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Abstract

3-D modelsof complex ernvironments,knowvn as
sitemodelsareusedin mary differentapplications
rangingfrom city planning,urbandesign,fire and
police planning,military applicationsyirtual real-

ity modelingandothers. Site modelsaretypically

createdby handin a painstakingand error prone
processThis paperfocusesontwo importantprob-

lemsin site modeling. Thefirst is how to createa

geometricandtopologicallycorrect3-D solid from

noisydata. The secondproblemis how to planthe

next view to alleviate occlusions,reducedataset
sizes,and provide full coverageof the scene. To

acquireaccurateCAD modelsof the scenewe are
usingan incrementalvolumetric methodbasedon

setintersectiorthatcanrecoser multiple objectsin

a sceneandmeige modelsfrom differentviews of

the scene. Thesemodelscan sene asinput to a

plannetthatcanreducghenumberof views needed
to fully acquirea scene.The plannercanincorpo-
ratedifferentconstraintdncluding visibility, field-

of-view and sensorplacementconstraintsto find

correctview pointsthatwill reduceghemodelsun-

certainty Resultsarepresentedor acquiringageo-
metricmodelof asimulatedcity sceneandplanning
viewpointsfor tamgetsin a clutteredurbanscene.

1 Introduction

Realistic3-D computemodelsarefastbecominga
stapleof oureverydaylife. Thesemodelsarefound
on TV, in the movies, video games,architectural
anddesignprogramsanda hostof otherareasOne
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of the more challengingapplicationsis in build-
ing geometricallyaccurateandphotometricallycor
rect3-D modelsof complex outdoorurbanerviron-
ments. Theseervironmentsare typified by large
structures(i.e. buildings) that encompass wide
rangeof geometricshapesndavery large scopeof
photometricproperties. 3-D modelsof suchervi-
ronmentsknown assite models,areusedin mary
different applicationsrangingfrom city planning,
urbandesign fire andpolice planning,military ap-
plications,virtual reality modelingandothers.This
modelingis doneprimarily by hand,and owing to
the compleity of theseenvironmentsjs extremely
painstakingResearchemwantingto usethesemod-
elshaveto eitherbuild theirown limited, inaccurate
modelsor rely onexpensive commerciadatabases
that are themseles inaccurateand lacking in full
featurefunctionality that high resolutionmodeling
demands For example,mary of theurbanmodels
currentlyavailablearea mix of graphicsandCAD
primitivesthat visually maylook correct,but upon
furtherinspectiorarefoundto begeometricallyand
topologicallylacking. Buildings may have unsup-
portedstructuresholes,danglingedgesandfaces,
andothercommonproblemsassociate#vith graph-
ics vs. topologicallycorrectCAD modeling. Fur
ther photometrigoropertiesof the buildingsareei-
ther missing entirely or are overlaid from a few
aerialviewsthatfail to seemary suriacesandhence
cannotaddthe appropriataexture andvisual prop-
ertiesof theenvironment.Ourgoalis to have amo-
bile systemthatwill autonomouslynove arounda
site and createan accurateand completemodel of
thatervironmentwith limited humaninteraction.

Thereareanumberof fundamentacientificissues
involved in automatedsite modeling. The first is



how to createa geometricandtopologicallycorrect
3-D solid from noisy data. A key problemhereis
meiging multiple views of thesamescendrom dif-
ferentviewpointsto createa consistenimodel. In
addition, the modelsshouldbe in a formatthatis
CAD compatiblefor further upstreamprocessing
andinterfacingto higherlevel applications A sec-
ond fundamentaproblemis how to plan the next
view to alleviate occlusionsand provide full cov-
erageof the scene.Giventhe large datasetsizes,
reducingthe numberof views while providing full
coverageof the sceneis a major goal. If a mo-
bile agentis usedto acquirethe views, thenplan-
ning andnavigationalgorithmsareneededo prop-
erly position the mobile agent. Third, the mod-
els needto integratephotometricpropertiesof the
scenewith theunderlyinggeometryof themodelto
producearealisticeffect. This requiresdeveloping
methodgthat canfuse andintegraterangeandim-
agedata.Fourth,methodghatreducethecomple-
ity of themodelswhile retainingfidelity areneeded.
This paperfocuseson solving the first two prob-
lems,modelacquisitionandview planning.

