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Abstract— In reinforcement learning (RL), sparse rewards
are a natural way to specify the task to be learned. However,
most RL algorithms struggle to learn in this setting since the
learning signal is mostly zeros. In contrast, humans are good
at assessing and predicting the future consequences of actions
and can serve as good reward/policy shapers to accelerate the
robot learning process. Previous works have shown that the
human brain generates an error-related signal, measurable us-
ing electroencephelography (EEG), when the human perceives
the task being done erroneously. In this work, we propose a
method that uses evaluative feedback obtained from human
brain signals measured via scalp EEG to accelerate RL for
robotic agents in sparse reward settings. As the robot learns
the task, the EEG of a human observer watching the robot
attempts is recorded and decoded into noisy error feedback
signal. From this feedback, we use supervised learning to obtain
a policy that subsequently augments the behavior policy and
guides exploration in the early stages of RL. This bootstraps
the RL learning process to enable learning from sparse reward.
Using a simple robotic navigation task as a test bed, we show
that our method achieves a stable obstacle-avoidance policy with
high success rate, outperforming learning from sparse rewards
only that struggles to achieve obstacle avoidance behavior or
fails to advance to the goal.

I. INTRODUCTION

Reinforcement Learning (RL) remains one of the most
popular learning approaches because of its simplicity and
similarity to how humans learn from reward signals. Also, it
achieves superior performance on a number of robotic tasks.
However, RL requires defining a good reward function that
captures the task to be learned, and deriving an appropriate
reward function remains a challenge. The sparse reward is
a natural way to specify a task; here the agent receives a
positive feedback only when the task has been accomplished
and nothing otherwise. This sparse reward formulation is
easy to set up, and when it works, it is unlikely to produce
unusual artifact behavior due to local optima. A drawback
is that it provides poor learning signals especially when the
task horizon is long. Since RL learns by trial and error, the
chances that the agent would accidentally achieve the task’s
goal is very small in the sparse reward setting. This makes
RL from sparse rewards very challenging or sometimes
impossible. A few methods have been devised to address this
problem. For example, reward shaping is a common approach
of designing rich reward functions that can better guide
the learning process[1][2]. Reward function design can be
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Fig. 1: Navigation Task. The robot agent, given its current ori-
entation, its goal location and an ability to sense its environment
with laser scans (indicated by the 10 light cyan rays), learns to
navigate to a goal (blue) without colliding with obstacles. In the
sparse reward RL setting, the agent is unable to avoid obstacles and
reach the goal. A third-person view (Top) is shown to the subjects
during training and our method of using human EEG as evaluative
feedback to accelerate the early learning phase enables the agent to
learn this navigation task.

a laborious iterative process requiring expert knowledge and
some art. Alternatively, non-expert demonstrations can be
used to initialize and augment the learning process [3][4][5].
This is a simple and effective method. However, it requires
that the task is first demonstrated by a human, which is not
always possible.

Another class of methods has humans providing feedback
to the agent as it learns. Learning from human feedback is
an increasingly popular approach to teaching robots different
skills [6][7][8][9]. One reason is that this approach resembles
how humans learn from instructor feedback, as in a school
setting. Another reason is that learning from feedback fits
into the reinforcement learning paradigm where the feedback
signal can be used as the reward signal. It can also be used in
the supervised learning setting where actions are classified as
good or bad at a given state; the agent learns to take actions
classified as good. Since humans tend to have a general idea
of how certain tasks should be done, and are quite good at
predicting the future consequences of actions, feedback from
human experts provides a natural and useful signal to train
artificial agents such as robots. In this work, we adopt the



learning from feedback approach, where the feedback is the
error signal detected from the brain of a human watching the
agent learn. Previous work in neuroscience has shown that a
distinctive error signal such as error-related potential (ErrP)
occurs in the human brain when the human observes an error
during a task [10]. We exploit this ability of a human expert
to pick out erroneous actions committed by an apprentice
robot during training.

