f = 8 ∗ 4 = 32

The vector contains all zeros except at the entry which
represents the corresponding grasp and finger type of the
patch. This entry is filled with the grasp quality score for the
grasp that this patch was extracted from. Fig. 5 shows how
the training labels for a set of patches from the same grasp

Fig. 6: The output of the Deep Network can be thought of
as a set of heatmaps representing how well each location in
the image acts as a fingertip or palm location for each grasp
type.

are composed. At runtime, the model takes a full RGBD
image as input and returns a set of heatmaps, one for each of
the fingertips and palm for each grasp type. These heatmaps
represent how well a given pixel location works as a fingertip
or palm location for the given grasp type.

2) Model Description: Our model was implemented using
Pylearn2 [6] and consists of a local contrast normalization
stage(LCN) [8] followed by five Convolutional Rectified
Linear layers and then by three fully connected Linear layers.
The model was trained using an Nvidia GTX 780 GPU. The
parameters of the model are shown in Table I.

3) Heatmaps: While the model was trained on image
patches of 72x72, when running it takes as input an entire
RGBD image (480x640) and outputs a label vector for
every pixel in the image with the exception of the border
pixels where a full 72x72 patch is not available. The output

Fig. 7: Overview of the Grasp Generation System. After an
image is captured, the scene is segmented and meshed while
the heatmaps are generated in parallel. Both the meshed
scene and the heatmaps are then used within GraspIt! to
plan grasps.

matrix is downsampled due to the Filter Strides and Max
Pooling in the first two Convolutional Layers. In order to
account for this, we rescale the output so that it is of
the same dimensionality as the input image with a border
corresponding to the patch size removed. This output matrix
can be thought of as a set of potentials showing how well
every pixel would work as a fingertip location for every
fingertip type for each of the canonical grasp types. Fig. 6
demonstrates how the output of the deep learning model can
be interpreted.

4) Training: The model is trained using stochastic gra-
dient descent (SGD) with minibatches of size 20, and was
shown 30,200 examples in 151 epochs. The learning rate
was .1, and an L1 term was used to induce sparsity in the
weights. In addition, small amounts of Gaussian noise was
randomly added to the training patches.

C. Grasping from Partial Views

In order to realize a grasp of an object using the model
above, several additional steps must be taken. An RGBD
image must be captured, the scene must be segmented, and
meshes must be generated for the segmented objects in the
scene. Then Simulated Annealing can be run within GraspIt!
on the mesh of the scene in order to find an optimal grasp
that is well aligned with the visible portions of the object
and is stable according to the deep network. An overview of
this process is shown in Fig. 7.

1) Scene Segmentation: The system segments the point
cloud associated with the RGBD image following the Eu-
clidean Cluster Extraction tutorial from PCL[15]. The largest
plane in the pointcloud is found using RANSAC and then
removed. Euclidean clustering is then run on the remaining
points, and any objects that were previously resting on the
largest plane in the scene now form separate clusters. This
method, while naive, works well for any scene with models
that are not touching and resting on a dominant plane such
as the floor or a table.

2) Mesh Generation: The segmented clusters from the
previous step are then meshed and the set of meshed partial
objects is returned. It is important to ensure that the normals
for the mesh are correctly oriented as they are used later to
determine how well the mesh is aligned with the hand.

3) Heatmap Generation: In parallel with the generation
of the meshes as described above, the RGBD image captured
from the Kinect is sent through the previously described deep
learning network. For a given input RGBD image this creates
a set of f ∗n heatmaps, one for each of the f finger and the
palm locations for each of the n canonical grasp types the
system was trained on.