Previous work in the model acquisitionphasefo-
cuseson constructionof modelsof 3-D objects
from rangedata,typically small objectsfor reverse
engineeringor virtual reality applications. Exam-
ples of theseefforts include the groupsat Stan-
ford [17, 4], CMU [18], UPENN [7], and Utah
[16]. However, thesemethodshave not beenused
on larger objectswith multiple parts. Research
specificallyaddressinghe modelingof large out-
door ervironmentsincludesthe FACADE system
developedat Berkeley [5]. Thisis an exampleof
asystenthatmeigesgeometric3-D modelingwith
photometricpropertiesof the sceneto createreal-
istic modelsof outdoor urbanenvironments. The
systemhowever, requireshumaninteractionto cre-
ate the underlying 3-D geometricalmodel and to
male the initial associationbetween2D imagery
andthe model. Teller etal. [15, 3] aredeveloping
a systemto modeloutdoorurbanscenesising2-D
imageryandlarge sphericalmosaics.A numberof
othergroupsarealsocreatingimage-Baseg@anora-
masof outdoorscenesncluding[11, 6].

Our approacho automaticsite modelingis funda-
mentallydifferentfrom othersystemskFirst, we are

explicitly usingrangedatato createthe underlying
geometrianodelof thesceneWehave adeveloped
arohustandaccuratenethodto acquireandmeige
rangescansinto topologically correct3-D solids.
This systemhasbeentestedon indoor modelsand
we are extendingit to outdoorsceneswith multi-

ple objects. Secondly we are using our own sen-
sor planningsystemto limit the numberof views
neededo createa completemodel. This planner
allows a partially reconstructeanodelto drive the
sensingprocessyhereasnostotherapproacheas-
sumecoverageof the scenes adequater usehu-

maninteractionto decidewhich viewing positions
will beneeded/usedetailsonourapproactarein

thefollowing sections.

The testbedwe areusingfor this researctconsists
of a mobile vehiclewe areequippingwith sensors
and algorithmsto accomplishthis task. A picture
of the vehicle is shawn in figure 1. The equip-
mentconsistof anRWI ATRV mobilerobotbasea
rangescanne(80 meterrangespotscannewwith 2-
DOF scanningmirrorsfor acquiringawholerange
image), centimeteraccurag onboardGPS, color
cameradgor obtainingphotometryof thesceneand
mobile wirelesscommunicationdor transmission
of dataandhighlevel controlfunctions.Briefly, we
will describehow a site modelwill be constructed.
The mobile robot basewill acquirea partial, in-
complete3-D modelfrom asmallnumberof view-
points. This partial solid modelwill thenbe used
to planthe next viewpoint, taking into accountthe
sensingconstraintsof field of view and visibility
for the sensorsTherobotwill benavigatedto this
new viewpoint and meige the next view with the
partial modelto updateit. At eachsensingposi-
tion, both rangeand photometricimagerywill be
acquiredandintegratedinto the model. By accu-
rately calculatingthe position of the mobile base
via the onboardGPSsystemwe canintegratethe
views from multiple scansandimagesto build an
accurateand completemodel. Both 3-D and 2-D
data,indexed by the location of the scan,will be
usedto capturethefull compleity of thescene.

