
Blind Grasping: Stable Robotic Grasping
Using Tactile Feedback and Hand Kinematics

Hao Dang, Jonathan Weisz, and Peter K. Allen

Abstract— We propose a machine learning approach to the
perception of a stable robotic grasp based on tactile feedback
and hand kinematic data, which we call blind grasping. We first
discuss a method for simulating tactile feedback using a soft
finger contact model in GraspIt!, which is a robotic grasping
simulator [10]. Using this simulation technique, we compute
tactile contacts of thousands of grasps with a robotic hand using
the Columbia Grasp Database [6]. The tactile contacts along
with the hand kinematic data are then input to a Support Vector
Machine (SVM) which is trained to estimate the stability of a
given grasp based on this tactile feedback and also the robotic
hand kinematics. Experimental results indicate that the tactile
feedback along with the hand kinematic data carry meaningful
information for the prediction of the stability of a blind robotic
grasp.

I. INTRODUCTION

Grasp planning is a fundamental problem in the field
of robotics that has been attracting an increasing number
of researchers [4], [15], [9], [13], [12]. One fact about
many existing grasp planning algorithms is that they all
require some information about the object to be grasped,
i.e. either a 2D image as required in [15], [12] or a full 3D
geometric model as in [4]. This, to a large extent, limits the
application of these methods across a wide range of different
working situations. On the one hand, obtaining 3D geometry
information is expensive and may even be impossible without
certain devices such as 3D laser scanners. On the other
hand, acquiring images with cameras also poses constraints
on the working environment. For example, cameras work
differently in different lighting conditions, even though we
expect them to perform consistently across these different
lighting conditions.

What if the robot is blind, by which we mean it is not
able to obtain visual or geometric information of the object
beforehand? Can a robotic hand still apply a stable grasp to
an object without geometric or visual information? We define
this robotic grasping as blind grasping. An example that
describes the situation could be a robotic hand reaching into
a gym bag and getting an object out of it. As human beings,
it is intuitive and straightforward for us to grasp objects
even when we cannot see them. Lederman and Klatzky
have shown [8] that humans have the ability to “blindly”
recognize objects with a high degree of accuracy. Humans
can also create stable grasps on unknown objects in the total
absence of any visual feedback. This ability is sorely lacking

This work was funded in part by NIH BRP grant 1RO1 NS 050256-01A2
and NSF Grant IIS-0904514.

All authors are with Department of Computer Science, Columbia Univer-
sity, 450 Computer Science Building, 1214 Amsterdam Avenue, New York,
NY, 10027, USA, {dang,jweisz,allen}@cs.columbia.edu

with current robots that are performing grasping tasks. Using
tactile sensing for object recognition has been explored by
many researchers. Some recent work includes [16], [7],
[11]. Using tactile exploration for grasping, Bierbaum et al.
proposed a method to generate grasp affordances based on
reconstructed faces of an object through tactile exploration
[1]. In our paper, we are attempting to use non-visual
tactile and kinematic feedback to predict stable grasps on
an unknown object.

We take a machine learning approach to this problem.
A problem with this approach is to generate datasets of
reasonable size that encode tactile and kinematic informa-
tion on robotic grasps. To overcome this, we use a tactile
simulator on a large database of objects to be grasped.
The Columbia Grasp Database (CGDB) [6] consists of over
300,000 stable grasps over 7,256 objects and for several
robotic hands, including Barrett hands of different surface
materials and a simulated human hand. It provides us with
a pool of robotic grasp data from which we can simulate
a tactile sensor system and collect useful tactile feedback.
It then allows us to use this simulated tactile feedback data
to learn the stability of a robotic grasp. In Section II, we
describe a soft finger contact model used to simulate tactile
feedback. In Section III, we describe the procedure to collect
simulated tactile feedback from grasps in CGDB. In Section
IV, we talk about the feature vectors we used to represent
each grasp and build an SVM that accepts these feature
vectors as input to predict the stability of the corresponding
grasp. Experiments are described and discussed in Section
V, followed by conclusions in Section VI.