Learning directly from human brain activity is appealing
for a number of reasons. It presents a convenient way to
transfer human knowledge of the tasks into an artificial
agent, even when it is difficult to provide precise, explicit
instructions. For tasks that can be easily assessed by a human,
evaluative feedback is detected with little latency since the
human does not need to react by pressing a button or other
input, thus providing a temporally-local credit assignment.
However, there are a few problems that need to be addressed:
detecting ErrP signals with sufficient accuracy to be useful
during the early stages of learning, keeping the user engaged
during observations, and reducing the amount of human
feedback needed for the learning process.

In this work, we examine key issues around learning
from human brain signals and seek answers to a number
of questions, including the following:
• How can artificial agents learn directly from human

physiological signals, such as brain signals?
• What is a good way to combine learning from human

brain signals with task-success sparse reward signals?
• How does the learning performance change with the

error signal detection accuracy?
To answer these questions, we first simulate the ErrP-based

feedback signals using a noisy oracle. This oracle detects
whether an agent’s action was the optimal action and gives
the feedback accordingly. Using different oracle accuracy
levels, we are able to do extensive analysis on the behaviour
of different task learning algorithms. Ultimately, we monitor
their performance when the accuracy of the oracle feedback
is set at a level that matches that of the human brain
signal classifier. Based on the extensive simulated analysis,
we obtain a robust algorithm that can learn from noisy
human feedback such as human brain signals. Second, we
demonstrate this in physical experiments where EEG signals
from human subjects are used to improve an agent’s learning
of a navigation task in a sparse reward setting (see fig.1). On
multiple navigation tasks, our Brain-Guided RL outperforms
learning from baselines using sparse or rich rewards. It also
shows robustness to low ErrP detection accuracy.

II. BACKGROUND AND RELATED WORK

A. Reinforcement Learning

Reinforcement learning (RL) is an area of machine learn-
ing concerned with how agents act to maximize cumulative
reward from the environment. The reward captures the objec-
tive of the task such that the cumulative reward is maximized
when the task is achieved. Mathematically, an RL problem
can be formulated as a Markov Decision Process (MDP)

that consists of a set of states S, a set of actions A, a
transition function T : S ×A→ ∆S, and a reward function
R : S × A → ∆R. A policy π : S → A is learned to
maximize the cumulative reward

∑∞
t=0 γ

tR(st, at), where
0 ≤ γ ≤ 1 is the discount factor. The reward function can
be discontinuous with sparse rewards given at milestones
or it can be complex and continuous to capture progress
toward the goal. Specifying a good reward function is key to
defining an RL problem. This generally entails using domain
knowledge to define a function that captures progress on the
tasks in terms of the state and action spaces. Such informative
reward functions can be complicated and difficult to realize,
requiring a laborious iterative process.

B. Learning from Feedback

An alternative approach to defining the reward function is
getting feedback from an expert who evaluates the action (or
sequence of actions) taken by the agent during an episode
and provides a score. This score can serve as the reward in
the RL framework. Previous works used different interfaces
to collect humans feedback. Some collect binary feedback
via mouse clicks [8][11] or a more graduated feedback
[11] via sliders. Others utilize facial expressions [12], and
finger pointing [13] among others. In our work, we obtain
the feedback information directly from the human brain.
[14] demonstrated that brain signals can be used to learn
control policies for navigating in one- and two- dimensional
environments; these discrete state spaces are relatively small,
with a total of 8 and 13 distinct locations respectively. The
size is the constrained because expert labels are expensive
to obtain. In our work, we present a way to analyze the
learning behavior in larger state spaces and how it varies
with the error rate of the feedback.

C. The ErrP

Previous works have covered a few types of ErrP, includ-
ing the Response, Observation, Feedback, and Interaction
ErrPs [15]. The response ErrP occurs when a subject makes
an error while responding to a stimulus within a short amount
of time; the observation ErrP occurs when observing another
agent make a mistake; the feedback ErrP occurs when a
subject receive a negative assessment of the subject’s action;
and the interaction ErrP occurs when the subject senses a
mismatch between the subject’s command and the interface’s
response. While the paradigms are different, similar signal
processing and machine learning techniques are used to
detect the different types of ErrP. In this work, we are
interested in the observation ErrP as evaluative feedback to
robot agents during learning.