4) Grasp Planning: Within GraspIt!, the meshes are
loaded into a planning scene, and a partial mesh is selected
for grasp planning. A partial mesh must be selected as the
planning scene may be crowded and an automated selection
of which object to manipulate is outside the scope of this
work. Once a target object is selected, GraspIt!’s Simulated
Annealing planner is started [2]. At each step, the planner
calculates the energy associated with the current hand con-
figuration as a weighted sum of a Contact Energy term and
the Heatmap Energy term, both of which are described in
the following section. The Contact Energy term encourages
grasps to align well with the visible portions of the meshed
object, while the Heatmap energy term encourages placement
of the palm and fingertips into positions for a stable grasp as
predicted by the deep learning network. The grasp planner
stores a list of the top 20 grasps ranked by energy that are
calculated over a pre-specified number of iterations of the
planner. At this point, either the lowest energy grasp that is
reachable can be executed automatically or a user can select
a preferred grasp from the list generated by the planner.

D. Grasp Energy Calculation

Fig. 8: Minimizing Contact Energy
is equivalent to minimizing both
oi ·ni and the length of oi in order
to keep the virtual contact close to
and well aligned with the object.

1) Contact
Energy: The Contact
Energy function
makes use of Virtual
contacts, or user-
specified points of
interest on the hand
as shown in Fig. 8. In
our case, we spread
a total of 16 virtual
contacts uniformly
over the Barrett Hand.
The Contact Energy
metric penalizes
grasps whose virtual
contacts are either distant from the object or whose normals
do not align well with the object. The algorithm is fully
described in Algorithm 1. The two components come from
the distance between the closest point on the object to
be grasped, and the dot product of the normalized vector
extending from the virtual contact location to the closest
point on the model with the normal of the virtual contact
and the hand. γ is used to scale how large of a contribution

the alignment term makes relative to the distance term.
Two versions of the isVisible function were explored. For
forward facing grasps using only the 4 virtual contacts on
the palm was sufficient, while for all cases, the orientation
of the vector extending from the virtual contact to the
nearest point on the mesh was compared to the vector
extending from the camera location to the same point. The
sign of the dot product was used to ensure that contact was
being made on a visible face of the mesh.

Algorithm 1 Contact Energy Calculation

1: procedure CONTACTENERGY()
2: numVisible = 0
3: energy = 0
4: energy = 0
5: for vc in virtualContacts do
6: ip = getIntersectionPoint(vc, body)
7: if isVisible(ip) then
8: numVisible ++
9: energy += dist(vc, ip)

10: energy += γ∗ (1 - (vc.norm · ip.norm))
11: return energy / numVisible

Algorithm 2 Heatmap Energy Calculation

1: procedure HEATMAPENERGY()
2: energy = 0
3: graspType, distance = getGraspType()
4: if distance > α then
5: return MAX ENERGY
6: for vc in virtualContacts do
7: fingerType = getFingerType(vc)
8: if fingerType in [Palm, F0, F1, F2] then
9: u,v = contactToImagePlane(vc.x, vc.y, vc.z)

10: index = getIndex(graspType, fingerType)
11: energy += heatmaps[index][u][v]
12: energy += µ∗distance
13: return energy

2) Heatmap Energy: The second component of the energy
function comes from the heatmaps generated by the deep
learning network. The distance from the current hand con-
figuration to the nearest canonical grasp type is computed.
If there are no nearby grasp types, then the Heatmap Energy
is returned as a large value. This implies that the current
hand configuration is not well associated with any of the
learned grasp types. If there is a nearby grasp type, then the
corresponding heatmaps are used to determine the Heatmap
Energy. The current locations of the palm and finger tips
of the hand are projected back into the plane of the image
captured by the Kinect, and the heatmap values for the
individual fingers and the palm for the current grasp type are
added to the energy score for the current hand configuration.
In addition, the distance to the nearest grasp type is multi-
plied by µ and added to the energy. This penalizes grasps

RGBD Input Overlay of best finger posi-
tions

L Gripper Palm R Gripper

Fig. 9: Example for a scene from the Grasping Rectangles
Dataset[10]. For this dataset, positive grasp examples where
scored with a +1 and negative grasp examples with a score of
-1, so for these heatmaps red corresponds to good positions
to place the gripper or palm. The argmax from each heatmap
is displayed on the overlay of the original image.

for moving away from the canonical hand configurations.
Higher µ values keep the hand in configurations close to
the canonical grasp hand configuration. A full description of
this algorithm is shown in Algorithm 2. Overall, the Heatmap
Energy function favors hand configurations where the palm
and fingertips project into low energy areas of the heatmaps,
areas that the deep model has associated with stable grasps.