II. SOFT FINGER CONTACT MODEL

Tactile sensors play an important role in representing the
contacts between the surface of the hand and the object that
are touching each other. The output of the tactile sensors
around each contact is characterized by the forces applied
at each sensor cell. So, a reasonable contact model that
approximates the contact region and the pressure distribution
is necessary for simulating a reasonable tactile feedback.
Pezzementi et al. [18] used a point spread function model
to simulate the response of a tactile sensor system. In our
approach, we build our tactile simulation system based on
a soft finger contact model proposed by Ciocarlie et al. [3].
We briefly introduce this model as follows. Interested readers
please refer to the original paper for more details.



A. Contact Region Approximation

In GraspIt! each contact is initially considered as a point
contact since the two bodies, i.e. the hand and the object,
are assumed as rigid bodies. In the real world, however,
the hand and the object in contact are actually deformable
to some extent, resulting in an area in contact rather than
a point. A point contact assumption then no longer holds
reasonably. To simulate the contact region between the two
bodies touching each other, we use a soft finger contact
model as is developed in [3]. This model takes into account
the local geometry and structure of the objects in contact
and captures frictional effects such as coupling between
tangential force and frictional torque. It locally approximates
the surfaces of the two touching bodies as

zi = Aix
2 +Biy

2 + Cixy, i ∈ {1, 2} (1)

where the local contact coordinate system has its origin at
the center of the contact and the z axis aligned with the
contact normal. The subscript i distinguishes the contacting
bodies from each other.

The seperation between the two surfaces h is

h = (A1 −A2)x
2 + (B1 −B2)y

2 + (C1 − C2)xy (2)

By choosing the orientation of the x and y axes so that the
term in xy vanishes, we can end up with the separation h
between the two surfaces in the form of

h =
1

2R′x
2 +

1

2R′′ y
2 (3)

where R′ and R′′ are the relative radii of curvature of the
objects in contact, depending only on their local geometry.

B. Pressure Distribution

After a contact region is determined, we consider how
the forces are formed within the contact region so that the
response of the corresponding tactile sensor cells can be
analyzed and evaluated. To express the pressure distribution
inside a contact region using non-planar models that take
into account the local geometry of the objects involved, we
choose a Hertzian model as used in [3]. In this model, the
ratio of frictional torque to contact load which is used to
compute the eccentricity parameter of the friction ellipsoid
can be obtained from

max(τn)

P
=

3π

16
µ
√
ab (4)

where µ is the frictional coefficient, τn is a frictional moment
about the contact normal, P is the contact load, and a and
b are the lengths of the semi-axes.

III. TACTILE SENSOR SIMULATION

A. Tactile Sensor Configuration of a Barrett Hand

The robotic hand used in the tactile simulation experiment
is a Barrett hand with tactile sensors attached on the surfaces
of the palm, the mid-digit links and the fingertip links. The
PPS RoboTouch system [14], which is widely used on Barrett
hands, was simulated. The tactile sensor system contains

(a) Palm (b) Finger

Fig. 1. Tactile Sensor Configuration (from PPS spec sheet [14])

TABLE I
CONFIGURATION OF SENSOR PADS ON A BARRETT HAND

Location Num. of Cells Res. (mm) Grid

Palm 24 10 × 10 4 × 6

Mid-Digit 24 6 × 6 8 × 3

Fingertip 22 6 × 6 7 × 3 + 1 tip

seven major sensor pads which cover many possible hand-
object contact points of the Barrett hand. Each pad has 22
to 24 tactile sensor cells which results in a 162-cell sensor
system. The configuration of these sensor pads and sensor
cell arrangement is described in Table I. Figure 1 shows a
real PPS RoboTouch system attached to a Barrett hand.

