
 

 

 

  

Abstract— Planning realizable and stable grasps on 3D objects 

is crucial for many robotics applications, but grasp planners 

often ignore the relative sizes of the robotic hand and the object 

being grasped or do not account for physical joint and 

positioning limitations. We present a grasp planner that can 

consider the full range of parameters of a real hand and an 

arbitrary object, including physical and material properties as 

well as environmental obstacles and forces, and produce an 

output grasp that can be immediately executed. We do this by 

decomposing a 3D model into a superquadric ‘decomposition 

tree’ which we use to prune the intractably large space of 

possible grasps into a subspace that is likely to contain many 

good grasps. This subspace can be sampled and evaluated in 

GraspIt!, our 3D grasping simulator, to find a set of highly 

stable grasps, all of which are physically realizable. We show 

grasp results on various models using a Barrett hand.  

I. INTRODUCTION 

RASPING is something that humans can do with ease 

but robots can currently do only under carefully 

constrained conditions. Choosing an appropriate grasp for a 

given object requires knowledge of the object's geometry as 

well as knowledge of the geometry and kinematics of the 

robotic hand executing the grasp, but it is hard to analytically 

solve for all of these variables at once. Instead, some 

researchers [1][2] have embraced the idea that the best way 

to find a real world usable grasp for a given hand and object 

is to dynamically simulate the hand executing a set of likely 

candidate grasps and  choose the most successful candidate.  

The key advantage of grasp planning via simulation is 

the ability to weed out grasps that might seem analytically 

promising but would fail if executed in reality, and 

conversely to find good grasps that might appear analytically 

weak but in fact succeed due to the quirks of the hand 

hardware. Simulation based planning also allows additional 

variables such as friction, environmental obstacles, or 

external forces to be taken into consideration when selecting 

a grasp. Unfortunately, the space of grasps with a dexterous 

hand is too large to sample in its entirety, making brute-force 

simulation of all possible grasps infeasible. In this paper we 

show how to prune the search space of candidate grasps via 

multilevel decomposition of the target object. Unlike many 

other works on grasp planning our method does not attempt 
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to find a set of good grasps analytically. Instead, we attempt 

to define a small search space which is likely to contain 

many good grasps. The grasps lying in this smaller space can 

then be sampled and evaluated in simulation to find stable 

output grasps. Our goal is to preserve the significant 

advantages of simulation-based grasp selection while 

significantly decreasing the number of costly simulations.  

The core intuition underlying our approach is that most 

objects can be decomposed into component parts and that a 

good grasp on part of an object or on several parts at once is 

likely to be a good grasp on the entire object. This idea is 

sometimes referred to as ‘grasping by parts.’ To find such 

grasps we decompose the object into a binary tree with the 

initial model at the root and each branch representing the 

division of a model into two parts. We note that the smaller a 

part is relative to the hand, the less important its detailed 

shape is for grasp planning, and so we represent each 

component as a superquadric, which is a simple closed 

surface described below. Our complete object representation, 

which we refer to as a ‘decomposition tree,’ is a multilevel 

tree of superquadrics created using an automatic 

decomposition of the initial model. Although some object 

parts might be poorly represented by superquadrics, we will 

show how superquadrics can be used not only for modeling 

but also to drive decomposition, increasing the likelihood 

that the decomposition tree will be useful.  

A. Previous Work 

The use of superquadrics as an intermediate 

representation for a grasp planner is not new in and of itself. 

Katsoulas and Jaklic used individual superquadrics to model 

deformable sacks to be picked up by a vacuum gripper [3], 

and Salganicoff, Ungar and Bajcsy used active learning to 

find good grips for superquadrics in the plane [4]. Our 

problem is more general: we use complex models requiring 

multiple superquadrics, and we do not restrict position and 

orientation in any way. We also wish to plan grasps for 

multi-fingered dexterous hands, not just simple grippers. 

Boughorbel et al. suggested the use of multiple-superquadric 

models for grasping [5], but limited their discussion to a 

structured planar environment and did not show how to 

obtain a grasp from this primitive representation.  

