

Abstract— Planning realizable and stable grasps on 3D objects

is crucial for many robotics applications, but grasp planners

often ignore the relative sizes of the robotic hand and the object

being grasped or do not account for physical joint and

positioning limitations. We present a grasp planner that can

consider the full range of parameters of a real hand and an

arbitrary object, including physical and material properties as

well as environmental obstacles and forces, and produce an

output grasp that can be immediately executed. We do this by

decomposing a 3D model into a superquadric ‘decomposition

tree’ which we use to prune the intractably large space of

possible grasps into a subspace that is likely to contain many

good grasps. This subspace can be sampled and evaluated in

GraspIt!, our 3D grasping simulator, to find a set of highly

stable grasps, all of which are physically realizable. We show

grasp results on various models using a Barrett hand.

I. INTRODUCTION

RASPING is something that humans can do with ease

but robots can currently do only under carefully

constrained conditions. Choosing an appropriate grasp for a

given object requires knowledge of the object's geometry as

well as knowledge of the geometry and kinematics of the

robotic hand executing the grasp, but it is hard to analytically

solve for all of these variables at once. Instead, some

researchers [1][2] have embraced the idea that the best way

to find a real world usable grasp for a given hand and object

is to dynamically simulate the hand executing a set of likely

candidate grasps and choose the most successful candidate.

The key advantage of grasp planning via simulation is

the ability to weed out grasps that might seem analytically

promising but would fail if executed in reality, and

conversely to find good grasps that might appear analytically

weak but in fact succeed due to the quirks of the hand

hardware. Simulation based planning also allows additional

variables such as friction, environmental obstacles, or

external forces to be taken into consideration when selecting

a grasp. Unfortunately, the space of grasps with a dexterous

hand is too large to sample in its entirety, making brute-force

simulation of all possible grasps infeasible. In this paper we

show how to prune the search space of candidate grasps via

multilevel decomposition of the target object. Unlike many

other works on grasp planning our method does not attempt

Manuscript received September 15, 2006. This work was supported by

NSF Grant No. IIS-03-12693 and by a National Defense Science and

Engineering Graduate Fellowship.

All authors with Columbia University, NY, NY 10027 USA.

Emails: {coreyg, allen, pelossof, cnl2007} @cs.columbia.edu

to find a set of good grasps analytically. Instead, we attempt

to define a small search space which is likely to contain

many good grasps. The grasps lying in this smaller space can

then be sampled and evaluated in simulation to find stable

output grasps. Our goal is to preserve the significant

advantages of simulation-based grasp selection while

significantly decreasing the number of costly simulations.

The core intuition underlying our approach is that most

objects can be decomposed into component parts and that a

good grasp on part of an object or on several parts at once is

likely to be a good grasp on the entire object. This idea is

sometimes referred to as ‘grasping by parts.’ To find such

grasps we decompose the object into a binary tree with the

initial model at the root and each branch representing the

division of a model into two parts. We note that the smaller a

part is relative to the hand, the less important its detailed

shape is for grasp planning, and so we represent each

component as a superquadric, which is a simple closed

surface described below. Our complete object representation,

which we refer to as a ‘decomposition tree,’ is a multilevel

tree of superquadrics created using an automatic

decomposition of the initial model. Although some object

parts might be poorly represented by superquadrics, we will

show how superquadrics can be used not only for modeling

but also to drive decomposition, increasing the likelihood

that the decomposition tree will be useful.

A. Previous Work

The use of superquadrics as an intermediate

representation for a grasp planner is not new in and of itself.

Katsoulas and Jaklic used individual superquadrics to model

deformable sacks to be picked up by a vacuum gripper [3],

and Salganicoff, Ungar and Bajcsy used active learning to

find good grips for superquadrics in the plane [4]. Our

problem is more general: we use complex models requiring

multiple superquadrics, and we do not restrict position and

orientation in any way. We also wish to plan grasps for

multi-fingered dexterous hands, not just simple grippers.

Boughorbel et al. suggested the use of multiple-superquadric

models for grasping [5], but limited their discussion to a

structured planar environment and did not show how to

obtain a grasp from this primitive representation.