2 Modd Acquisition

We have developeda methodwhich takes a small
numberof rangeimagesand builds a very accu-
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Figure 1. Mobile robot baseand sensors(laser
rangefindernotshavn).

rate 3-D CAD model of an object[8, 10, 9, 2].
The methodis anincrementabnethatinterleares
a sensingoperationthat acquiresand meigesin-
formation into the model with a planning phase
to determinethe next sensorposition or “view”.
Themodelacquisitionsystenprovidesfacilitiesfor
rangeimageacquisition,solid modelconstruction,
and model meging: both meshsurfaceand solid
representationare usedto build a model of the
rangedatafrom eachview, which is thenmeiged
with the model built from previous sensingoper
ations. The planningsystemutilizes the resulting
incompletemodel to plan the next sensingoper
ation by finding a sensorviewpoint that will im-
provethefidelity of themodelandreduceheuncer
tainty causedby objectocclusion(including self-
occlusion).

We now describehow our systemworks. For each
rangescanameshsuriaceis formedand“swept”to

createa solid volumemodelof boththeimagedob-

jectsurfacesandtheoccludedvolume.Thisis done
by applyinganextrusionoperatotto eachtriangular
meshelement,sweepingt alongthe vectorof the
rangefindes sensingaxis,until it comesin contact
with a far boundingplane. Theresultis a 5-sided
triangularprism. A regularizedsetunionoperation
is appliedto the set of prisms, which producesa
polyhedralsolid consistingof threesetsof surfaces:
a mesh-lile surfacefrom the acquiredrangedata,
a numberof lateral facesequalto the numberof

verticeson the boundaryof the meshderived from

thesweepingperationandaboundingsurfacethat
capsone end. Eachof thesesurfacesare tagged
as“imaged”or “unimagedfor the sensoiplanning
phasehatfollows.

Each successie sensingoperationwill resultin
new informationthatmustbe meigedwith the cur-
rentmodelbeingbuilt, calledthecompositenodel.
The meging processtself startsby initializing the
compositemodelto be the entireboundedspaceof
our modelingsystem.Theinformationdetermined
by a newly acquiredmodel from a single view-
pointis incorporatednto the compositemodelby
performinga regularizedsetintersectioroperation
betweenthe two. The intersectionoperationmust
beableto correctlypropagatehe surface-typeags
from surfacesin the modelsthroughto the com-
positemodel. Retainingthesetagsafter meging
operationallows viewpointplanningfor unimaged
surfacesto proceed.

3 View Planning

The sensorplanning phaseplansthe next sensor
orientationso that eachadditional sensingopera-
tion recovers object surface that hasnot yet been
modeled.Usingthis planningcomponentmalesit
possibleo reduceghenumberof sensingperations
to recover a model: systemsawithout planningtend
to usehumaninteractionor overly large datasets
with significantoverlap betweenthem. This con-
ceptof reducingthe numberof scansis important
for reducingthetime andcomplexity of the model
building process.

In clutteredandcomple ervironmentssuchasur-
ban scenes,it can be very difficult to determine
wherea sensorshouldbe placedto view multiple
objectsandregions of interest. It is importantto
notethatthis sensoplacemenproblemhastwo in-
tertwinedcomponents. The first is a purely geo-
metric plannerthatcanreasoraboutocclusionand
visibility in the scene. The secondcomponents
anunderstandingf the opticalconstraintémposed
by the particularsensor(i.e. camerasand range
scannersjhatwill affect the view from a particu-
lar chosernviewpoint. Thesencludedepth-of-field,
resolutionof the image, and field-of-view, which
are controlledby aperturesettings,lenssizefocal



Figure 2: a) Simulated city ernvironment on
turntable. b) Visibility volume after 4 scans. c)
Discretizedsensoipositionsusedto determinenext
view.

Figure 3: Recwered 3-D models- all 3 objects
wererecoveredat once,using12 scanswith plan-
ning aftertheinitial 4 scans.Visibility andocclu-
sion volumeshave beenusedto plan the correct
next views for the sceneto reducethe uncertainty
in themodel.Noterecoreredarchesandsupports



lengthfor camerasndkinematicconstraintsn the
caseof a spotrangingsensar To properlyplan a
correctview, all of thesecomponentsnustbe con-
sidered.