There is a good deal of literature on model-based 

analytical grasp planning, and we direct the reader to recent 

surveys such as [6] and [7]. Analytical grasping approaches 

suffer from the inability of a simplified model to encapsulate 

all of the factors that affect grasp quality. It is beyond the 

scope of this paper to discuss analytical approaches in any 

greater depth. Liu, Lam, and Ding demonstrated how to 
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heuristically find force closed contact points on a discretely 

sampled surface [8], an approach superficially similar to 

ours, but their method does not account for scale and 

assumes only point contacts. Morales, Sanz, del Pobil, and 

Fagg demonstrated a vision based grasp planner that 

accounts for hand geometry but limited themselves to 2D 

grasping [2]. In our own previous work we implemented 

simulation-based grasp planning for an arbitrary 3-D mesh 

[1][9], making use of hand geometry and fully accounting for 

kinematics, scale, environmental obstacles, friction, and 

planar or even deformable contacts [10] as opposed to the 

more usual point contacts found in much of the grasping 

literature. However, our earlier planner required a manually 

constructed primitive decomposition of the object. This work 

represents significant progress, as we have removed the need 

for a manual decomposition, introduced a multilevel 

representation that helps us find many good grasps rather 

than a single grasp, and broadened the grasp search space by 

planning on superquadrics rather than more basic primitives. 

II. SUPERQUADRICS 

A superquadric [11] is a surface defined as the spherical 

product of two Lamé curves. Following the computer vision 

convention, we are using the word ‘superquadric’ informally, 

as we are only interested in convex superellipsoids, where 

the shape parameters are restricted to the domain [0, 2]. An 

arbitrary superquadric in space is fully specified by its two 

shape parameters ε and η, three scale coefficients, three 

Euler angles for orientation, and three Cartesian coordinates 

for position. This combination of representational power and 

conciseness means that superquadrics are an excellent way of 

approximating 3-D volumes for a variety of tasks. For grasp 

planning, superquadrics have the advantage of encapsulating 

not only the approximate volume of the original object but 

also approximate surface normals. Other volumetric 

simplifications such as voxels or oriented bounded boxes 

capture little or no normal information.  

To approximate a 3D object with a superquadric we 

sample the object’s surface and produce a point cloud. We 

hen use a nonlinear fitting technique such as Levenberg-

Marquardt to find a superquadric whose surface 

approximates the point cloud in a least squares sense. This is 

hindered somewhat by the fact that there is no known 

analytical method to calculate the exact distance between a 

superquadric and a point. Instead, we can make use of the 

superquadric "inside-outside" function: 
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which is positive outside the superquadric and negative 

inside. This function does not minimize the error of fit 

perfectly because it does not vary linearly with distance from 

the surface. A somewhat better choice is the distance from a 

point to a superquadric along the vector between the point 

and the superquadric's centroid. This is known as the radial 

Euclidean distance, and we use it in our fitter. 

A. Fitting Multiple Superquadrics 

While fitting a single superquadric is useful, we want an 

automatic way of approximating a model with a number of 

superquadrics.  There are several published algorithms for 

breaking up a complex point set into smaller superquadric-

representable pieces. Jaklic, Leonardis, and Solina 

demonstrated a "recover and select" region growing 

algorithm for fitting superquadrics to 2.5-D range data 

[11][12], which consists of placing a grid of "seed" 

superquadrics throughout the point data, growing them all at 

once, and selecting the best fits from the results. This 

approach works best with regularly spaced range data and 

less well with unstructured point clouds. It produces no 

topological information or relationships between the final 

superquadrics. Chevalier, Jaillet and Baskurt presented a 

"split-merge" approach better suited for unstructured clouds 

[13]. In the split stage of their algorithm a single 

superquadric is fit to the entire point cloud. If the error-of-fit 

is above a threshold the point cloud is split along a central 

plane orthogonal to the principal axis, and the algorithm is 

called recursively on the resultant clouds. In the merge stage 

neighboring superquadrics are considered and the neighbors 

whose union can be best fit as a single superquadric are 

merged, until the total error is below a threshold. This 

algorithm produces not only an approximation of the cloud 

but also a topologically meaningful decomposition tree 

showing which superquadrics were merged. An alternative 

method of choosing the splitting plane, taking into account 

both the distribution of the fitting error and concavities in the 

underlying 3-D data, was proposed by Zha, Hoshide, and 

Hasegawa [14] but we found that simple split planes of [13] 

resulted in excellent decompositions. An analysis of the time 

complexity of decomposition can be found in the Appendix. 

B. Decomposition Trees 

Although the merge step automatically stops when the 

total error of fit crosses a threshold, the final number of 

superquadrics is not always optimal for grasp planning. 

