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Abstract
Purpose – Robotic hands are still a long way from matching the grasping and manipulation capability of their human counterparts, but computer
simulation may help us understand this disparity. We present our publicly available simulator, and describe our research projects involving the system
including the development of a human hand model derived from experimental measurements.
Design/methodology/approach – Unlike other simulation systems, our system was built specifically to analyze grasps. It can import a wide variety of
robot designs by using standard descriptions of the kinematics and link geometries. Various components support the analysis of grasps, visualization of
results, dynamic simulation of grasping tasks, and grasp planning.
Findings – The simulator has been used in several grasping research problems and can be used to plan grasps for an actual robot. With the aid of a
vision system, we have shown that these grasps can be executed by a robot.
Research limitations/implications – We are currently developing methods to handle deformable surfaces, tendon driven models, and non-ideal
joints in order to better model human grasping.
Practical implications – This work is part of our current project to create a biomechanically realistic human hand model to better understand what
features are most important to mimic in the designs of robotic hands. Such a model will also help clinicians better plan reconstructive hand surgeries.
Originality/value – We describe our publicly available grasping simulator and review experiments performed with it. The paper demonstrates the
usefulness of this system as a tool for grasping research.
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1. Introduction

The progress in building capable robotic hands has been slow.
An important factor that has affected the progress in this field
is the lack of easily obtainable, low cost experimental robotic
hands that can be used as test beds. The high cost and
difficulty of building a robotic hand, along with the associated

electronics, control systems, and integrated sensing has led to
a serious lack of experimental devices in the field. In fact, were
one desirous of purchasing a robotic hand today, there appear
to be few, if any, available. Custom designs exist, but usually
are lacking in the higher levels of system integration that can
turn a mechanical device into a full-fledged grasping system.
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What can push this research further along? How can we
design intelligent systems with the ability to grasp objects? A
partial solution to this problem is to use computer modeling
and simulation to effectively design and test robotic hands in
typical task environments. As the computer models get better,
and the hardware faster, realistic simulation can be used to
learn more about robotic grasping.
At Columbia University, we have created a publicly

available simulator to serve as a useful tool for grasping
research. The system, called GraspIt![1] can accommodate a
wide variety of hand and robot designs. It includes a rapid
collision detection and contact determination system that
allows a user to interactively manipulate the joints of the hand
and create new grasps of a target object. Each grasp is
evaluated with numeric quality measures, and visualization
methods allow the user to see the weak point of the grasp and
create arbitrary 3D projections of the 6D grasp wrench space.
The dynamics engine within GraspIt! Computes the motions
of a group of connected robot elements, such as an arm and a
hand, under the influence of controlled motor forces, joint
constraint forces, contact forces and external forces. This
allows the dynamic simulation of an entire grasping task, as
well as the ability to test custom robot control algorithms.
In this paper we present further details regarding the

various components of the system, and we also describe two
projects which use GraspIt! as an integral part of a larger grasp
planning system: one generates candidate grasps using
heuristics and predefined grasp taxonomies, and the other
uses a support vector machine to learn high quality grasps of
parametric objects. Finally, we discuss our development of a
human hand model that uses accurate geometry and
kinematics derived from experimental measurements. This
is part of an ongoing project to create a biomechanically
realistic human hand model to better understand what
features are most important to mimic in the designs of robotic
hands. Such a model will also enable studies of the functional
abilities of the intact and impaired human hand using the
rigorous mathematical framework of robotics.

2. GraspIt!

In building GraspIt!, we were aware of several commercial
robotics simulators available, including Delmia’s IGRIP, Flow
Software Technologies’ Workspace5, MCS Software’s
ADAMS, and the Easy-Rob system, as well as past and
present research projects in robot simulation, including
among others Corke’s Robotics Toolbox for MATLAB
(Corke, 1996), Speck and Klaeren’s RoboSiM (Speck and
Klaeren, 1999), and Ruspini and Khatib’s Simpact (Ruspini
and Khatib, 1999). There are a number of important
elements that set GraspIt! apart from this body of previous
work, the most important being that it has been developed
specifically to analyze and visualize the robotic grasping task.
Accordingly, none of the simulators above have the capability
to compute dynamic frictional contact forces accurately,
which is an essential component of grasping problems.
Further, they also lack the grasp analysis and planning
algorithms that are incorporated in GraspIt!. Finally, GraspIt!
is a total package that includes not only models and a
simulation engine, but a powerful and advanced user interface
that facilitates its use. In the following sections we provide a
brief overview of the components and features of the system,
as well as describe some of its applications. Further

information regarding the system and its applications can be
found in the following papers (Kragić et al., 2001; Miller and
Allen, 1999, 2000; Miller and Christensen, 2003; Miller
et al.,2003; Pelossof et al., 2004).