Thecoreof our systemis asensoiplanningmodule
which performsthe computatiorof thelocusof ad-
missibleviewpointsin the 3-D spacewith respect
to a 3-D model of objectsand a setof tamget fea-
turesto beviewed. This locusis calledthe Visibil-
ity Volume At eachpoint of the visibility volume
a camerahasan unoccludedview of all tamget fea-
tures, albeit with a possiblyinfinite image plane.
Thefinite imageplaneandfocal lengthconstraints
will limit thefield of view, andthis imposesa sec-
ond constraintwhich leadsto the computationof
field of view coneswhich limit the minimum dis-
tancebetweenthe sensorand the tamget for each
cameraorientation. The integration of visibility
and optical constraintdeadsto a volume of can-
didateviewpoints. Thisvolumecanthenbeusedas
the goal region of the mobile robot navigation al-
gorithmwhich will move the robotto a viewpoint
within this volume.

The computationof the visibility volumeinvolves
the computationof the boundaryof the free space
(the part of the 3-D spacewhich is not occupied
by objects)and the boundarybetweenthe visibil-

ity volumeandthe occludingvolume which is the
complementof the visibility with respectto the
free space.In orderto do thatwe decomposehe
boundaryof the sceneobjectsinto convex polygons
andcomputethe partial occludingvolumebetween
eachcorvex boundarypolygonandeachof thetar

getswhich are assumedo be corvex polygons.
Multiple tamgetscanbe plannedfor, andthe system
can handleconcae tagetsby decomposinghem
into convex regions. We discardthose polygons
which provide redundaninformation,thusincreas-
ing the efficiencgy of our method. The boundaryof

theintersectiorof all partialvisibility volumes(see
next section)is guaranteedo be the boundarybe-

tweenthevisibility andthe occludingvolume. The

boundaryof the free spaceis simply the boundary
of thesceneobjects.

We now describehow the plannercomputesvisi-
bility takinginto accountocclusion.The methodis
basedn our previouswork in automatedisualin-

spection[13, 1]. Our modelbuilding methodcom-
putesa solid modelat eachstep. The facesof this
modelconsistof correctlyimagedfacesandfaces
that are the resultof the extrusion/sweeping@per

ation. We can label thesefacesas “imaged” or

“unimaged” and propagate/updattheselabels as
new scansareintegratedinto the compositemodel.
Thefacedabeled‘unimaged’arethenthefocusof

the sensoiplanningsystemwhich will try to posi-
tion the sensotto allow these“unimaged’facesto

be scanned.

Given an unimagedtamget face T' on the partial
model, the plannerconstructsa visibility volume
Viarget- This volume specifiesthe set of all sen-
sor positionsthat have an unoccludedview of the
target. This cancomputedn four steps:

1. ComputeVy,occiuded, thevisibility volumefor
T assumingherewereno occlusions a half
spaceononesideof T'.

2. ComputeM, the setof occludingmodelsur
facesby including model surface F' if F' N

Vunoccluded # (/)

3. Computethe setO of volumescontainingthe
set of sensorpositionsoccludedfrom T' by
eachelemenif M.

4. CompUttharget = Vunoccluded — Uo, Vo € O

Thevolumedescribedy V,,,,occiuded IS @half-space
whosedefiningplaneis coincidentwith thetamget's
face,with the half-spaces interior beingin the di-
rectionof thetarget's surfacenormal. Eachelement
of O is generatedy the decomposition-baseakc-
clusionalgorithmpresentedn [14], anddescribes
the setof sensorpositionsthata singlemodelsur
faceoccludedromthetamet. It isimportantto note
that this algorithmfor determiningvisibility does
notuseasensomodel,andin factpartof its attrac-
tivenesss thatit is sensofindependst. However,
for reasonsof computationalefficiengy it makes
sensdo reducethe numberof surfacesin M, and
thereforethe numberof surfacesusedto calculate
O. Thiscanbe doneby embodyingsensoispecific
constraintsnto the planner