There is a good deal of literature on model-based

analytical grasp planning, and we direct the reader to recent

surveys such as [6] and [7]. Analytical grasping approaches

suffer from the inability of a simplified model to encapsulate

all of the factors that affect grasp quality. It is beyond the

scope of this paper to discuss analytical approaches in any

greater depth. Liu, Lam, and Ding demonstrated how to

Grasp Planning via Decomposition Trees

Corey Goldfeder, Peter K. Allen, Claire Lackner, Raphael Pelossof

G

heuristically find force closed contact points on a discretely

sampled surface [8], an approach superficially similar to

ours, but their method does not account for scale and

assumes only point contacts. Morales, Sanz, del Pobil, and

Fagg demonstrated a vision based grasp planner that

accounts for hand geometry but limited themselves to 2D

grasping [2]. In our own previous work we implemented

simulation-based grasp planning for an arbitrary 3-D mesh

[1][9], making use of hand geometry and fully accounting for

kinematics, scale, environmental obstacles, friction, and

planar or even deformable contacts [10] as opposed to the

more usual point contacts found in much of the grasping

literature. However, our earlier planner required a manually

constructed primitive decomposition of the object. This work

represents significant progress, as we have removed the need

for a manual decomposition, introduced a multilevel

representation that helps us find many good grasps rather

than a single grasp, and broadened the grasp search space by

planning on superquadrics rather than more basic primitives.

II. SUPERQUADRICS

A superquadric [11] is a surface defined as the spherical

product of two Lamé curves. Following the computer vision

convention, we are using the word ‘superquadric’ informally,

as we are only interested in convex superellipsoids, where

the shape parameters are restricted to the domain [0, 2]. An

arbitrary superquadric in space is fully specified by its two

shape parameters ε and η, three scale coefficients, three

Euler angles for orientation, and three Cartesian coordinates

for position. This combination of representational power and

conciseness means that superquadrics are an excellent way of

approximating 3-D volumes for a variety of tasks. For grasp

planning, superquadrics have the advantage of encapsulating

not only the approximate volume of the original object but

also approximate surface normals. Other volumetric

simplifications such as voxels or oriented bounded boxes

capture little or no normal information.

To approximate a 3D object with a superquadric we

sample the object’s surface and produce a point cloud. We

hen use a nonlinear fitting technique such as Levenberg-

Marquardt to find a superquadric whose surface

approximates the point cloud in a least squares sense. This is

hindered somewhat by the fact that there is no known

analytical method to calculate the exact distance between a

superquadric and a point. Instead, we can make use of the

superquadric "inside-outside" function:

1),,(

2

3

2

2

2

1

−

+

+

=

ε

ε

η

ηη

a

z

a

y

a

x
zyxF

which is positive outside the superquadric and negative

inside. This function does not minimize the error of fit

perfectly because it does not vary linearly with distance from

the surface. A somewhat better choice is the distance from a

point to a superquadric along the vector between the point

and the superquadric's centroid. This is known as the radial

Euclidean distance, and we use it in our fitter.

A. Fitting Multiple Superquadrics

While fitting a single superquadric is useful, we want an

automatic way of approximating a model with a number of

superquadrics. There are several published algorithms for

breaking up a complex point set into smaller superquadric-

representable pieces. Jaklic, Leonardis, and Solina

demonstrated a "recover and select" region growing

algorithm for fitting superquadrics to 2.5-D range data

[11][12], which consists of placing a grid of "seed"

superquadrics throughout the point data, growing them all at

once, and selecting the best fits from the results. This

approach works best with regularly spaced range data and

less well with unstructured point clouds. It produces no

topological information or relationships between the final

superquadrics. Chevalier, Jaillet and Baskurt presented a

"split-merge" approach better suited for unstructured clouds

[13]. In the split stage of their algorithm a single

superquadric is fit to the entire point cloud. If the error-of-fit

is above a threshold the point cloud is split along a central

plane orthogonal to the principal axis, and the algorithm is

called recursively on the resultant clouds. In the merge stage

neighboring superquadrics are considered and the neighbors

whose union can be best fit as a single superquadric are

merged, until the total error is below a threshold. This

algorithm produces not only an approximation of the cloud

but also a topologically meaningful decomposition tree

showing which superquadrics were merged. An alternative

method of choosing the splitting plane, taking into account

both the distribution of the fitting error and concavities in the

underlying 3-D data, was proposed by Zha, Hoshide, and

Hasegawa [14] but we found that simple split planes of [13]

resulted in excellent decompositions. An analysis of the time

complexity of decomposition can be found in the Appendix.