2.1 GraspIt! world elements
2.1.1 Body types
A basic body consists of a pointer to its geometry, a material
specification, a list of contacts, and a transform that specifies the
body’s pose relative to the world coordinate system. The body
geometry is read from an Inventor model file that has essentially
the same format as VRML 1.0. The material is one of a set of
predefined material types and is used when computing the
coefficient of friction between two contacting bodies.
A dynamic body inherits all of the properties of a body and

defines the mass of the body, the location of its center of mass,
and its inertia tensor. If the mass distribution is unknown, the
system can compute the inertia tensor by assuming a uniform
mass distribution. The reason for distinguishing between bodies
and dynamic bodies is that some bodies are simply considered
obstacles, and while they are elements of the collision detection
system and can provide contacts on other bodies, they are not
part of thedynamics computations and remain static.Thismakes
it possible to create a complex world full of obstacles without
making the dynamics intractable to compute.

2.1.2 Robots
We have tried to make the definition of a robot as general as
possible to allow a wide variety of robot designs to be
imported. The system reads the kinematic parameters
(specified in standard Denavit-Hartenberg notation) for
each chain of links and joints from a text file, loads the
geometry for each link, and constructs the robot. Our
definition separates degrees of freedom (DOF) from joints
and allows multiple joints to be driven by the same DOF
because it is common in many hand designs to have coupled
joints that are passively controlled by other joints.
A hand is a special type of robot that can form grasps of

objects, and these grasps will be analyzed by the system. It
also includes an auto-grasp method which closes the joints of
the hand at preset velocities. Each joint stops when it has
reached its limit or when a link that follows it in the kinematic
chain contacts an object or another finger link.

2.1.3 The robot library
The ability to easily add new robot designs is a key benefit of
our system. It is a relatively simple process of specifying the
parameters required by the configuration file, creating the link
geometry files, and in most cases takes less than an hour or
two to set up. We have already created models of a parallel jaw
gripper, a Puma 560 arm, and a simplified Nomadics
XR4000 mobile robot. Additionally, through collaboration
with other research sites we have obtained CAD models and
kinematic descriptions of four different articulated hand
designs (Plate 1).
Another feature of GraspIt! is the ability to attach multiple

robots to create robotic platforms. The system allows the
definition of a tree of robots where any number of robots can
be attached to the last link of a kinematic chain of another
robot. This allows us to construct more complex
manipulation systems, and together with a world model
specifying the robot’s environment, we can plan and test our
entire grasping task so that we can avoid planning grasps that
will conflict with these obstacles.
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2.2 User interface

One of the design goals we believe we achieved was to make
the user interface as intuitive and transparent as possible.
When a user starts a new session, he is presented with an
empty world into which he can import new obstacles,
graspable bodies, or robots, and at any point the current state
of the world can be saved to be loaded again later in another
session. The primary element of the main window is a
standard viewer, which displays a projection of a 3D world in
a 2D window. The virtual camera can be rotated, panned, or
zoomed, and a seek tool allows close up inspection of a
particular detail in the scene.
When the dynamics are not being used, obstacles, graspable

bodies, and robots may be translated and rotated in 3D using
an appropriate manipulator that appears upon clicking on the
object. Manipulating the individual degrees of freedom of a
robot is equally intuitive. Clicking on a kinematic chain of the
robot brings up an interactive manipulator for each actively
controllable joint in the chain. Revolute joints are controlled
by dragging a disc whose axis of rotation is coincident with the
joint axis (Figure 1), and prismatic joints are controlled by
dragging an arrow which is aligned with the joint axis. These
manipulators obey the joint limits defined in the robot
configuration file and prevent the user from moving beyond
them.
Another important feature is the ability to interact with

portions of GraspIt! through MATLAB. The system can be

run as a server that accepts TCP socket connections, and then
in MATLAB, compiled MEX functions are used to
communicate with the server to set robot motor torques,
step the dynamic simulation by one time step, and retrieve the
state of the world including all of the contact forces and the
current position and velocity of each body. This allows
external MATLAB functions to control the simulation.