3.1 Example: City Scene

We now shav a planning example of a comple
sceneusing multiple tagets. Figure 2ais a simu-
lated city scenemadeup of threemodelbuildings
placedon a laserscannetturntable. This sceneis
composeaf multiple objectsandhashigh self oc-
clusion. Themodelingprocesswasinitiated by the
acquisitionof four rangeimageswith 90 turntable
rotationsbetweenthem, to producea preliminary
modelthatcontainednary unimagedsuriaces Ap-
proximately 25% of the entire acquirablemodel
surface is at this point composedof “occluded”
surface (“acquirable model surface” in this con-
text meansthose“occluded” surfacesthat are not
in a horizontalorientation,suchasthe roofs). Af-
ter decimatingheoccludedsurfacesthe 30 largest
by areawere chosenanda planwasgeneratedor
them. Figure2b shaws V;,,4.: for eachof these30
surfaceswith adecimatedtopy of thecity sceneat
thecenterto allow thereadeito obsere therelative
orientations.Thesevisibility volumesarethenin-
tersecteavith Vj,ocement, Whichis thevolumerep-
resentinghe sensomplacementonstraintsto yield
the setsof occlusion-freesensomositionsfor the
targets,asshavn in figure2c. In thisimagingsetup
of aturntable-1aserV,,ocement iS acylindrical vol-
ume. A discretesolutionis desiredfor the proper
numberof degreesto rotatethe turntablefor the
next view. To accomplishthis, the sensorspace
hasbeendiscretizedevery 2°, with the total target
areaacquiredat eachpositionfound by testingthe
continuous-spacplansfor intersectionwith a ver
tical line at the appropriateposition on the cylin-
der representinghe sensorplacementconstraint.
This is a planning histogramwherethe height of
eachbarrepresentshe areaof target surfacesvisi-
ble from that sensoilocation,with higherbarsde-
noting desirablesensorlocations,lower onesless
so. The angleof turntablerotationis found by se-
lecting the peakin the planninghistogram. After
the next rangeimageis taken, its modelis meiged
with the existing compositemodel, and the plan-
ning processs repeatedAfter atotal of 12images
have beenautomaticallyacquiredmodeledandin-
tegrated,the final modelis shawvn in figure 3. The
modelshave beentexture mappedvith a Mondrian
painting Chederboad with Light Colors to high-

light thegeometricecoery.
3.2 Analysis: City Scene

Figure4 shavs somequantitatve resultsfrom the
modelbuilding phase Theentriesin thetableare:

e Vol - Thetotal volumeof themodel.

e Surface Area - The total surface areaof the
model.

e Occ. Area- The total areaof all occluded
“unimaged” surfacesthat have a significant
componentof their surface normalsin the
world x-y plane. This preventsthe inclusion
of "roof” featureswhich cannot be acquired
andshouldnot be plannedfor, in this sum.

e PlanArea- Thetotalsurfaceareaof thetamgets
for which planshave beengenerated.

e PercenPlanned Thesurfaceareaof planned-
for tamets, as a percentagef the total "oc-
cluded”surfacearea.

Each of thesemetricswas calculatedalgorithmi-
cally on the computermodel. As shawvn in figure
4, thefirst 4 views wereacquiredwithoutary plan-
ning (View 0 is justthe entirevolumebeforescan-
ning). In the datadescribingthe remainingviews
therearesomefeatureghatseemintuitive. Theto-
tal modelvolumedecreaseever time, asindeedit
mustfor a systemthat usessetintersectiorfor in-
tegrationand hasnot duplicatedary sensorview-
points. Of particularimportis the datain thefinal
column. Becausehe plansare computedusing a
fixed numberof surfacesat eachiteration,it is in-
terestingto seewhat percentag®f the total avail-
abletamgetareais beingplannedor. Clearly if ev-
ery target surface were consideredthis would be
100%eachtime. Eventhoughonly 30 of thelargest
targetsby areaare plannedfor, the percentof the
plannedareanever dropsbelov 10% of the total
area,andin mostcasess over 20%. This shavs
that the considerableeomputationatostsaved by
selectinga subsebf the tamgetsto planfor is a vi-
ablestratgy. The actualvolume of the city scene
has beencalculatedfrom measurementmadeby
handas362cm?.