Algorithm 1: Computing tactile feedback
Input: A robotic grasp with a list of point contacts

between the hand and the object
Output: Seven 2D arrays that carry the simulated tactile

sensor values of the corresponding sensor cells
1 Initialize the output tactile sensor cell arrays to zero’s
2 foreach point contact do
3 Calculate the relative radii at the contact
4 Calculate the contact region
5 Discretize the contact region to 10× 10 sub-regions
6 Calculate the forces within each discretized

sub-region according to the pressure distribution
7 foreach discretized contact sub-region do
8 foreach tactile sensor cell do
9 if the discretized contact sub-region

overlays on the tactile sensor cell
10 then
11 Accumulate the force of the discretized

contact sub-region onto the overlaying
tactile sensor cell

12 end
13 end
14 end
15 end
16 Return the sensor cell arrays

B. Generating Tactile Feedback from the CGDB

Based on the soft finger contact model, we can compute
the contact region for a hand-object contact as well as the
pressure distribution within the contact region. Since a tactile



sensor cell performs as an atomic sensing unit, we discretize
the soft finger contact region so that we can accumulate the
total forces within each discrete part and use this to compute
the forces sensed on each corresponding tactile sensor cell.
We summarize the procedure to generate the tactile feedback
of a robotic grasp in Algorithm 1. Figure 2 shows an example
of a simulated tactile feedback.

IV. LEARNING THE STABILITY OF A ROBOTIC GRASP

Following the explanation of the simulation process, we
now discuss the way we built an SVM classifier that predicts
the stability of a given robotic grasp. Once trained, this
classifier can be used efficiently to estimate the stability of a
robotic grasp without even knowing the geometric or visual
information about the object to be grasped.

A. Grasp Dataset

Our grasp data is from the CGDB database. This database
contains hundreds of thousands of grasps constructed from
several robotic hands and thousands of object models.

Object models used in the CGDB are from the Princeton
Shape Benchmark (PSB) [17]. The PSB provides a repository
of 3D models which span across many objects that we
encounter everyday. One fact about the PSB model set is that
the models were not originally selected with an eye towards
robotic grasping, and so some of the models are not obvious
choices for grasping experiments. For example, the model
set contains insects, which are often outside our everyday
grasping range. Although the CGDB provides grasps for
all these object models in the PSB, instead of using the
full set of grasps in the CGDB, we choose to select grasps
computed on a smaller set of objects that are more frequently
grasped and manipulated by us in our everyday life. In total,
we collected about 15,000 robotic grasps from 936 objects
across 23 different classes.

B. Labeling Grasps

In the CGDB, all of the grasps are good in terms of their
physical properties, i.e. they either have good Ferrari-Canny
grasp metric volume qualities or good epsilon qualities
[5]. The epsilon quality, ε, measures the minimum relative
magnitude of the outside disturbances that could destroy
the grasp. So, when we take into account the limit of the
maximum forces a robotic hand can apply, a grasp would
be less stable if it has a smaller epsilon quality. This is
because the smaller epsilon quality indicates that a relatively
smaller outside disturbance can break this grasp even when
the robotic hand has already applied the maximum forces it
supports.

Another consideration is from the perspective of the envi-
ronment uncertainty. Due to the uncertainty of the environ-
ment, objects may move away slightly from their original
position during a grasp execution. A fragile grasp may fail to
fully grasp the object in this situation while a stable one may
display its robustness and still succeed in grasping the object
in the perturbation. We have experimentally found a strong
correlation between this robustness and the epsilon quality.

We have found that grasps with epsilon quality ε > 0.07
tend to be more robust in uncertain object perturbations.