2.3 Contacts

To prevent bodies from passing through each other while they
are being manipulated by the user, the system performs real-
time collision detection using the Proximity Query Package
(Larsen et al., 1999). If a collision is detected, the motion of
the bodies must be reversed back to the point when the
contact first occurs. To find this instant, GraspIt! performs a
binary search that ends when the bodies are separated by a
distance that is less than the contact threshold (currently set
at 0.1mm). Then the system determines the convex regions of
contact between the two bodies and draws a red friction cone
at each contact point, which serves to visually mark the
position of the contact and its normal. The width of this cone
identifies how large any frictional forces can be with respect to
a force applied along the contact normal.

2.4 Grasp analysis

When GraspIt! is used in the static mode, the fingers of a hand
may be closed around the object without causing it to move,

Plate 1 GraspIt! robot models of (from left to right): a parallel jaw gripper, Barrett hand, DLR hand, NASA Robonaut hand, Rutgers hand, and Puma
560 arm

Figure 1 User interface
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and every time a contact is formed or broken the system
evaluates the current grasp. This evaluation is done using one
or more quality metrics. The current metrics evaluate the
ability of the grasp to resist disturbance forces, but future
metrics will evaluate object manipulability and the grasp’s
robustness with respect to errors in contact placement.
To evaluate a grasp’s efficiency against disturbances, the

system builds the 6D grasp wrench space using a convex hull
operation on the set of possible contact wrenches given a unit
strength grasp (Miller and Allen, 1999). The volume of this
space is used as an average case quality measure, since the
larger the space is, the more efficient the grasp is. The point
on the hull boundary that is closest to the origin represents
the grasp’s weakest point (i.e. the wrench that is most difficult
for the grasp to apply). The distance to this point is used as a
worst case quality measure.
These numeric results allow an objective comparison

between grasps, but in some cases it is desirable to visualize
more of the grasp’s characteristics. To support this, the system
can produce arbitrary 3D projections of the grasp wrench
space which give a better sense of a particular grasp’s
strengths and weaknesses. It can also display the worst case
disturbance wrench, which is the force-torque combination
that is most difficult for the grasp to resist. Figure 1 shows an
example of these results, and demonstrates why parallel jaw
grippers are not good at grasping round objects. Because the
fiat plates only contact the mug surface in two places, the
grasp cannot easily resist a torque about the axis between
those two contact regions, as shown by the purple worst case
disturbance wrench indicator.

2.5 Simulating dynamics

The system allows the user to form grasps of an object and
analyze these grasps without using dynamics. To study the
evolution of a grasp and to test grasping control algorithms,
however, we must consider how the hand and object move
over time under the influence of controlled motor forces,
gravity, inertial forces, and in response to collisions. To
compute the motion of each dynamic body in the world, we
use a numerical integration scheme that computes the change
in velocity of each body over a small finite time step given a set
of external forces acting on the body and any joint constraints,
non-interpenetration constraints, and friction constraints that
may also be present. These constraints are linearized and
formulated as a linear complementarity problem (LCP)
(Anitescu and Potra, 1997), that is solved using Lemke’s
algorithm (Cottle et al., 1992) a pivoting method similar to
the simplex algorithm for linear programming. The solution
provides not only the new velocity of the bodies, but also the
normal and frictional impulses at the contact points. After
each iteration of the dynamics is completed, the system can
draw the contact forces at each contact point, and at any time
the dynamics may be paused to examine the state of the
system or to change the current simulation parameters.
With the dynamics in place, it is possible to study the

temporal formation of grasps. In the example presented in
Figure 2, the Barrett hand is positioned above a wine glass
which rests on its side on the table. The PD joint controllers
of the Puma robot hold the wrist in place, and the desired
final position of the hand joints is set to fully closed. The
figure shows the initial setup and 5 different time slices during
the simulation. The default time step is 2.5ms, but smaller
steps may occur due to contact events. Because there is very

little friction between the plastic and glass surfaces, and
because the glass is tapered, the hand squeezes the glass out of
its grasp. As the simulation continues, the wine glass slides
and rolls off the table, hitting the Puma robot on its way down
to the floor.