To calibrate such a detector, the EEG signals of human
subjects are recorded and time-locked to error onsets. These
signals then go through several pre-processing steps that
include filtering, artifact removal, and subsampling. A clas-
sifier is then trained on the processed signal to differentiate
brain activity when an error is being observed. The classi-
fication performance reported in the literature ranges from
slightly above chance to 0.8 [16] [17]. A recent work [16]



Fig. 2: Brain-Guided RL in three stages. Left: The ErrP calibration stage where a function is learned to detect error potential from
human brain signal. Middle: A human observer watches an agent learn a task and evaluative feedback is tapped from the human brain
and provided to the agent. A policy πHF is learned to choose actions that avoid negative human feedback. Right: The RL agent learns
from sparse rewards but the behavior policy during the learning process is a blend of the RL policy (πRL) and the human feedback policy
(πHF). πHF (learned in stage two) helps guide the exploration so that the agent sees more positive rewards required for RL learning.

examined brain activities during robot-error observations,
and their findings indicated relatively low decoding accu-
racies of observation ErrPs compared to other ErrP types.
They concluded that further improvements in non-invasive
recording and analysis techniques are necessary for practical
applications. In this work, we develop a method to utilize the
observation ErrP as a complement to learning from sparse
rewards despite the low ErrP decoding accuracy.

D. Brain-Computer Interface (BCI) Robot Learning

BCI has been used in robotics to issue commands that
directly control robots [18][19][20][21], correct robot mis-
takes [22], and guide the robot to goals inferred from the
brain signals [23]. In these works, the brain error signals
prompt the robots to change the current course of action, but
they do not result in an autonomous skill that persists when
the human is no longer observing. Recent work [24] has used
similar ErrPs as reward signals for teaching a behavior to the
robot so the robot can autonomously achieve the task after
training. Our work differs from these existing works in that:
• we address the well-known issue of the rarity for the

sparse rewards setting by leveraging noisy human brain
signals to guide exploration and accelerate the early
stage of learning.

• we do not require that the human subject be involved in
the entire training cycle. Human feedback is expensive
to obtain and our method shows that only limited human
feedback may be needed.

• we retain the ability to do reinforcement learning via
easily specifiable sparse reward signals and achieve
good-quality asymptotic performance on the task.

• our formulation ensures that the learning process is not
limited by the low signal-to-noise ratio of BCI signals.

• we demonstrate the applicability of our algorithm to
realistic autonomous mobile navigation– an important
research area in robotics.

III. METHOD

Our Brain-Guided RL algorithm works in three stages (See
Figure 2): train a classifier on EEG signals to detect occur-
rences of human-perceived error, learn a Human Feedback
(HF) policy using the trained EEG classifier, and learn the

final RL policy from sparse rewards as the HF policy guides
RL exploration. In the first stage, we collect EEG signals, the
robot actions and corresponding ground truth correct actions.
We infer the human feedback label to be an error whenever
the robot action does not match ground truth. For example, if
the robot turned left but the correct action is to turn right, we
assign an error label to that move. The recorded brain signals
and the feedback labels are used to train the EEG classifier
offline to detect ErrPs. For the second stage, a human subject
watches the robot agent take actions on the target task and
concurrently we apply the trained classifier on the brain
signals to detect the human’s feedback online. Based on this
feedback, a supervised learning model is trained online to
predict the probability that an action gets a positive feedback.
The robot’s policy is continuously updated by maximizing
this success probability across possible actions – we refer to
this as the HF policy. Lastly, an agent is trained on the same
task with RL from sparse rewards, guided by the HF policy
to improve exploration.