Based on the above two considerations, for grasps that are
form-closure, they may also differ from each other in the
sense of being more stable or less stable. So, we treat those
more stable grasps as good grasps and the less stable ones
as bad grasps. Using a threshold tε = 0.07 as the boundary,
we label graspi as a good (1) or a bad (0) grasp as follows,

label(graspi) =

 0 if ε(graspi) ≤ tε

1 if otherwise
(5)

C. Feature Vector

For a human grasp, two properties are usually perceived
by us. One is the tactile sensing which specifies the contact
configuration between our hands and the object. The other
is the hand kinematics which indicates how our hands are
shaped around the object for the manipulation. These two
pieces of information help us predict whether this is a
stable grasp. In the robot domain, we use the same idea to
synthesize a feature vector for a robotic grasp: we use tactile
and kinematic information to characterize a grasp.

Given a robotic grasp, the output of the simulated tactile
sensor system is a group of seven 2D arrays. Each array is
corresponding to one sensor pad. Each element of an array
stores the value of the force sensed in the corresponding
sensor cell. We vectorize each of these 2D arrays into one-
dimensional vectors and concatenate them together. This
gives us a 162-dimensional vector. In addition to the tactile
feedback, we also obtain the values of the seven joint angles
of a Barrett hand when a grasp is applied and append them
to the end of the 162-dimensional tactile feedback vector.
This makes the final feature vector 169-dimensional.

D. Scaling

A feature vector contains both the 162-dimensional tac-
tile feedback and the 7-dimensional joint values. They are
from two totally different domains and of two different
dimensions. Instead of feeding them directly into a train-
ing algorithm which will treat each dimension in both the
tactile feedback and the joint angle equally, we scale each
dimension of the tactile data and the joint data differently so
that these two major parts can be weighted equally on the
whole.

For each tactile feedback Ti, we first normalize the 162-
dimensional tactile feedback such that they sum up to one.
Specifically we write it down as follows,

Ti =
Ti∑162
j=1 T

j
i

(6)

Then, for a feature vector, the scaling approach we used
is to scale the dimensions of the tactile part such that the
standard deviation across all the samples is one while to
scale the dimensions of the joint angle part such that the
standard deviation is w, where w is considered as a weight
factor that balances the weights between the tactile feedback



(a) Grasp (b) F1 (c) F2 (d) F3 (e) Palm

Fig. 2. Tactile Sensor Simulation, Figure 2(a) show a robotic grasp of a Barrett hand on a mug, Figure 2(b), 2(c), and 2(d) show the tactile responses on
finger F1, F2, F3 respectively. In each group, the left one is the tactile pad on the finger tip and the right one is the tactile pad on the mid finger. Figure
2(e) shows the tactile readings on the palm. The 8-bit scale (0 - 255) goes from blue (no response) to red (saturation).

and the joint angle values. More specifically, a feature vector
x = [T J ], T ∈ R162, J ∈ R7 is scaled as follows

x′ i =


xi

stdi if 1 ≤ i ≤ 162

w xi

stdi if 163 ≤ i ≤ 169
(7)

where xi denotes the ith dimension of the feature vector.
stdi denotes the standard deviation in the ith dimension. In
our scaling process, we used the same stdi computed from
the training set to scale the test data.

V. EXPERIMENTS AND RESULTS

A. Training and Testing Dataset

Tactile feedback is a core component in our feature vector.
Inside GraspIt!, the physical simulation system is able to
capture all the possible contacts between a robotic hand and
the object. Although the current PPS tactile sensor system
captures many possible hand-object contacts, there are still
locations the system does not cover. For example, Figure 3
shows a grasp when a Barrett hand is grasping a wrench. The
contacts on the edges of the fingertips, F1 and F2, cannot
be captured by the current tactile sensor system. However, it
is detected and considered in the physical simulation system
inside GraspIt! for the computation of the epsilon quality.
For such kind of grasps which involve contacts in uncovered
regions, they cannot be fully represented by the tactile sensor
system, either the simulated or the real one. Therefore, there
is an inconsistency in these grasps between the physical
simulation and the real world and this inconsistency may
influence the performance of the classification.