View | Vol. | Surface| Occ. | Plan | Percent
No. Area Area | Area| Planned
0 4712 | 1571 1571

1 1840 | 1317 942

2 1052 | 1151 590

3 506 | 733 200

4 432 | 658 140

5 416 | 656 121 | 61 50%

6 404 | 659 104 | 28 27%

7 391 | 657 90 12 13%

8 386 | 647 84 8 10%

9 382 | 644 75 15 20%

10 380 | 651 62 7 11%

11 374 | 622 53 16 30%

12 370 | 604 36 9 25%

Figure4: Analysisof theplanners ability to reduce
uncertaintyandcreateaccuratenodels.

4 Integratingthe Field of View Constraint
for Cameras

To fully planviews, we needto take into consider
ation the constraintson the rangescannerto scan
unimagedsurfacesas we did in the previous sec-
tion. We also needto understandhe constraints
on cameraswvhich will be usedto acquirephoto-
metric propertiesof the scene We now discusghe
constraintselatedto 2-D imagingsensorsA view-
pointwhich liesin thevisibility volumehasanun-
occludedview of all targetfeaturesn thesensehat
all lines of sightdo notintersectary object(other
thanthe taget) in the ervironment. This is a ge-
ometric constraintthat hasto be satisfied. Visual
sensordiowever imposeoptical constraintshaving
to dowith thephysicsof thelens(Gaussiatenslaw
for thin lens),thefinite aperturethefinite extentof
theimageplaneandthefinite spatialresolutionof
theresultingimageformedon theimageplane,as
well aslensdistortionsandaberrations.

An important constraintis the field of view con-
straintfor a camerawhich is relatedto the finite
size of the active sensorareaon the imageplane.
Given a partial modelwith sometamget surfacest;
we canplanaviewpointto acquirea correctcamera
imageof thesesurfaces. Thetamgetst; areimaged
if their projectionlies entirely on the active sensor
areaon theimageplane. This active sensorareais

a 2-D planarregion of finite extent. Thusthe pro-
jectionof thetargetfeaturedn their entiretyon the
imageplanedependsiot only ontheviewpoint P,
but alsoon the orientationof thecamerathe effec-
tivefocallengthandthesizeandshapeof theactive
sensomrea.

For a specificfield of view anglea anda specific
viewing directionv we can computethe locus of

viewpointswhichsatisfythefield of view constraint
for the setof tametsT. If we approximatethe set
of talgetswith asphereS of radiusiy andof cen-
ter rg containingthem, thenthis locusis a circu-

lar coneCf,, (v, a, s, Ry), calledthefield of view

cone(seefigure 5). The coneaxisis parallelto v

andits angleis a. Viewpointscantranslatenside
this volume (the orientationis fixed) while the tar

getsareimagedontheactive sensoarea.Thelocus
of the apicesof theseconesfor all viewing direc-
tionsis a spherewhosecenteris rg andits radius
is R¢/sin(a/2) (figure5). For every viewpointly-

ing outsideof this spherethereexists at leastone
cameraorientationwhich satisfieghefield of view

constraintsincethisregionis definedas:

U Cfm)(V7 a,rs, Rf)
Vv

For viewpointsinsidethe sphereheredoesnot ex-
ist ary orientationwhich could satisfythe field of
view constraint(the camerais too closeto the tar
gets). Theapproximatiorof thetamgetsby a sphere
simplifies the field of view computation. It pro-
vides,however, a conserative solutionto thefield
of view problemsincewe requirethewhole sphere
to beimagedon the active sensomarea.