B. Decomposition Trees

Although the merge step automatically stops when the

total error of fit crosses a threshold, the final number of

superquadrics is not always optimal for grasp planning.

Small superquadrics that represent individually graspable

features but contribute little to the total error can be

mistakenly merged into larger components. Conversely,

more components beyond a certain point do not significantly

improve grasp planning. To ensure that the tree contains

enough detail for grasping while avoiding unnecessarily fine

decomposition, we force the merge state to terminate at a

predetermined number of superquadrics, which we refer to as

n. These n components form the leaves of our tree. We then

continue merging. Each merge step joins exactly two

superquadrics, and thus the process of merging the n leaf

nodes into a single root node creates a binary tree from the

bottom up, with 2n-1 nodes. Fig. 1 shows a teddy bear and

its decomposition tree. Descending the tree, each

superquadric represents a simpler piece of the object. Higher

levels of the tree give gross shape and position information,

while lower levels give more precise structure.

An appropriate choice of n should depend on the

dexterity of the robotic hand. In our experiments we used the

Barrett hand, which has a hard palm surrounded by three

multi-jointed fingers, two of which can synchronously swivel

up to 180 degrees around the palm. For this hand we found

n=6 to be well suited for grasp planning.

III. GRASP PLANNING

As described above, the space of possible grasps is too

large to search exhaustively. Our contribution is to reduce

the search space drastically by planning on the simplified

superquadric tree rather than the actual object. The reason

this works is that while we plan grasps only on the

superquadric approximations, we simulate these planned

grasps on the original 3D model. The decomposition trees

are used only to delineate a grasp subspace for the simulator

to explore. Formally, given a 3D model and its superquadric

decomposition tree, we define the grasp subspace G as the

union of stable grasps for the 2n-1 superquadric nodes in the

tree. At first glance G does not appear to be substantially

smaller than the unrestricted grasp space, but superquadrics,

being convex and symmetric, are easy to plan grasps for and

thus G is easy to sample for simulation candidates.

To sample G, we need to sample the stable grasps of a

single superquadric, for which we use a heuristic. We place

approach points on the superquadric’s surface at

approximately 1 inch intervals, a spacing that provides a

good balance between undersampling G and unnecessarily

raising the cost of simulation. For each point we start the

hand a small distance from the superquadric and approach

palm first along the surface normal, closing the fingers upon

contact. This is similar to the heuristics of [1]. We use a

tripod grip with the angles between the three fingers of the

Barrett hand fixed at 60 degrees, but it is possible to sample

the space of finger positions as well. For each target point we

tried 3 grasp orientations, with the Barrett hand’s “thumb”

aligned with the cross product of the approach vector and

each of the principal axes of the superquadric. Not all grasps

produced in this fashion are stable on the superquadric, and

therefore not all of the grasps lie within G. Nevertheless,

with a sufficient sampling density of approach points it can

be assumed that the grasps which are stable represent a good

sampling of G and thus we are at worst sampling a superset

of G. Fig. 2 shows the sampling of G produced by this

method for the teddy bear object.

A. GraspIt!

We next simulate the candidate grasps on the input

model and sort the results by grasp quality. For this we use

GraspIt! [9], a grasp planning and analysis tool developed by

our group. GraspIt! incorporates a full dynamics simulator

and can import models of many hands, including those with

deformable surfaces such as a human hand [10]. We can

specify material properties for both the hand and an imported

3D object and model frictional and gravitational forces. The

simulated hand can also be mounted on a robotic arm or

mobile platform, and both hand and object can be placed in a

larger 3D environment that might include obstacles or a

surface that the object rests on. Built in collision detection

detects and discards grasps that require the hand to travel

through an obstacle or through part of the object. Grasp

simulation is very fast, which makes it possible to simulate

large numbers of grasps efficiently.