A. EEG Classifier Training

To obtain evaluative feedback from the human brain, we
need a function that maps EEG brain signals to ErrP labels
(correct/incorrect) for the observed robot actions. This is
done during a calibration stage where we collect data offline
to train an EEG classifier. In the data collection step, the
human subject watches an agent conducting a random policy
while we simultaneously record EEG signals and the labels
indicating if actions are correct or erroneous. The robot
takes an action every 1.5s so that the brain signals elicited
by each action can be time-locked without interfering with
subsequent actions. This slow speed also enables the human
to assess each action in a way that elicits the strongest brain
signals. We use a navigation task for our analysis; here a
user watches a mobile robot navigate to a target location.
Wrong actions that move the robot away from the target
or into obstacles will elicit responses in the subject’s brain.
Using the Dijkstra search algorithm, we obtain the optimal
action at each step which provides ground-truth labels for
good versus bad actions. A human expert can also provide
these ground truth labels, especially for tasks whose optimal
solutions cannot be easily scripted. In our experiments, the



EEG signals are recorded at 2048 Hz using 64 channels of
the BioSemi EEG Headset and around 600 data points of
robot actions are collected.

After data collection, we preprocess the EEG data and
train the classifier. During preprocessing, the data is band-
pass filtered to 1-40 Hz to remove artificial noise and
resampled to 128 Hz. EEG trials are extracted at [0, 0.8]s
post the agent action. Then, each processed EEG data xi
around a robot action ai is used as input for the classifier
to predict the corresponding label fi. Our classifier, denoted
as g(·; θEEG), is modified from EEGNet [25]1. EEGNet is a
compact network with temporal and depthwise convolutions
to capture frequency-based spatial features. 80% of the data
are used for training, while 12% and 8% are held out for
validation and testing respectively. We optimize the classifier
with the cross-entropy loss LEEG.

θ∗EEG = arg min
θEEG

1

M

M∑
i=1

[LEEG(g(xi; θEEG), fi)] (1)

After training, the classifier g(xt; θ
∗
EEG) maps the EEG

signal xt to human feedback ft as the subject observes the
agent executing an action at, indicating if the action was
erroneous or not. The testing accuracy ranges from 55% to
75%, depending on the subjects, which means large noise
exists in the feedback.

B. Human Feedback Policy

With the EEG classifier from the previous section, we can
tell (from the human brain) if an observed action is correct
or not. Instead of directly using this human feedback as a
reward function for RL as in some previous work [26] [24],
we use it in a supervised learning setting to learn the human
feedback function F for the target task. This target task
may be different from the task used in the EEG calibration
step. The calibration task can be simpler (e.g navigation
in a smaller room) where human feedback as ground truth
labels is less expensive to collect. Formally, when the agent
executes the action at at the state st, the human observes and
judges whether at is the optimal action captured by F (st, at).
Using the classified brain signal ft as noisy labels, we learn
an approximation of F which we denote as F̂ and construct
an HF policy from it given as:

πHF(s) = arg max
a

F̂ (s, a) (2)

Learning F̂ is exactly supervised learning: the input is
the agent experience (st, at) and the label is the human
feedback ft. F̂ can be any function approximator; we use
a fully-connected neural network in this work. This function
is learned in an online fashion; F̂ is continually updated with
data as the robot acts based on the πHF. The challenges here
are: the limited amount of human feedback (1000 labels)
and the inconsistent label ft due to the noise from the
EEG classifier. To mitigate this, we adopt three strategies:

1For convolution layers of the EEGNet, we change to valid padding and
reduce the number of filters (F1 = 4, D = 2, F2 = 4) to alleviate
overfitting.