3) Combined Energy: The Contact Energy and Heatmap
Energy terms are combined using a mixing parameter ρ. This
parameter determines how heavily to weight the above terms
relative to each other as shown in the following equation:

ρ ∗ heatmapEnergy + (1− ρ) ∗ contactEnergy

Higher values of ρ lead to grasps where the fingertips are
able to move into lower energy positions at the expense
of increasing the contact energy. It is a balance for how
much a grasp should be rewarded for aligning nicely with
the visible portions of the object against how the current
hand configuration compares to the learned idea of what a
stable grasp should look like.

IV. EXPERIMENTAL RESULTS

A. Grasping Rectangle Dataset

In order to demonstrate the ability of the system to learn
arbitrary grasp quality functions, we trained our system on
the Grasping Rectangle Dataset from [10]. In the Grasping
Rectange Dataset, two of the edges of a rectangle represent
where the gripper should be placed. Image patches were
extracted from the center of each edge of the rectangle to
represent each finger, and from the center to represent the
palm. The grasps were discretized based on the rotation of
the rectangle, so that grasp types related to the rotation of
the wrist. The system was able to reproduce results similar
to those found by[10]. An example scene along with a set

Real World Grasps

Trial # Scene Target Object Success Scene
Segmentation (s)

Mesh
Generation (s)

Heatmap
Generation (s)

Simulated
Annealing (s)

Total Planning
Time (s)

1 All bottle All bottle yes 0.168 3.014 3.122 10.982 14.164
2 water bottle water bottle yes 0.159 2.977 3.141 10.471 13.612
3 drill drill yes 0.157 2.991 3.119 12.745 15.893
4 shampoo shampoo yes 0.339 3.277 3.122 12.253 15.869
5 tool case tool case no 0.175 3.026 3.242 14.328 17.570
6 crowded shampoo yes 0.181 3.307 3.127 14.328 17.816
7 crowded drill no 0.181 3.167 3.118 15.940 19.288
8 crowded All bottle yes 0.188 3.338 3.118 15.507 19.033

Success: 6/8 Average Total
Time: 16.655

TABLE II: Results of grasp attempts for varying scenes and objects. ρ = .1, µ = 10, and γ = 500

Fig. 10: Crowded scene from trial 8. This scene contains all
other objects used in the experiments.

of heatmaps produced by the deep learning network and the
best fingertip positions found by our system is shown in Fig.
9.

B. BigBird Generated Dataset

Using the deep learning model trained on the BigBird
dataset, grasps were generated for several different real world
scenes, and executed using a Barrett Hand attached to a
StaubliTX60 robotic arm. None of the objects in the scenes
were present in the training data for the deep learning model.
The models used for this experiment are pictured in Fig.
10. For each trial, a single RGBD image and pointcloud of
the scene was captured. The RGBD image was sent through
the deep learning network while the pointcloud was used to
segment the scene and mesh the segmented objects. Then
the Simulated Annealing Planner was run for 10,000 steps
using the Combined Energy function and the lowest energy
reachable grasp generated within that time was executed by
the arm. Success was determined by whether or not the object
was contained in the hand and lifted off of the table. The total
time is generated with the following formula as the heatmap
generation and scene segmentation are run in parallel:

ttotal = max(tsegment + tmesh, theatmap) + tsim.ann.

(a) Contact Energy Grasps

(b) Heatmap Energy Grasps

(c) Combined Energy Grasps

Fig. 11: The Contact Energy function aligns the palm well
with the object, but fails to move the fingers into mean-
ingful positions. The Heatmap Energy moves the hand to
low energy positions that may not be relevant for grasping
the current object. The Combined Energy uses the Contact
Energy to stay close to the object and the Heatmap Energy
to refine the fingertip positions.