Since grasps with fewer number of non-zero tactile re-
sponses have more potential to contain un-captured contacts,
we first filter out grasps from the grasp dataset, D, obtained
in Section IV-A based on the number of sensor pads that
have non-zero responses. Since each sensor pad is a flat
plane, a stable grasp must have at least two sensor pads in
contact with the object being grasped, resulting in at least
two sensor pads with non-zero responses. In our experiment,
we first divide the grasp dataset D into two subsets, D1 and
D2. D1 contains all the grasps that have only one tactile
sensor pad with non-zero responses, while D2 contains all
the grasps with at least two tactile sensor pads having non-
zero responses.

TABLE II
TEST ACCURACY ON 5641 GRASPS (%)

Classification Accuracy False Neg. Predct. False Pos. Predct.

70.4 19.4 10.2

We then choose 2/3 grasps from D2 that evenly distributed
among all the objects to generate our training set. We put
the remaining 1/3 of the grasps from D2 into the test set.
Although contacts of grasps in D1 are not fully captured by
the simulated tactile system, their tactile feedback would be
realistic considering a real Barrett hand with a real tactile
system. In order to keep this potential considered as in a
real working environment, we do not want to rule them out
for testing. Thus, we put all the grasps from D1 in the testing
set, and the test set is a union of D1 and 1/3 of D2.

B. Results

During scaling, we tried different w’s. w =
√

162
7 worked

best in our experiment. To train an SVM classifier, we
used libsvm [2]. We used a RBF kernel with 5-fold cross
validation to determine the best cost parameter C and RBF
parameter γ.

After we trained our SVM classifier, we fed the grasps
in the testing set to the classifier. Experiment results are
shown in Table II. In total, the best overall accuracy we get
is 70.38% with w =

√
162
7 . In this experiment, only 10.2%

grasps are incorrectly classified as positive. This means that a
grasp will be classified incorrectly as a good one with only a
small probability. It also indicates the conservativeness of this
classifier which is very necessary in a blind grasping context.
Because usually we can just keep searching for another grasp
if we mis-classify a good grasp to be a bad one, but the cost
or risk is usually too high to tolerate if we execute a grasp
that is actually bad but mis-classified as a good one.

In Table III, we show more detailed statistics on the
accuracy in each object class based on our best result. In
the context of blind grasping, the false positive predictions
are more important in our consideration because of the high
cost we have to pay for a false positive prediction. We
summarized the percentages of false positive predictions of
each object class.

In Figure 4, 5, and 6, we show some example test grasps.
Based on these test results, we find some interesting points.



For grasps whose contacts are fully captured, they
have more potential to be classified correctly. Figure 4
shows an example grasp whose contacts are fully captured
by the tactile sensor system. This is an example grasp that is
classified correctly. In contrast, Figure 5 is a false negative
prediction. As is shown in the tactile sensor response, the
contacts on the fingers are not fully captured by the current
tactile sensor system. This makes the tactile feedback inca-
pable to carry enough information to represent the grasp.
Thus, losing tactile information increases the potential of a
false prediction.

Contacts on the edges of the finger may confuse the
classifier and result in more false predictions. Figure 6
shows a false positive example. Although all the tactile pads
have non-zero responses, many of the contacts are on the
edges of the fingers. In this situation, the contact normals on
the object surface differ dramatically from that of the surface
of the finger. But a tactile sensor can only record the normal
forces leaving the tangential forces un-captured. The tactile
sensor representation does not fully capture the grasp feature.

When contacts are not fully captured, hand kinematics
may confuse the classifier. As we can see in Figure 6,
two of the three fingers of the Barrett hand are shaped
towards the other one. In general, a grasp with a set of
contacts that are facing each other is more likely to be
a good one and having fingers facing towards each other
increases the potential of such contacts. In this sense, without
further distinction obtained from the tactile sensor feedback,
the hand kinematics may confuse the classifier to make it
consider this grasp as a good one.