Thefield of view anglefor acircularsensohaving
aradiusof I, isa = 2tan~ (I, /2f), Where
f is the effective focal length of the camera. For
rectangulasensorshesenso@areais approximated
by the enclosingcircle. Thefield of view anglea
doesnotdependntheviewpointor theorientation
of the camera. In our system,both the visibility
volume andfield of view coneare representecs
solid CAD models. This allows usto useboolean
setintersectioron theseregionsof spaceo find an
admissibleviewing volumethatencodedoth con-
straints.Intuitively, this solid is theresultof thein-
tersectionof the visibility volumefor atargetwith



Rf/sin(a/2)

Figure5: Field of view cone (shadedregion) for
viewing directionv andfield of view anglea. The
targetsareenclosedn the sphereof radius 2 ¢

afield of view cone. For multiple tamgets,we sim-

ply intersectll thevolumesandfind theadmissible
region. Examplesof theseregionsaregivenin the

next section.

4.1 Example: Merging Visibility and Field-of-
View Constraints

To testthesealgorithms,we have built aninterac-
tive graphicalsimulatorwheresensomplanningex-
perimentscan be performed[12]. Figure6 is an
overviewn of this systemwhich allows usto gener
ate, load and manipulatedifferent typesof scenes
andinteractvely selecthetargetfeaturegshatmust
be visible by a camera. The resultsof the sensor
planningexperimentsaredisplayedas3-D volumes
of viewpointsthat encodethe constraints. Virtual
cameraglacedin thosevolumesprovide a means
of synthesizingviews in real-timeand evaluating
viewpoints. Thesystemcanalsobeusedto provide
animatedfly throughs”of thescene.

We now describean exampleof how this system
worksfor aplanningcameraviewpointsin anurban
ervironment. Figure 7 is a site modelof Rosslyn,
Virginia. Ourinputwasan Openlnventormodelof
the city (givento usby GDE Systemdnc.), thatis
a setof polygonswithout topologicalinformation.
While visually compelling,the modelis not topo-
logically correct. As statedearlier this is not un-
usual- thesemodelstypically have danglingfaces,
unsupportedstructuresand empty voids that can
causeproblemsin upstreamapplicationsthat ex-
pecta correctCAD model. Oncewe have created

a correctCAD model,we canthenusethe sensor
plannerto improve the modelvia navigationto re-
gionsin thesceneahatwill allow visibility andcor
rectfield of view for imagingsensors.To do this,
we have transformedahis modelinto a CAD model
usinga setof interactve tools we have developed
[12]. TheCAD modelconsistof 488buildingsand
we testedour sensorplanningalgorithmson a por
tion of thismodelwhoseboundaryconsistedf 566
planarfacegseefigure 8).

In thefirst experiment(figure 9a) onetarget (black
face)is placedinsidetheurbanareaof interest.The
visibility volumeis computedanddisplayedtrans-
parentpolyhedralvolume). For a viewing direc-
tion of v = (07,22°,0°) (Euler angleswith re-
specto theglobalCartesiartoordinatesystemynd
field of view angleof a; = 44°, thefield of view
locusis the transparentoneon the left. The set
of candidateviewpoints/; (vy,a;) (intersectiorof
visibility with field of view volume)is the partial
coneontheleft. For a differentviewing direction
v = (09,91°,0°) the setof candidateviewpoints
I1(v2,a1) is thepartialconeon theright.

In the secondexperiment(figure 9b) a secondar
getis addedsothattwo tamgets(blackplanarfaces)
needto be visible. The visibility volume,thefield
of view conefor thedirectionv; andthecandidate
volumesly(v1,a1) (left) andx(vs, a1) (right) are
displayed. The viewing orientationvs is equalto
(0°,71°,0°). The visibility volume and the can-
didatevolume I5(vq, a;) aresubsetf the corre-
spondingonesin thefirst experiment.