Small superquadrics that represent individually graspable 

features but contribute little to the total error can be 

mistakenly merged into larger components. Conversely, 

more components beyond a certain point do not significantly 

improve grasp planning. To ensure that the tree contains 

enough detail for grasping while avoiding unnecessarily fine 

decomposition, we force the merge state to terminate at a 

predetermined number of superquadrics, which we refer to as 

n. These n components form the leaves of our tree. We then 

continue merging. Each merge step joins exactly two 

superquadrics, and thus the process of merging the n leaf 

nodes into a single root node creates a binary tree from the 

bottom up, with 2n-1 nodes. Fig. 1 shows a teddy bear and 

its decomposition tree. Descending the tree, each 

superquadric represents a simpler piece of the object. Higher 



 

 

 

levels of the tree give gross shape and position information, 

while lower levels give more precise structure. 

An appropriate choice of n should depend on the 

dexterity of the robotic hand. In our experiments we used the 

Barrett hand, which has a hard palm surrounded by three 

multi-jointed fingers, two of which can synchronously swivel 

up to 180 degrees around the palm. For this hand we found 

n=6 to be well suited for grasp planning.  

III. GRASP PLANNING 

As described above, the space of possible grasps is too 

large to search exhaustively. Our contribution is to reduce 

the search space drastically by planning on the simplified 

superquadric tree rather than the actual object. The reason 

this works is that while we plan grasps only on the 

superquadric approximations, we simulate these planned 

grasps on the original 3D model. The decomposition trees 

are used only to delineate a grasp subspace for the simulator 

to explore. Formally, given a 3D model and its superquadric 

decomposition tree, we define the grasp subspace G as the 

union of stable grasps for the 2n-1 superquadric nodes in the 

tree. At first glance G does not appear to be substantially 

smaller than the unrestricted grasp space, but superquadrics, 

being convex and symmetric, are easy to plan grasps for and 

thus G is easy to sample for simulation candidates.  

To sample G, we need to sample the stable grasps of a 

single superquadric, for which we use a heuristic. We place 

approach points on the superquadric’s surface at 

approximately 1 inch intervals, a spacing that provides a 

good balance between undersampling G and unnecessarily 

raising the cost of simulation.  For each point we start the 

hand a small distance from the superquadric and approach 

palm first along the surface normal, closing the fingers upon 

contact. This is similar to the heuristics of [1]. We use a 

tripod grip with the angles between the three fingers of the 

Barrett hand fixed at 60 degrees, but it is possible to sample 

the space of finger positions as well. For each target point we 

tried 3 grasp orientations, with the Barrett hand’s “thumb” 

aligned with the cross product of the approach vector and 

each of the principal axes of the superquadric. Not all grasps 

produced in this fashion are stable on the superquadric, and 

therefore not all of the grasps lie within G. Nevertheless, 

with a sufficient sampling density of approach points it can 

be assumed that the grasps which are stable represent a good 

sampling of G and thus we are at worst sampling a superset 

of G. Fig. 2 shows the sampling of G produced by this 

method for the teddy bear object.  

A. GraspIt! 

We next simulate the candidate grasps on the input 

model and sort the results by grasp quality. For this we use 

GraspIt! [9], a grasp planning and analysis tool developed by 

our group. GraspIt! incorporates a full dynamics simulator 

and can import models of many hands, including those with 

deformable surfaces such as a human hand [10]. We can 

specify material properties for both the hand and an imported 

3D object and model frictional and gravitational forces. The 

simulated hand can also be mounted on a robotic arm or 

mobile platform, and both hand and object can be placed in a 

larger 3D environment that might include obstacles or a 

surface that the object rests on. Built in collision detection 

detects and discards grasps that require the hand to travel 

through an obstacle or through part of the object. Grasp 

simulation is very fast, which makes it possible to simulate 

large numbers of grasps efficiently.  

We are interested in finding grasps that are not merely 

force closed, but that are closed to reasonably large forces 

and torques. The set of wrenches that a grasp can resist 

depends both on the grip strength and on the contacts and 

friction between the hand and the object. The relationship 

between grip strength and resistible wrenches is linear, and 

so we measure quality in terms of a unit strength grip. Grasp 

quality, as described by Ferrari and Canny [15], is taken as 

 
Fig. 2.  Approach vectors and hand orientations 

representing a sampling of the grasp subspace G for 

a complex object composed of many superquadrics. 