The results for the experiments are shown in Table II.
While ρ = .1 sets more weight to the Contact Energy, the
unweighted Contact Energy is smaller than the unweighted
Heatmap Energy, so this value balances the two. The ex-
perimental results demonstrate that our system is able to
generalize grasps generated on the BigBird models to these
new objects. Several example grasps are shown in Figures
12,13,14,15. These experiments reveal not only that our
system can generalize well, but that it is also effective in
crowded scenes and with semi transparent objects. As long
as some portion of the object is visible and able to be meshed,
then this system is able to generate grasps around that portion
of the object. While the current system failed to generate a
stable grasps for the tool case, we attribute this partially to
the fact that very few of the objects in the training set have
handles, and none of them had horizontal handles like the
tool case. For the failure case involving the drill, when the
partial mesh of the drill was created, it was missing portions
of the handle. While the hand was closing, it collided with a

(a) RGB from input image and output grasp.

Palm F0

F1 F2

(b) Heatmaps with the virtual contacts projected into them. The red
rectangles show where the given fingertip projects into its appropriate
heatmap. The darker the regions of the heatmaps represent low energy
regions corresponding to good fingertip positions.

Fig. 12: Example grasp generated for a shampoo bottle.

portion of the drill that had not been meshed, this is difficult
to avoid, as we can only plan trajectories and generate hand
configurations that avoid collisions with portions of objects
that are successfully meshed.

C. Comparison of Grasp Energy Components

Using a single scene, grasps were planned using Contact
Energy, Heatmap Energy, and Combined Energy to demon-
strate how the different components of the Combined Energy
function work in isolation. The Contact Energy function
aligns the palm to the object to be grasped, but does not place
the fingers into any specific configuration. The Heatmap
Energy alone places the fingers into positions that project
into low energy locations within the heatmaps, but the hand
will often find low energy regions of the heatmaps that
are for other objects to be grasped, or may be either to
far into the scene, or too close to the camera. Nothing is
ensuring that the hand stay near the object to be grasped. The
Combined Energy function uses the Contact Energy to ensure
that the hand is near the target object, while the heatmap
energy refines the fingertip and palm locations locally. Fig.
11 shows several low energy grasps computed with the
individual energy functions as well as for the Combined
Energy function.

(a) RGB from input image and output grasp.

Palm F0

F1 F2

(b) Heatmaps with the virtual contacts projected into them. The
red rectangles show where the given fingertip projects into its
appropriate heatmap. The darker the regions of the heatmaps
represent low energy regions corresponding to good fingertip
positions.

Fig. 13: Example grasp generated for a drill.

V. CONCLUSION

It is worth noting that this deep learning network is on the
small end compared to networks built for the ImageNet chal-
lenge [14], which have 1000 output categories compared to
our 32. This implies that our methodology could reasonably
scale to 250 grasp types with 4 fingertip positions given the
appropriate volume of training data.

We have shown that traditional methods for calculating
grasps on known 3D objects can be paired with a deep
learning architecture in order to efficiently estimate arbitrary
grasp affordances from RGBD images. The deep architecture
can learn grasp qualities that may take arbitrarily long to
calculate on the training models enabling the use of thorough
and meaningful grasp quality scores to generate training
grasps. The generated grasps can then be used to train a deep
model to quickly recognize quality grasps without explicitly
calculating the grasp quality or even requiring a 3D model
of the object to be grasped.

VI. ACKNOWLEDGMENTS

We would like to thank Y. Li for many thoughtful discus-
sions. This work is supported by NSF Grant IIS-1208153.

(a) RGB from input image and output grasp.

Palm F0

F1 F2

(b) Heatmaps with the virtual contacts projected into them. The red
rectangles show where the given fingertip projects into its appropriate
heatmap. The darker the regions of the heatmaps represent low energy
regions corresponding to good fingertip positions.