We are interested in finding grasps that are not merely

force closed, but that are closed to reasonably large forces

and torques. The set of wrenches that a grasp can resist

depends both on the grip strength and on the contacts and

friction between the hand and the object. The relationship

between grip strength and resistible wrenches is linear, and

so we measure quality in terms of a unit strength grip. Grasp

quality, as described by Ferrari and Canny [15], is taken as

Fig. 2. Approach vectors and hand orientations

representing a sampling of the grasp subspace G for

a complex object composed of many superquadrics.

A teddy bear decomposed to 8 superquadrics…

1 2 3 4

5 6 7 8

 …and the resulting decomposition tree

Fig. 1. A decomposition tree, with n=8. The leaf

nodes are merged pairwise to form a binary tree

from the bottom up. Note to readers: figures should

be viewed in color.

1

0.411

1

0.286

1

0.281

5

0.095

6

0.094

4

0.089

5

0.213

5

0.176

1

0.161

2

0.267

6

0.236

6

0.231

2

0.251

4

0239

6

0.204

3

0.255

1

0.245

6

0.238

3

0.111

2

0.088

5

0.082

5

0.248

4

0.243

4

0.217

 Fig. 3. Some of the test objects. Left to right, the original mesh, the first 3 levels of automatic decomposition, and

the 3 best distinguishable grasps planned on a tree with 6 levels of decompositions. The numbers below each grasp

are the level of decomposition where the grasp was found and the grasp quality

the magnitude of the largest worst-case disturbance wrench

that can be resisted by this grasp with a unit strength grip. A

quality of 0 means that there is some wrench the grasp

cannot resist, while 1 means that the grasp can exactly resist

any force or torque up to the maximum grip force the hand is

capable of providing. Experimentally we have determined

that a quality of 0.1 or greater corresponds to grasps that a

human would consider “stable.” Even though any grasp with

a quality greater than 0 is force closed, we are interested only

in these “stable” grasps because we aim to produce realistic

grasps that will actually be useable in real world conditions.

B. Using Decomposition Trees

Like our earlier planner [1], our planner takes a

grasping-by-parts approach to grasping complex objects.

Grasp planning on individual object components in this

fashion can often miss good grasps that take into account

more than one object segment at a time. Our new object

representation was created to overcome this limitation. We

use the planner to create candidate grasps from each level of

the decomposition tree, rather than only planning on the

finest level of decomposition. This is not terribly expensive

as there are only a total of 2n-1 superquadrics. In general,

candidates generated from a component high in the tree take

into account many subcomponents, but only approximately,

while candidates generated from a lower level component

will make use of local features but possess less information

about the overall shape of the object. Using the entire tree

thus protects us from taking either too local or too global a

view of the object. Additionally, we can often avoid the extra

simulation costs by using a greedy strategy of planning first

on the highest level components and only considering finer

components if no candidate meets a given quality threshold.

Using superquadrics implies that we might have

difficulty with objects that cannot be well approximated by

convex primitives. In the limit, as the tree height grows very

large, difficult portions of the shape are represented by

small, thin, superquadrics which locally approximate patches

of the surface. With a sufficiently large tree height these

small surface elements can adequately represent any object.

In practice, though, our method performs well for

complicated objects even using a small tree capped at n,

because we use the superquadrics only to set the initial

position and orientation of the hand, and then allow GraspIt!

to find the actual points of contact on the original object.

Even a few superquadrics generally contain enough shape

information to predict good initial positions.

IV. EXPERIMENTAL RESULTS

 To test our method we planned grasps on a variety of

objects. We used the Barrett hand, but our general approach

can easily be adapted to any hand, particularly those already

in the library included with GraspIt!. We set the material of

the fingertips to be rubber to match the rubber-tipped fingers

of our real Barrett hand, and the object material to be plastic,

for a coefficient of friction of 1.0.