VI. CONCLUSION

In this paper, we proposed a method to utilize tactile
feedback to predict the stability of a robotic grasp. Differ-
ent from most current grasp planning related methods, our
approach does not require either the geometric or the visual
information of the object to be grasped. This approach could
be applied alone in working environments where geometric
or visual data is not obtainable, such as blind grasping as
mentioned in Section I. Or it can work with other grasp
planning algorithms as an enhancement to boost their overall
performance.

We tested our algorithm on the simulated tactile feedback
from grasps on a small set of objects that are frequently
grasped and manipulated in our everyday life. The experi-
ments validated the capability of our method to distinguish
stable grasps from non-stable ones. One feature worth noting
is that this method preserves a small false positive percent-
age which makes it useful when we need to avoid taking
potentially large risk in a false positive grasp prediction.

For the next step, we are planning to do experiments on a
real robotic hand with a real tactile sensor system. Since our
current feature vector only contains the raw output from the
tactile sensor system and the hand kinematics, some prop-
erties of a grasp might not be fully displayed directly from
this raw data, and different weights between tactile feedback
and hand kinematics may influence the prediction process

in different ways. We will be exploring more sophisticated
features as well as the weights between data from different
domains to increase the prediction performance. Due to the
flexibility of the simulation system, we will also simulate
different patterns of a tactile sensor system. Then, we will
examine different tactile configurations and see how they
could improve the prediction performances. This may give us
more insights into a better design of a tactile sensor system.
To further utilize this new approach, we are planning to
integrate this grasping perception method into GraspIt! so
that it can be used as a metric in grasp planning, which
could result in a more efficient planning method.

REFERENCES

[1] Er Bierbaum, M. Rambow, T. Asfour, and R. Dillmann, Grasp affor-
dances from multi-fingered tactile exploration using dynamic potential
fields, Humanoids, IEEE Intl. Conference on, 2009, pp. 168 –174.

[2] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support
vector machines, 2001, Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

[3] Matei Ciocarlie, Claire Lackner, and Peter Allen, Soft finger model
with adaptive contact geometry for grasping and manipulation tasks,
World Haptics Conference (2007), 219–224.

[4] Matei T. Ciocarlie and Peter K. Allen, Hand Posture Subspaces for
Dexterous Robotic Grasping, The International Journal of Robotics
Research 28 (2009), no. 7, 851–867.

[5] C. Ferrari and J. Canny, Planning optimal grasps, Robotics and
Automation, IEEE Intl. Conference on, May 1992, pp. 2290 –2295.

[6] C. Goldfeder, M. Ciocarlie, H. Dang, and P.K. Allen, The columbia
grasp database, Robotics and Automation, IEEE International Con-
ference on, May 2009, pp. 1710 –1716.

[7] Nicolas Gorges, Stefan Escaida Navarro, Dirk Göger, and Heinz Wörn,
Haptic object recognition using passive joints and haptic key features,
Robotics and Automation, IEEE International Conference on, May
2010, pp. 2349 –2355.

[8] Susan J. Lederman and Roberta L. Klatzky, Hand movements: A
window into haptic object recognition, Cognitive Psychology 19
(1987), no. 3, 342 – 368.

[9] Zexiang Li and S. Sastry, Task oriented optimal grasping by multi-
fingered robot hands, Robotics and Automation, IEEE International
Conference on, 1987, pp. 389–394.

[10] A. T. Miller and P. K. Allen, Graspit! a versatile simulator for robotic
grasping, Robotics & Automation 11 (2004), no. 4, 110–122.

[11] A. Petrovskaya, O. Khatib, S. Thrun, and A.Y. Ng, Bayesian esti-
mation for autonomous object manipulation based on tactile sensors,
Robotics and Automation, IEEE International Conference on, may.
2006, pp. 707 –714.