Fig. 14: Example grasp generated for an All Detergent bottle.

REFERENCES

[1] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Danica Kragic.
Data-driven grasp synthesisa survey. Robotics, IEEE Transactions on,
30(2):289–309, 2014.

[2] Matei T Ciocarlie and Peter K Allen. Hand posture subspaces for
dexterous robotic grasping. The International Journal of Robotics
Research, 28(7):851–867, 2009.

[3] Carlo Ferrari and John Canny. Planning optimal grasps. In Robotics
and Automation, 1992. Proceedings., 1992 IEEE International Con-
ference on, pages 2290–2295. IEEE, 1992.

[4] Corey Goldfeder and Peter K Allen. Data-driven grasping. Au-
tonomous Robots, 31(1):1–20, 2011.

[5] Corey Goldfeder, Matei Ciocarlie, Jaime Peretzman, Hao Dang, and
Peter K Allen. Data-driven grasping with partial sensor data. In Intel-
ligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, pages 1278–1283. IEEE, 2009.

[6] Ian J. Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent
Dumoulin, Mehdi Mirza, Razvan Pascanu, James Bergstra, Frédéric
Bastien, and Yoshua Bengio. Pylearn2: a machine learning research
library. arXiv preprint arXiv:1308.4214, 2013.

[7] Kaiyu Hang, Johannes A Stork, and Danica Kragic. Hierarchical fin-
gertip space for multi-fingered precision grasping. In Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pages 1641–1648. IEEE, 2014.

[8] Kevin Jarrett, Koray Kavukcuoglu, M Ranzato, and Yann LeCun. What
is the best multi-stage architecture for object recognition? In Computer
Vision, 2009 IEEE 12th International Conference on, pages 2146–
2153. IEEE, 2009.

[9] Nathan Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In Intelligent

(a) RGB from input image and output grasp.

Palm F0

F1 F2

(b) Heatmaps with the virtual contacts projected into them. The
red rectangles show where the given fingertip projects into its
appropriate heatmap. The darker the regions of the heatmaps
represent low energy regions corresponding to good fingertip
positions.

Fig. 15: Example grasp generated for a water bottle.

Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, volume 3, pages 2149–2154. IEEE.

[10] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for
detecting robotic grasps. IJRR, 2014.

[11] Yun Lin and Yu Sun. Robot grasp planning based on demonstrated
grasp strategies. The International Journal of Robotics Research,
34(1):26–42, 2015.

[12] Andrew T Miller and Peter K Allen. Graspit! a versatile simulator for
robotic grasping. Robotics & Automation Magazine, IEEE, 11(4):110–
122, 2004.

[13] Carlos Rosales, Llus Ros, Josep M. Porta, and Ral Surez. Synthesizing
grasp configurations with specified contact regions. The International
Journal of Robotics Research, 30(4):431–443, 2011.

[14] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge, 2014.

[15] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[16] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter
Abbeel. Bigbird: A large-scale 3d database of object instances. In
Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 509–516. IEEE, 2014.

	Introduction
	Related Work
	Data Driven Grasping
	Deep Learning for Parallel Jaw Grippers
	Fingertip Space and Precision Grasping

	Method
	Grasp Training Data Generation
	Grasp Generation
	Grasp Type Labeling
	Grasp Type Reduction
	Grasp Rendering
	Training Patch Extraction

	Deep Learning Model
	Training Data Labels
	Model Description
	Heatmaps
	Training

	Grasping from Partial Views
	Scene Segmentation
	Mesh Generation
	Heatmap Generation
	Grasp Planning

	Grasp Energy Calculation
	Contact Energy
	Heatmap Energy
	Combined Energy

	Experimental Results
	Grasping Rectangle Dataset
	BigBird Generated Dataset
	Comparison of Grasp Energy Components

	Conclusion
	Acknowledgments
	References