Eight of our example objects, along with a portion of

their decomposition trees are shown in Fig. 3. Superquadrics

at higher levels of the tree will often be similar but not

identical to ones at the lower levels, and so our method tends

to generate many grasps that are visually indistinguishable

but numerically slightly different. For each object we show

the 3 best visually distinguishable grasps computed by our

method. The number below each grasp represents the Ferrari

and Canny grasp quality as discussed in Section III.A. Our

planner found stable grasps for all of the test objects. Some

of the grasps in Fig. 3, such as those for the ketchup bottle,

do not appear to be force closed, but the frictional forces

provided by the large contacts between the fingers and the

object account for their stability. For many objects, including

the bear, the hourglass, and the flask, even the single root

superquadric encapsulates enough shape information for the

planner to find a stable grasp, which allowing the planner to

return a strong grasp very quickly. Some of the objects,

however, were not adequately grasped until the planner

reached the 3
rd

 level. Even though we were able to find

stable grasps high in the trees, most of the best grasps came

from lower levels of the trees, confirming our expectation

that planning on successively finer components is likely to

find better grasps than simply returning the first stable grasp.

Several of the grasps in the figure do not correspond to the

intuitively best grasps that a human would use on the same

objects. Humans choose grasps based on many criteria other

than grasp quality, including comfort, convenience, and

object-specific rules (such as a cup full of liquid never being

turned upside down). The grasps in Fig. 3, on the other hand,

were chosen as ‘best’ using grasp quality as the sole

criterion. Most of the intuitive grasps for the test objects are

in fact generated by our technique, but have lower grasp

quality values than the grasps shown. Adding additional

constraints to filter the returned grasps would allow these

‘natural’ grasps to be brought to the fore.

To demonstrate the advantages of a multilevel

representation, we compared our planner to a hypothetical

planner that uses only a single level of decomposition.

Rather than predetermining the number of superquadrics for

this experiment, we ran the planner n times on each object,

with 1 to n superquadrics, and chose the level which

contained the best grasp as the “single-level” representation.

This means that the hypothetical planner had a priori

knowledge of the level containing the best grasp, which a

real planner would not be aware of. Even with this extra

help, the multilevel planner outperformed the single level

planner at a running time cost of only a constant factor of 2,

as shown in Fig. 4 for 3 objects. The way we chose the single

level means that the best grasp from both methods is by

definition the same, but the quality of the additional grasps

obtained from any single level decreases much faster than the

quality of the grasps from the full tree. In many applications

more than one good grasp might be needed for a given

object, since the best grasp may be occluded or may violate

an application-specific constraint (such as a grasp that turns a

mug full of hot coffee upside down). Decomposition trees

have the useful property of providing better secondary grasps

than a single level of decomposition would, and as

mentioned above, a single level planner is unlikely to find

even the best initial grasp every time without a priori

knowledge of the optimal number of components.

 To isolate the improvement over our previous work due to

automatic decomposition, we compared our planner to our

earlier manual decomposition planner [1] on the same input

models. For the automatic decomposition planner we used

n=6, and for the manual decomposition planner we used the

decompositions used in [1]. A formal comparison is difficult,

as the earlier planner’s results are very dependent on the

specific human input decomposition, but in testing we found

our new planner to produce grasps with quality similar to and

often much greater than those from the earlier planner.

V. FUTURE WORK

Our sampling heuristic generates a large number of

candidate grasps, not all of which lie strictly within G. If we

could reliably determine the stable grasps for a single

superquadric we would have fewer candidates to evaluate. In

previous work [16] we used GraspIt! to train a Support

Vector Machine for superquadrics so that gradient ascent can

quickly find stable grasps. We are currently working to

integrate this machine learning approach into our system. A

challenge is using the SVM to find many good grasps

without having them cluster very closely in parameter space.

APPENDIX

Our decomposition is based on [13], and although that

work did not include a complexity analysis we offer one

here. Fitting a superquadric to a point cloud using

Levenberg-Marquardt has a time complexity of O(n
3
) in the

number of points, and so the split stage is worst case O(n
4
),

where each split outputs a single point and a cloud of n-1

points. In the best case, where each split evenly divides the

cloud, the fitting of the initial superquadric dominates the

function and the time complexity is Ω(n
3
). In practice, since

the splitting plane is always chosen to include the centroid of

the cloud, the splits are roughly equal and performance is

close to Ω(n
3
). Additionally, while this analysis assumed that

splitting continues until each point cloud is reduced to a

single point, a reasonable error threshold will usually cause

the split stage to terminate quite early.