3. Applications

GraspIt! has become a platform that supports research in a
variety of areas related to grasping. With its integrated grasp
analysis methods, we have applied it to the problem of
planning high quality grasps of objects. Below we describe two
different systems we have built with GraspIt! that approach
this challenging problem in different ways. Finally, we present
some of our most recent work in creating a biomechanically
realistic human hand model that will not only help clinicians
better understand the mechanics of the hand and plan
reconstructive surgeries, but will also help robotic hand
designers build hands that come closer to matching the
capabilities of our own hands.

3.1 Grasp planning

The grasp planning problem is extremely difficult because of
the number of degrees of freedom of a robotic hand. For
example, the relatively simple Barrett hand has ten degrees of
freedom, six for orientation relative to the object, and four for
longer manipulation. This number of DOFs creates a large
search space of hand configurations. Of course, large portions
of this space are worthless because the fingers are not in
contact with the object, but even if the problem were
reparameterized, a brute force search would still be
intractable.
A variety of other approaches have been used to tackle this

problem. A number of papers present contact-level grasp
synthesis algorithms (Ding et al., 2000; Mirtich and Canny,
1994; Ponce et al., 1993). These algorithms are concerned
only with finding a fixed number of contact locations without
regard to hand geometry. Other systems built for use with a
particular hand restrict the problem to choosing precision
fingertip grasps, where there is only one contact per finger
(Borst et al., 1999; Hester et al., 1999). These types of grasps
are good for manipulating an object, but are not necessarily
the most stable grasps because they do not use inner finger
surfaces or the palm.
One way of limiting the large number of possible hand

configurations is to use grasp preshapes. Before grasping an
object, humans unconsciously simplify the task to selecting
one of only a few different prehensile postures appropriate for
the object and for the task to be performed. These postures
have been enumerated in various grasp taxonomies (Napier,
1956).
Our first planner takes advantage of this fact, in order to

reduce the search space size to a small number of grasps that
are more likely to have a high quality. The system consists of
two parts, one to generate a set of starting grasp locations
based on a simplified object model, and one to test the
feasibility and evaluate the quality of these grasps. The
simplified object model is constructed from a small set of
shape primitives such as spheres, cylinders, cones and boxes,
and heuristic grasping strategies for these shapes allow the
system to generate a set of grasp possibilities. The grasp tester
moves the hand from a grasp starting position toward the
object, closes the fingers around the object, and evaluates the
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grasp. After testing all of the generated grasp possibilities, the
user is presented with the best grasps of the object in
descending order of quality (Plate 2). In order to prevent
infeasible grasps from being planned, the user may import a
world model containing obstacles, as well as a robot arm
model so that reachability constraints may be considered
(Plate 3).
The drawback of this approach is that since it only

considers a subset of the possible grasps, it may miss a better
possibility. Humans may initially choose a sub-optimal grasp
of a novel object, but with experience they will adapt their
grasp to the most appropriate one for the task. Our most
recent planning system applies new machine learning
techniques to this problem to effectively have robots learn
how to grasp arbitrary objects.
We are using supervised training to learn what is a good

grasp for a robotic hand. This requires a method that allows
us to try a large number of grasps of an object and report a
metric on the quality of each grasp in the training set, and
GraspIt! is perfectly suited for this. Using this training set, we

can then generate basis functions that can effectively both
predict the quality of an arbitrary new set of grasping
parameters and also use these basis functions to find an
optimal set of grasping parameters for an object. These
parameters correspond to the degrees of freedom of an actual
hand, rather than the placement of point contacts on the
object surface. It is also important to note that our method is
not dependent on a single type of robotic hand or class of
objects. It provides a robust system for testing different
robotic hands and analyzing the quality space that they span.
For our tests we again used the Barrett hand, and the

objects in our training set were nine different superellipsoids,
which can be described with two shape parameters, 11 and 12.
For each superellipsoid we generated 1,600 grasps, which
consisted of 100 random roll and spread angle combinations
for each of 16 regularly sampled grasp starting positions, as
shown in the left portion of Figure 3. This gave us a total of
14,400 grasps, which were evaluated by GraspIt! over the
course of approximately 4 h on a Pentium IV 2.3GHz
Windows machine.