 

A teddy bear decomposed to 8 superquadrics… 
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                    …and the resulting decomposition tree 
 

 
Fig. 1.  A decomposition tree, with n=8. The leaf 

nodes are merged pairwise to form a binary tree 

from the bottom up.  Note to readers: figures should 

be viewed in color. 
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 Fig. 3.  Some of the test objects. Left to right, the original mesh, the first 3 levels of automatic decomposition, and 

the 3 best distinguishable grasps planned on a tree with 6 levels of decompositions. The numbers below each grasp 

are the level of decomposition where the grasp was found and the grasp quality 

 



 

 

 

the magnitude of the largest worst-case disturbance wrench 

that can be resisted by this grasp with a unit strength grip.  A 

quality of 0 means that there is some wrench the grasp 

cannot resist, while 1 means that the grasp can exactly resist 

any force or torque up to the maximum grip force the hand is 

capable of providing. Experimentally we have determined 

that a quality of 0.1 or greater corresponds to grasps that a 

human would consider “stable.” Even though any grasp with 

a quality greater than 0 is force closed, we are interested only 

in these “stable” grasps because we aim to produce realistic 

grasps that will actually be useable in real world conditions.  

B. Using Decomposition Trees 

Like our earlier planner [1], our planner takes a 

grasping-by-parts approach to grasping complex objects. 

Grasp planning on individual object components in this 

fashion can often miss good grasps that take into account 

more than one object segment at a time. Our new object 

representation was created to overcome this limitation. We 

use the planner to create candidate grasps from each level of 

the decomposition tree, rather than only planning on the 

finest level of decomposition. This is not terribly expensive 

as there are only a total of 2n-1 superquadrics. In general, 

candidates generated from a component high in the tree take 

into account many subcomponents, but only approximately, 

while candidates generated from a lower level component 

will make use of local features but possess less information 

about the overall shape of the object. Using the entire tree 

thus protects us from taking either too local or too global a 

view of the object. Additionally, we can often avoid the extra 

simulation costs by using a greedy strategy of planning first 

on the highest level components and only considering finer 

components if no candidate meets a given quality threshold.  

Using superquadrics implies that we might have 

difficulty with objects that cannot be well approximated by 

convex primitives. In the limit, as the tree height grows very 

large, difficult portions of the shape are represented by 

small, thin, superquadrics which locally approximate patches 

of the surface. With a sufficiently large tree height these 

small surface elements can adequately represent any object. 

In practice, though, our method performs well for 

complicated objects even using a small tree capped at n, 

because we use the superquadrics only to set the initial 

position and orientation of the hand, and then allow GraspIt! 

to find the actual points of contact on the original object. 

Even a few superquadrics generally contain enough shape 

information to predict good initial positions.  

IV. EXPERIMENTAL RESULTS 

 To test our method we planned grasps on a variety of 

objects. We used the Barrett hand, but our general approach 

can easily be adapted to any hand, particularly those already 

in the library included with GraspIt!. We set the material of 

the fingertips to be rubber to match the rubber-tipped fingers 

of our real Barrett hand, and the object material to be plastic, 

for a coefficient of friction of 1.0.  

Eight of our example objects, along with a portion of 

their decomposition trees are shown in Fig. 3. Superquadrics 

at higher levels of the tree will often be similar but not 

identical to ones at the lower levels, and so our method tends 

to generate many grasps that are visually indistinguishable 

but numerically slightly different. For each object we show 

the 3 best visually distinguishable grasps computed by our 

method. The number below each grasp represents the Ferrari 

and Canny grasp quality as discussed in Section III.A.  Our 

planner found stable grasps for all of the test objects. Some 

of the grasps in Fig. 3, such as those for the ketchup bottle, 

do not appear to be force closed, but the frictional forces 

provided by the large contacts between the fingers and the 

object account for their stability. For many objects, including 

the bear, the hourglass, and the flask, even the single root 

superquadric encapsulates enough shape information for the 

planner to find a stable grasp, which allowing the planner to 

return a strong grasp very quickly. Some of the objects, 

however, were not adequately grasped until the planner 

reached the 3
rd

 level. Even though we were able to find 

stable grasps high in the trees, most of the best grasps came 

from lower levels of the trees, confirming our expectation 

that planning on successively finer components is likely to 

find better grasps than simply returning the first stable grasp.  