(1) reduce the number of parameters by choosing low-
dimensional continuous state and action spaces (2) design
a light network architecture (3) use a feedback replay buffer.
We use a fully-connected network with 1 hidden layer of
16 units and one output node for each action. The predicted
optimality for a state-action pair, F̂ (st, at), is obtained by
passing st as input to the network and select the output node
corresponding to at. During training, we use the cross en-
tropy loss and only backpropagate through the single output
node for the observed action. We keep 20% of feedback as
validation data to confirm that there is no clear overfitting.
To learn the parameters quickly, the network is updated at
a faster rate than the rate of human feedback by reusing
feedback labels. We adopt a feedback replay buffer which is
a priority queue that stores all agent experiences (st, at) and
the corresponding human feedback ft; newer experiences are
of greater importance. Batches of data are continually pulled
from the replay buffer to optimize the network F̂ .

At the end of the session, the policy πHF has a general
notion of which actions are good/bad and how to perform
the task. Although imperfect classification of noisy EEG
signals limits the performance of πHF, it still provides better
exploration when doing RL in a sparse reward setting.

C. Efficient Sparse-Reward RL with Guided Exploration

The final stage is to enable the RL agent to learn efficiently
in an environment with sparse rewards. The challenge here
is that random exploration is unlikely to stumble on positive
rewards that aids learning. To address this, we use πHF as
the initial behavior policy during RL learning. Even though
πHF may be far from perfect, this guides the exploration
towards the goal and increase the chances of getting positive
rewards. As learning proceeds, we reduce the use of πHF and
increasingly use the learned RL policy as the behavior policy.
Eventually, the agent is able to learn the task as specified by
the sparse reward function. Our full algorthim for Brain-
Guided RL is given in Algorithm 1.

Implementation-wise, we can choose any off-policy Deep
RL algorithm as the RL policy. Our method is even robust to
on-policy Deep RL algorithms like PPO [27] which we adopt
as the RL policy for the experiments. At the beginning of
each episode, there is an εHF chance to use the HF policy for
this episode. εHF linearly decays from εHF, init to 0 in the first
ttrans time steps. After the RL policy learns the environment
setting in the transition stage, the training is fully on-policy.
The RL policy refines itself, gets beyond the suboptimal HF
policy, and learns the optimal behavior.

IV. EXPERIMENTS

We use robot navigation tasks as the test-bed for our algo-
rithm. The tasks are implemented in the Gibson simulation
environment [28] as shown in Fig 1. The Gibson environment
is a high-fidelity simulation engine created from real world
data of 1400 floor spaces from 572 full buildings. It models
real-world’s semantic complexity and enforces constraints
of physics and space; it can detect collision and respects
non-interpenetrability of rigid body, making it suitable for



simulating navigation tasks in a realistic way. We use a
11 × 12m2 area with multiple obstacles, and choose the
Husky robot for our tasks. The goal location is represented
by the blue square pillar. In all navigation tasks, the position
of the goal is fixed, since it is very challenging to learn a
HF policy for a variable goal task within the limited amount
of feedback (1000 labels).

Algorithm 1: Brain-Guided RL

Data: offline EEG signals x1:M and labels f1:M , HF
policy update epoch number KHF, RL policy
update epoch number KRL

Train the EEG classifier.

θ∗EEG = arg min
θEEG

1

M

M∑
i=1

[LEEG(g(xi; θEEG), fi)].

Train the HF policy.
B = [] # initialize the feedback replay buffer.
for t = 1, 2, . . . , tHF do

observe state st.
execute action at = πHF(st).
receive human feedback by classifying EEG signal
ft = g(xt; θ

∗
EEG).

update F̂ using SGD with ((st, at), ft).
update F̂ using SGD KHF epochs with minibatches
sampled from B.

append ((st, at), ft) to B.
end
Train the RL policy.
for episode i = 1, 2, . . . do

εHF = max(0, εHF,init · (1− i·T
ttrans

)).
π = πHF with chance εHF, otherwise π = πRL.
run policy π for T timesteps.
optimize LPPO using SGD KRL epochs with
minibatches sampled from the episode.

end

The state space is chosen as st = (lt, dt, φt) ∈ R13 where
lt ∈ R10 is laser range observations evenly spaced between
−90◦ and 90◦ relative to the robot’s frame, dt ∈ R2 is
displacement to the goal in global polar coordinates, and φt
is the yaw of the robot. The action space A is discretized,
as it is easier for the human subject to identify the actions
and judge its optimality. We consider three actions: moving
forward 0.3m, turning 30◦ left and turning 30◦ right.