If we place a virtual camerainside the volume
I1(va,a1) (point (300.90, 56.18, 325.56)), setthe
field view angleto a; andthe orientationto v,
then the synthesizedview is displayedon figure
10a. Thetamgetis clearly visible. Placinga vir-
tual cameraoutsideof the visibility volume (point
(509.92,41.70, 366.80)) resultsin the synthesized
view of figure10h Clearlythetametis occludedoy
oneobjectof thescene Theorientationof thecam-
erais (0°,84°,0°) (for every viewpoint outsidethe
visibility volume theredoesnot exist ary camera
orientationthatwould resultin anunoccluded/iew
of thetamget). If we placea virtual cameraon the
boundaryof the the candidatevolume [;(v2, a1)
(point (375.59, 52.36, 348.47)), thenin the result-
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Figure6: Interactve sensoplanningsystem

Figure7: VRML Graphicanodelof Rosslyn

ing synthesizediiew (figure 10c) we seethat the
imageof the taigetis tangentto the imageof one
objectof thescene Againthe cameraorientationis
vy andthefield of view anglea;.

In figure 10d we seea synthesizedriew whenthe
camerais placedon the conical boundaryof the
candidatevolume I5(vg,a;). The cameras po-
sition is (159.42, 30.24,347.35). The transparent
spherds the sphereS; usedto enclosethetamgets.
We seethat S is tangento the bottomedgeof the
image,becauséehe viewpoint lies on the boundary
of thefield of view cone.Finally thefigure 10ehas
beengeneratedy a cameraplacedon the polyhe-
dral boundaryof the candidatevolume I5(vs, a)
(position(254.78, 49.28, 350.45)).

5 Conclusions

This paperdescribesa methodfor acquiringcom-
plex 3-D modelsfrom outdoorurbansceneshatin-

Figure 8: Solid CAD model computedfrom the
graphicsmodel.

cludesanintegral planningcomponentThe model
acquisitionprocessis basedupon an incremental
volumetric methodthat can meige multiple range
datascangnto a coherenttopologicallycorrect3-
D model. The plannercanincorporatevisibility,
field-of-view and sensorplacementconstraintsin
determiningwhereto take the next view to reduce
modeluncertainty Resultshave beenpresentedor
rangedataacquisitionof amodelof asimulatedur-
banscenewith high occlusiomnandfor planningcor
rectviewpointsfor acameran amodelof Rosslyn,
Virginia. usingan interactve planningsystem. It
can computevisibility andfield of view volumes
andtheirintersectionwhichyieldsalocusof view-
points which are guaranteedo be occlusion—free
and placestagets within the field of view. Ob-
jectmodelsandtamgetscanbeinteractiely manipu-
latedandcamergpositionsandparameterselected
to generatesynthesizedmagesof the tamgetsthat
encodeheviewing constraints.

Given a partial site model of a scene the system
canbe usedto planview positionsfor a variety of



tasks. We are currently extendingthis systemto
includeresolutionconstraintsandto createmobile
robot navigation algorithmsbasedupon the plan-
ner’s output. Futurework alsoincludesfusing the
rangedatamodelswith the 2-D cameramageryto
createevenmorerealisticsite models.
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Figure9: Two experiments. a) (top figure) Onetarget and b) (bottomfigure) two tamgetsare placedin
theurbanarea.Thetargetsareplanarfaces.The Visibility Volumes(transparenpolyhedralvolumes) the
Field of View Conesfor the directionv; (transparentones)andthe Candidate/olumes(intersectionof
thevisibility volumeswith thefield of view cones)for theviewing directionvy (left partialcones)andfor
the directionsvs (right partial cone,top figure) andvg (right partial cone,bottomfigure) aredisplayed.
TheField of View Conedor thedirectionsvs (top) andvs (bottom)arenotshavn.
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Figure10: Synthesizediiews. Singletarget (blackface): the camerais placeda) (left image)insidethe
candidatevolume, b) out of the visibility volumeandc) on the boundaryof the candidatevolume. Two
talgets:the cameras placedon d) the conicalboundaryande) the polyhedralboundaryof the candidate
volume.