Several of the grasps in the figure do not correspond to the 

intuitively best grasps that a human would use on the same 

objects. Humans choose grasps based on many criteria other 

than grasp quality, including comfort, convenience, and 

object-specific rules (such as a cup full of liquid never being 

turned upside down). The grasps in Fig. 3, on the other hand, 

were chosen as ‘best’ using grasp quality as the sole 

criterion. Most of the intuitive grasps for the test objects are 

in fact generated by our technique, but have lower grasp 

quality values than the grasps shown. Adding additional 

constraints to filter the returned grasps would allow these 

‘natural’ grasps to be brought to the fore. 

To demonstrate the advantages of a multilevel 

representation, we compared our planner to a hypothetical 

planner that uses only a single level of decomposition. 

Rather than predetermining the number of superquadrics for 

this experiment, we ran the planner n times on each object, 

with 1 to n superquadrics, and chose the level which 

contained the best grasp as the “single-level” representation. 

This means that the hypothetical planner had a priori 

knowledge of the level containing the best grasp, which a 

real planner would not be aware of. Even with this extra 

help, the multilevel planner outperformed the single level 

planner at a running time cost of only a constant factor of 2, 

as shown in Fig. 4 for 3 objects. The way we chose the single 

level means that the best grasp from both methods is by 

definition the same, but the quality of the additional grasps 

obtained from any single level decreases much faster than the 

quality of the grasps from the full tree. In many applications 

more than one good grasp might be needed for a given 

object, since the best grasp may be occluded or may violate 

an application-specific constraint (such as a grasp that turns a 



 

 

 

mug full of hot coffee upside down). Decomposition trees 

have the useful property of providing better secondary grasps 

than a single level of decomposition would, and as 

mentioned above, a single level planner is unlikely to find 

even the best initial grasp every time without a priori 

knowledge of the optimal number of components. 

 To isolate the improvement over our previous work due to 

automatic decomposition, we compared our planner to our 

earlier manual decomposition planner [1] on the same input 

models. For the automatic decomposition planner we used 

n=6, and for the manual decomposition planner we used the 

decompositions used in [1]. A formal comparison is difficult, 

as the earlier planner’s results are very dependent on the 

specific human input decomposition, but in testing we found 

our new planner to produce grasps with quality similar to and 

often much greater than those from the earlier planner. 

V. FUTURE WORK 

Our sampling heuristic generates a large number of 

candidate grasps, not all of which lie strictly within G. If we 

could reliably determine the stable grasps for a single 

superquadric we would have fewer candidates to evaluate. In 

previous work [16] we used GraspIt! to train a Support 

Vector Machine for superquadrics so that gradient ascent can 

quickly find stable grasps. We are currently working to 

integrate this machine learning approach into our system. A 

challenge is using the SVM to find many good grasps 

without having them cluster very closely in parameter space.  

APPENDIX 

Our decomposition is based on [13], and although that 

work did not include a complexity analysis we offer one 

here. Fitting a superquadric to a point cloud using 

Levenberg-Marquardt has a time complexity of O(n
3
) in the 

number of points, and so the split stage is worst case O(n
4
), 

where each split outputs a single point and a cloud of n-1 

points. In the best case, where each split evenly divides the 

cloud, the fitting of the initial superquadric dominates the 

function and the time complexity is Ω(n
3
). In practice, since 

the splitting plane is always chosen to include the centroid of 

the cloud, the splits are roughly equal and performance is 

close to Ω(n
3
). Additionally, while this analysis assumed that 

splitting continues until each point cloud is reduced to a 

single point, a reasonable error threshold will usually cause 

the split stage to terminate quite early. 

In [13] the merge stage is O(n
5
) because its definition of 

neighboring superquadric can sometimes force it to fit a 

merged superquadric to every possible pair. We modified the 

algorithm to consider at most k nearest neighbors resulting in 

an O(n
4
) algorithm that produces results very similar to the 

O(n
5
) version. In this work we chose k to be 7. 

Planning grasps on the decomposition tree is done in a 

greedy fashion, as described in Section III.B. In the worst 

case when we need to plan grasps on all 2n-1 nodes, the 

simulation time is still only O(n). In practice, unless the 

density of the sampling heuristic is set extremely high, the 

cost of decomposition far exceeds the cost of simulation. 
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Fig. 4.  Grasp qualities using decomposition trees vs. 

a single level of decomposition, for three objects. 