The task is to navigate from a start location to the goal
without colliding with obstacles. This task can be captured
by the sparse reward function RL sparse given as:

rsparse(st, at) =


+100, if reaches the goal
−100, if collides with obstacles
−1, otherwise

Alternatively, we can design a richer, more-expressive reward
function RL rich as:

rrich(st, at) = rsparse(st, at) + cd · dt + cθ · θt
where dt is the euclidean distance from the goal, θt is the

Fig. 3: Simulated Feedback Results. Left: Same Start Same Goal
(SSSG), Right: Variable Start Same Goal (VSSG). Using the
SPL metric in both cases, we compare the performance of our
method (HF+Sparse-RL) at varying feedback accuracy (Green:
70%, Orange: 60%, Blue: 55%) with RL-sparse (Purple) and RL-
rich (Red). The plots show the mean and 1/2 of the standard
deviation over 10 different runs. The horizontal lines represent the
average performance of the learned HF policy at the corresponding
feedback accuracy. When the feedback accuracy is ≥ 60%, feed-
back signals can be used to effectively accelerate reinforcement
learning in sparse reward settings comparable to learning from a
rich reward function. Without guidance for feedback policy, learning
from sparse reward is unable to learn.

difference between the current orientation and the orientation
to the goal, cd = −1.0 and cθ = −0.3 are hyperparameters.
This rich reward motivates the robot to get closer to and face
the goal, leading to more efficient exploration and learning.
In the environment, we check if the agent reaches the goal
through distance threshold checking (0.5m). Reaching the
goal or colliding with obstacles will end the episode.

V. RESULTS

In this section we evaluate our proposed algorithm on
two variants of the navigation tasks: Same Start Same Goal
(SSSG) and Variable Start Same Goal (VSSG). For VSSG,
the robot’s starting location is uniformly chosen within a
0.2m × 0.2m area. The optimal path takes 17 - 19 steps,
while an episode is ended after 120 steps. Beyond the scope
of this work, this formulation can be extended to start the
robot at any location by further expanding the starting square
using curriculum learning. To ensure repeatability and enable
extensive analysis, we first use a simulated oracle to provide
noisy feedback on the agent’s actions. Then, we evaluate
the performance of our system with human subjects using
feedback from their EEG signals. For both simulation and
real experiments, we report results comparing RL sparse, RL
rich and HF+Sparse-RL (Ours). To assess the performance of
all three methods, we adopt Success weighted by (normalized
inverse) Path Length [29] (SPL) which captures both success
rate and path optimality. For fair comparison, we use the
same architecture and hyperparameters for the RL part across
all three methods.

A. Learning from Simulated Feedback

In the simulated setting, we vary the accuracy C ∈
{0.55, 0.6, 0.7} of the feedback coming from the simulated
oracle and evaluate how well the HF policy assists the RL
learning with noisy feedback. Figure 3 shows the result and
C = 0.6 matches the typical classification accuracy of the



Fig. 4: Real EEG Feedback Results for 5 Successful Subjects. Our method (Orange) leverages feedback obtained from human brain
signals (ErrPs) to accelerate the RL learning process and achieves superior asymptotic performance. HF policy (πHF) is learned from a
single online session and its performance is shown as the orange horizontal line. Afterwards, πHF guides RL policy learning in 5 different
runs which are averaged out and shown in orange(HF+SparseRL). For subjects (1 & 3) with higher ErrP detection accuracies, we observe
bigger benefits from our method both in performance and learning speed. This is consistent with simulation results.