[12] Mila Popovic, Dirk Kraft, Leon Bodenhagen, Emre Baseski, Nicolas
Pugeault, Danica Kragic, Tamim Asfour, and Norbert Krüger, A
strategy for grasping unknown objects based on co-planarity and
colour information, Robotics and Autonomous Systems 58 (2010),
no. 5, 551 – 565.

[13] M. Prats, P.J. Sanz, and A.P. del Pobil, Task-oriented grasping using
hand preshapes and task frames, Robotics and Automation, IEEE
International Conference on, april 2007, pp. 1794 –1799.

[14] Pressure Profile, Robotouch, http://www.pressureprofile.
com/products-robotouch.

[15] Ashutosh Saxena, Justin Driemeyer, Justin Kearns, and Andrew Y. Ng,
Robotic grasping of novel objects, Advances in Neural Information
Processing Systems 19 (B. Schölkopf, J. Platt, and T. Hoffman, eds.),
MIT Press, Cambridge, MA, 2007, pp. 1209–1216.

[16] Alexander Schneider, Jürgen Sturm, Cyrill Stachniss, Marco Reisert,
Hans Burkhardt, and Wolfram Burgard, Object identification with tac-
tile sensors using bag-of-features, IEEE/RSJ international conference
on Intelligent robots and systems, 2009, pp. 243–248.

[17] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas
Funkhouser, The princeton shape benchmark, In Shape Modeling
International, 2004, pp. 167–178.

[18] Zachary Pezzementi, Erica Jantho, Lucas Estrade, Gregory D. Hager,
Characterization and Simulation of Tactile Sensors, Haptics Sympo-
sium, March 2010.



TABLE III
CLASSIFICATION ACCURACY (EACH LEFT COLUMN) AND PERCENTAGES OF FALSE POSITIVE PREDICTIONS ON GRASPS OF EACH OBJECT CLASS(%).

axe book bottle butcher knife gear wine glass guitar hammer

85.11 10.63 57.57 6.81 63.90 8.57 71.18 2.54 63.05 12.85 72.54 5.73 79.04 18.56 69.90 9.70

handgun helmet ice cream cone knife lamp microscope mug phone handle

62.28 9.29 68.72 12.02 57.49 5.81 88 6.85 65.83 10.30 69.65 9.65 82.29 9.37 50.84 15.25

axe screw driver shovel skateboard sword vase wrench -

76.17 11.06 90.97 3.75 71.27 15.95 54.42 5.44 82.69 15.06 75.75 10.77 65.45 9.09 - -

(a) Grasp (b) F1 (c) F2 (d) F3 (e) Palm

Fig. 3. A robotic grasp whose contacts are not fully captured by the current tactile sensor syetem. Figure 3(b) to 3(e) show the tactile sensor outputs in
each of the seven sensor pads. Only contacts on the tip of the Finger3 are captured in the system as shown in 3(d). Contacts that are on the other two
fingers, Finger1 and Finger2, are not captured by the tactile system.

(a) Grasp (b) F1 (c) F2 (d) F3 (e) Palm

Fig. 4. A good robotic grasp which is classified correctly. Figure 4(b) to 4(e) show the tactile sensor outputs in each of the seven sensor pads. All of
those contacts are captured by the seven tactile sensor pads.

(a) Grasp (b) F1 (c) F2 (d) F3 (e) Palm

Fig. 5. False negative: A good robotic grasp which is classified incorrectly as a bad one. Figure 5(b) to 5(e) show the tactile sensor outputs in each of
the seven sensor pads. The problem here is that the contacts on the edges of the fingers are not fully captured.

(a) Grasp (b) F1 (c) F2 (d) F3 (e) Palm

Fig. 6. False positive: A bad robotic grasp which is classified incorrectly as a good one. Figure 6(b) to 6(e) show the tactile sensor outputs in each of
the seven sensor pads. All of those contacts are captured by the seven tactile sensor pads. However, they are on the edges of the fingers and the dramatic
surface normal differences between the object and the robotic hand at the contact location may confuse the classifier.