In [13] the merge stage is O(n
5
) because its definition of

neighboring superquadric can sometimes force it to fit a

merged superquadric to every possible pair. We modified the

algorithm to consider at most k nearest neighbors resulting in

an O(n
4
) algorithm that produces results very similar to the

O(n
5
) version. In this work we chose k to be 7.

Planning grasps on the decomposition tree is done in a

greedy fashion, as described in Section III.B. In the worst

case when we need to plan grasps on all 2n-1 nodes, the

simulation time is still only O(n). In practice, unless the

density of the sampling heuristic is set extremely high, the

cost of decomposition far exceeds the cost of simulation.

REFERENCES

[1] A. Miller, S. Knoop, P. Allen, H. Christensen, “Automatic Grasp

Planning Using Shape Primitives,” IEEE ICRA, pp. 1824-29, Sep.

2003.

[2] A. Morales, P. Sanz, A. del Pobil, A. Fagg, “Vision-Based Three

Finger Grasp Synthesis Constrained by Hand Geometry,” Robotics

and Autonomous Systems, 54(6):496–512, 2006

[3] D. Katsoulas, A. Jaklic, “Fast Recovery of Piled Deformable Objects

Using Superquadrics,” DAGM, Sep. 2002.

[4] M. Salganicoff, L. Ungar, R. Bajcsy, “Active Learning for Vision-

Based Robot Grasping,” Machine Learning, Volume 23, May 1996.

[5] F. Boughorbel, Y. Zhang, S. Kang, U. Chidambaram, B. Abidi, A.

Koschan, M. Abidi, "Laser Ranging and Video Imaging for Bin

Picking," Assembly Automation, Vol. 23, pp. 53-59, Mar. 2003

[6] A. Bicchi “Hands for Dexterous Manipulation and Robust Grasping;

A difficult road toward simplicity,” IEEE T-RA, 16(6):652–62, 2000

[7] A. Bicchi, V. Kumar, “Robotic Grasping and Contact: A Review,”

IEEE ICRA, pp 348-53, 2000

[8] Y. Liu, M. Lam, D. Ding, “A Complete and Efficient Algorithm for

Searching 3-D Form-Closure Grasps in the Discrete Domain,” IEEE

T-RA, 20(5):805–16, 2004.

[9] A. Miller, P. Allen, “Graspit!: A Versatile Simulator for Robotic

Grasping,” IEEE Robotics and Automation Magazine, V. 11, No.4,

Dec. 2004, pp. 110-22.

[10] M. Ciocarlie, A. Miller, P. Allen, “Grasp Analysis Using Deformable

Fingers,” IEEE IROS,, Aug. 2005.

[11] A. Jaklic, A. Leonardis, F. Solina, Segmentation and Recovery of

Superquadrics, Comp. Imaging and Vision 20, 2000.

[12] A. Jaklic, A. Leonardis, F. Solina, “Superquadrics for Segmenting and

Modeling Range Data,” IEEE PAMI, 19(11):1289–95, Nov. 1997.

[13] L. Chevalier, F. Jaillet, Atilla Baskurt, “Segmentation and

Superquadric Modeling of 3D Objects,” WSCG, Feb. 2003.

[14] H. Zha, T. Hoshide, T. Hasegawa. “A Recursive Fitting-and-Splitting

Algorithm for 3-D Object Modeling Based on Superquadrics.” Third

Asian Conf. on Comp. Vision, Jan. 1998.

[15] C. Ferrari, J. Canny, “Planning Optimal Grasps,” IEEE ICRA, pp

2290-95, 1992.

[16] R. Pelossof, A. Miller, P. Allen, T. Jebara, “An SVM Learning

Approach to Robotic Grasping,” IEEE ICRA, pp. 3212-18, Apr. 2004.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 3 5 7 9 11 13 15 17 19

n th Best Grasp

G
ra

s
p

 Q
u

a
li

ty

Hourglass Tree Hourglass Level 2
Plane Tree Plane Level 3
Glass Tree Glass Level 2

Fig. 4. Grasp qualities using decomposition trees vs.

a single level of decomposition, for three objects.