EEG classifier. Using grid search, we select the value of
εHF,init = 0.8 which decays linearly to 0 after 50% of the
total training steps. For both SSSG and VSSG, note that
the sparse reward struggles to learn the task as it is rare to
randomly stumble on the goal and obtain positive rewards
required for learning. Our method (HF+Sparse-RL) solves
the navigation task by using πHF policy obtained from noisy
brain signals to guide the exploration and helps overcome the
sparsity of the positive reward. The carefully-designed rich
reward is also able to solve the navigation task but there are
tasks where designing a rich reward function is prohibitively
difficult. Our approach alleviates the need for such expert-
level reward design process by combining evaluative human
feedback and an easily specified sparse reward function.

B. Learning from Real Human Feedback

We tested our HF+Sparse-RL method on the VSSG task
with 7 human subjects providing feedback in the form of
EEG signals. First, the subject is trained for 5 minutes to get
familiar with the paradigm and understand how to navigate
the robot to the goal. Then, the subject has a 20-min offline
session to collect data for training the EEG classifier, a 5-min
session to test classifier accuracy, and a 25-min online session
to provide feedback and train the πHF policy. This human
feedback policy is subsequently used to guide the RL similar
to the simulation experiments. Video of the experiments
can be found at http://crlab.cs.columbia.edu/
brain_guided_rl/.

Shown in Figure 4, the πHF policies from 5 subjects,
with ErrP detection accuracy between 0.60 and 0.67, were
able to successfully guide the learning process during RL
from sparse reward. The EEG classifiers obtained for the
other two subjects (accuracy of 0.56 and 0.57) were not
good enough to train a useful πHF policy and thus could
not guide RL learning. Potential reasons include the subject
not being engaged enough by the task to elicit ErrP or
neurophysiological variations [30] across subjects.

VI. DISCUSSION

The experiments on navigation tasks with feedback from
either a simulated oracle and real humans show that Brain-
Guided RL can accelerate RL in sparse reward environments.
Using human feedback directly as reward for RL seems
appealing but it would require the human’s attention for the

entire training time which is typically very long for most
RL algorithms. Rather than directly applying feedback to RL
learning, our Brain-Guided RL approach learns a HF policy
via supervised learning in a relatively short session and then
uses the learned policy to guide the RL agent. This choice
saves a huge amount of expensive human feedback. It is also
robust to low ErrP classification accuracy as a suboptimal HF
policy can still improve RL exploration while allowing pure
RL to achieve optimal performance. Due to the low signal-to-
noise ratio of the EEG device and a limited amount of human
feedback, we were able to demonstrate our approach on a
simple navigation task with little variance in the start/goal
locations. To address this, we could use other approaches
to further increase feedback efficiency; for example active
learning [31][32][33] can be used to determine which labels
to query the user for. We leave this as a part of the future
work. As BCI technology improves to achieve a higher
signal-to-noise ratio, our approach can better scale to harder
tasks. Our proposed method presents a potential for assistive
robots to quickly learn new skills using inputs from humans
with disabilities.

VII. CONCLUSION

This paper introduces Brain-Guided RL, a method to ac-
celerate RL learning in sparse reward settings, by using eval-
uative human feedback extracted from EEG brain signals.
Our approach of first training a HF policy using supervised
learning and then using it to guide RL learning demonstrates
robustness in three important ways. It is robust to inconsistent
feedback as is the case with noisy EEG signals and the
resulting poor classification accuracy. It is also robust to
the low performance of the policy obtained via the noisy
human feedback since it still provides coarse guidance for the
RL learning process. Finally, our approach reduces the the
amount of feedback needed since the subject is not required
to evaluate the robot’s actions throughout the RL training
process. Experiments using both simulated and real human
feedback show that our Brain-Guided RL enables learning
different versions of the navigation task from sparse rewards
with high success rate. Future work includes using active
learning techniques to maximize human feedback during the
learning duration and adapting the proposed method to tasks
with larger/continuous action spaces.

http://crlab.cs.columbia.edu/brain_guided_rl/
http://crlab.cs.columbia.edu/brain_guided_rl/
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