Figure 2 The Barrett hand attempts a grasp of the wine glass, but due the low degree of friction at the contacts and the taper of the glass, the glass
is squeezed out of the grasp

Plate 2 The first image shows the primitive model used for planning grasps for the coffee mug and shows the generated set of grasp positions to be
tested. The other images show three of the best grasps of the mug in descending quality order
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We then used an SVM regression to create a mapping
between object shape, grasp parameters and grasp quality.
Our learned regression mapping accepts a fixed length input
vector that contains the shape and grasping parameters and
returns a single scalar which estimates the grasp quality. If
only provided with a subset of the input vector (i.e. the shape
parameters), the regression algorithm will perform an efficient
search for the optimal setting of the missing input vector
values (i.e. the grasp parameters) that maximize grasp quality.
The middle and right portions of Figure 3 show the results of
these searches for both a shape that was in the training set and
one that was not.
Our initial superquadric models are clearly not able to

model the full range of possible objects to be grasped, so our
next task is to extend this technique to more complex shapes,
which could be composite models composed of multiple
superquadric shapes. Possible methods for solving this

multi-superquadric grasping problem are discussed in
Pelossof et al. (2004).

3.2 Modeling the human hand

There is an inherent mismatch between the mechanical design
and capabilities of robotic hands versus human hands. Why is
this so? Robotics-based models of the human hand use
idealized simple joints, torque motors and finger-pad
elements. It has been shown that these simplifications do
not suffice to create a realistic model of the thumb because
they do not replicate the complex functional interactions
among bones, ligaments and muscles (Valero-Cuevas et al.,
2003). If we truly desire to create hand-like functions in a
robot, we need to learn from a working system such as the
human hand.
Our current efforts are focused on constructing a

biomechanically realistic human hand model that would
allow us to determine what features of the human hand are
the most important to be mimicked when designing a robotic
hand. These beneficial features will be identified by creating
several versions of the human hand model, each with different
sets of features, and analyzing the ability of each hand to
perform a set of grasping and manipulation tasks. These
iterative refinements begin with developing a hand model,
with rigid bodies modeling the geometry of the digits, that has
a simplified version of the actual human kinematics. This will
then be compared to a version of the hand that has links that
deform in a manner similar to the fleshy portions of the
human hand to evaluate how compliant surfaces aid stable
grasping. Another version of the hand will have realistic
human joints to determine the benefits of a compliant
kinematic structure, and a fourth version will incorporate the
network of tendons to determine what are the advantages, if
any, of indirect actuation of the joints. Our simulation system
will provide an arena for these comparisons, because of its
ability to simulate dynamic grasping tasks and evaluate the
completed grasps with a variety of quality metrics.
As a first step, we have created a human hand model that

uses accurate kinematic parameters for the joint axes of the
thumb. A high quality polygonal model of the skin’s surface
was obtained from the program Poser, which is used for
animating 3D characters. For each of the fingers we use three

Figure 3 Grasps in the training set

Plate 3 The best planned grasp of the mug in the presence of obstacles
and using the reachability constraints of the Puma arm
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parallel flexion-extension (FE) joint axes and one abduction-
adduction (AA) joint axis that intersects the first FE axis at a
right angle. Initially, we used similar intersecting axes for the
joints of the thumb (three FE axes and two orthogonal AA
axes). However, while this simple orthogonal model has been
considered in the past, such a model does not accurately
predict maximal static thumbtip forces (Valero-Cuevas et al.,
2003).
Through the use of Markov Chain Monte Carlo simulations

(Gilks et al., 1996) and the virtual five-link thumb model
(Giurintano et al., 1995) we have arrived at a set of kinematic
parameters that can best fit, in a least squares sense,
experimental thumbtip forces and electromyography data
(Santos and Valero-Cuevas, 2004). The difference in these
two sets of joint axes can be seen in Figure 4.
Since these models rely on ideal revolute joints, they will

not be able to truly mimic all of the possible motions of the
digits. This limitation can be seen in Figure 5, where the hand
grasps a mug. Initially the side of the thumb is in contact with
the mug, but in a real grasp, the thumb would twist passively
as pressure is increased at the contact. The current kinematic
model prevents this from happening in simulation. What is
needed is a model to predict the kinematics of a joint as a
function of the shape of the bone articular surfaces in contact,
the geometry and material properties of the ligaments and the
applied load.
In addition, as the pressure increases at a contact, the finger

surface deforms and begins to approach the local shape of the

grasped object at the contact point. This results in an
expanded contact area that reduces shear stresses for a given
fingertip force and or torque magnitude, improves tactile
information about the contact, and increases the safety
margin to microslips, thus improving the stability of the grasp.
Currently in GraspIt! all of the links are considered individual
rigid bodies; however, we are beginning to develop a
physically-based deformable finger model to predict the
geometric change in the contact regions and accurately
compute contact forces between nonrigid bodies during
grasping. We are investigating the use of adaptive refinement
finite element methods (Grinspun et al., 2002) to compute
the skin deformations in both contact and joint movement
situations, and we plan to use an accurate model of the
skeletal structure to constrain the positions of the innermost
elements, which contact the bone. CT and MRI scans
currently being collected will provide the necessary geometric
detail to model the bones and soft tissue of the hand. We will
also use published experimentally derived models of
viscoelastic properties of the finger pads to accurately
simulate these deformations (Pawluk and Howe, 1999;
Serina et al., 1998).
Finally, we are interested in modeling the indirect actuation

of the tendon networks within each finger. Using an existing
computer-controlled system for actuating multiple muscles in
cadaveric hands (Plate 4), we can measure finger forces and
torques or movement for given input tendon forces or
excursions. Then with this data we will use model-based
estimation techniques Bar-Shalom et al., 2001 to determine
the statistically best suited representation of the finger
extensor mechanism (Figure 6). This will involve estimating
the number and location of the connections (i.e. points of
bifurcation or confluence) among the tendons.
We have used an idealized extensor mechanism description

dating from the 17th century (Figure 7(a)) and have
simulated its behavior as a 3D floating net. The distribution
of tension among the different branches depends on their
geometric configuration (Valero-Cuevas et al., 1998) which is
known to change with finger posture (Garcia-Elias et al.,
1991a) (Figure 7(b)). In contrast, previous descriptions of the
extensor mechanism assumed a fixed distribution of tension
among its elements. More recently, other studies have used
this floating net approach to study finger movement (Sancho-
Bru et al., 2001) and thumb force production (Valero-Cuevas
et al., 2003). However, these models of the extensor

Figure 4 The difference in two set of joint axes

Figure 5 The thumb contacts the mug on its ulnar side, but because of
the constraints of using idealized joints, it will not twist and make
contact with the thumbtip pad as pressure is increased at the contact

Plate 4 A computer-controlled system to deliver known tensions and
displacements to cadaveric hands (Pearlman et al., 2004; Valero-Cuevas
et al., 2000)
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mechanisms are not entirely validated for all finger postures
(as would be desirable for a general-purpose model of the
hand), nor is there a mechanics-based description of the
extensor mechanism that can be efficiently encoded to be part
of a computer simulator of the human hand.

4. Conclusion

We have presented a versatile simulation system that can aid
grasping research by facilitating the testing of grasp planning
and grasping control algorithms without the need for costly
robotic hands. Of course, if one has a manipulation system,
this software can be used effectively as a planning
environment to devise a grasping strategy for that hand
(Kragić et al., 2001). Synthesizing appropriate grasps for a
given task is not a trivial problem, however, given the large
number of possibilities, and we have demonstrated two
different grasp planning systems that are inspired by the way
humans approach the problem. The first attempts to limit this

search space by using taxonomies of prehensile grasping
postures and rules on how to choose appropriate postures for
given primitive shapes within the object model, and the
second attempts to learn the relationship between grasp
quality and the combination of object shape and grasping
parameters.
GraspIt! can also be used to evaluate new robotic hand

designs. Simulation is often used in the design of many other
mechanical devices because it allows a designer to investigate
how changes to various parameters affect the performance of
the device without the need to build time-consuming and
costly prototypes. Many current robotic hand designs attempt
to emulate the human hand because of its proven
manipulation capabilities (Wilkinson et al., 2003). Still
however, we do not fully understand all the intricacies of
this complex biological mechanism, nor do we have a clear
sense of which elements are most instrumental in making the
hand such an effective manipulator. Thus we have embarked
on a project to create a simulated biomechanical model of the
human hand that we hope will give us insight into how to
build a better robotic hand.

Note

1 The source code for GraspIt! is available for download
from http://www.cs.columbia.edu/~amiller/graspit
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