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Abstract We present an example-based planning frame-
work to generate semantic grasps, stable grasps that are func-
tionally suitable for specific object manipulation tasks. We
propose to use partial object geometry, tactile contacts, and
hand kinematic data as proxies to encode task-related con-
straints, which we call semantic constraints. We introduce
a semantic affordance map, which relates local geometry to
a set of predefined semantic grasps that are appropriate to
different tasks. Using this map, the pose of a robot hand
with respect to the object can be estimated so that the hand
is adjusted to achieve the ideal approach direction required
by a particular task. A grasp planner is then used to search
along this approach direction and generate a set of final grasps
which have appropriate stability, tactile contacts, and hand
kinematics. We show experiments planning semantic grasps
on everyday objects and applying these grasps with a physi-
cal robot.

Keywords Grasp planning · Task-specific grasping ·
Semantic grasping

1 Introduction

Grasp planning is a fundamental problem in the field of
robotics which has been attracting an increasing number
of researchers. Previously proposed methods are reasonably
successful in generating stable grasps for execution. How-
ever, there is still a gap between “stable robotic grasping”
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and “successful robotic grasping for object manipulation”. If
we consider planning a grasp for a specific manipulation task,
the stability of the grasp is no longer sufficient to describe
all of the constraints on the grasp. Different object manipu-
lation tasks could impose extra constraints on the grasp to be
used. Such constraints include relative hand orientation with
respect to the object, specific object parts the hand should
make contact with, or specific regions of the object the hand
should avoid. We call these constraints required by a specific
task semantic constraints. As is shown in Fig. 1 and Sect. 3,
a good robotic grasp should satisfy the semantic constraints
associated with an intended manipulation task.

In our work, we take an example-based approach to build a
grasp planner that considers semantic constraints of specific
tasks as a planning criterion and searches for stable grasps sat-
isfying these semantic constraints. This approach is inspired
by psychological research which showed that human grasp-
ing is to a very large extent guided by previous grasping expe-
rience Castiello (2005). To mimic this process, we propose
that semantic constraints can be embedded into a database
which includes partial object geometry, hand kinematics, and
tactile contacts. We design a semantic affordance map which
contains a set of depth images from different views of an
object and predefined example grasps that satisfy seman-
tic constraints of different tasks. These depth images help
infer the approach direction of a robot hand with respect
to an object, guiding the hand to an ideal approach direc-
tion. Predefined example grasps provide hand kinematic and
tactile information to the planner as references to the ideal
hand posture and tactile contact formation. Utilizing this
information, our planner searches for stable grasps with an
ideal approach direction, hand kinematics, and tactile contact
formation.

In Sect. 2, we discuss related work. In Sect. 3, we pro-
pose a definition of semantic grasps and semantic affordance
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(a) (b) (c) (d)

Fig. 1 Stable grasps with different semantic constraints satisfied. All
grasps are suitable for Pick-and-Place tasks. However, for grasps in
a, b, the hand blocks the opening area of the mug. Thus, they are not
suitable for Pour-Water tasks

maps. Detailed discussions and explanations of the planning
framework are presented in Sects. 4 and 5. Experiments are
done on several everyday objects and they are summarized
in Sect. 6, followed by discussions and conclusions in Sect. 7
and 8. Part of this work has been previously presented in Dang
and Allen (2012). Compared to the published paper, this arti-
cle contains more detailed explanation of our algorithm and
experiments.

2 Related work

There has been previous work on the problem of planning
stable robotic grasps. Ciocarlie and Allen (2009) proposed
the eigen-grasp idea. This method effectively reduces the
dimension of the search space for grasp planning and results
in a faster search process for form-closure grasps. Based on
this approach, a data-driven grasping pipeline is proposed by
Goldfeder and Allen (2011) to transfer stable grasps between
similar objects. Geidenstam approximated 3D shapes with
bounding boxes on decomposed objects and trained a neural
network to learn good grasps Geidenstam et al. (2009). Kehoe
et al. (2013) utilized cloud-based computing techniques to
facilitate 3D robot grasping and implemented a novel robot
grasping pipeline. Berenson and Srinivasa (2008) and Beren-
son et al. (2007) proposed methods to generate collision-free
stable grasps for dexterous hands in cluttered environments.
Saxena et al. (2007) and Popovic et al. (2010) used syn-
thesized image data to train a classifier to predict grasping
points based on features extracted from 2D images. Boular-
ias et al. (2011) proposed a probabilistic approach based on
Markov Random Field for learning to grasp objects. Dogar
and Srinivasa (2011) introduced a framework for planning
grasping strategies using a set of actions derived analytically
from the mechanics of pushing. Ben Amor et al. (2008) pro-
posed a novel data-driven method to synthesize natural look-
ing grasps. All the work above focuses on the stability of a
grasp without considering the suitability of the grasp for a
specific robotic task.

Compared to the previous work above, our work on
grasp planning takes into consideration not only the sta-

bility of a grasp but also its suitability to a specific task.
Along this direction, there has also been previous work
in planning grasps considering some specific task require-
ments. Researchers, such as Li and Sastry (1987), Prats et
al. (2007), and Haschke et al. (2005), analyzed task-specific
grasping using task wrench space. These approaches are
mainly based on the analysis of contacts and potential wrench
space of a grasp, since optimal grasp wrench space could
improve the performance of object manipulation tasks that
require dynamic stability as indicated by Manis and Santos
(2011a,b). However, some geometry related constraints can-
not be guaranteed by the analysis of grasp wrench space.

In our work, we take a more explicit approach to represent
these constraints. In previous work, Rosales et al. (2010)
presented a method to solve the configuration problem of
a robot hand to grasp a given object with a specific contact
region. Ying et al. (2007) took a data-driven approach to grasp
synthesis using pre-captured human grasps and task-based
pruning. Song et al. (2010) designed a Bayesian network
to model task constraints in goal-oriented grasping. Gioioso
et al. (2012) introduced an object-based approach to map
human hand synergies to robot hands with different hand
kinematics focusing on specific tasks.

In addition, some researchers have been trying to analyze
graspable parts for semantic grasping. Detry et al. (2010)
developed a method to analyze grasp affordance on objects
based on object-edge reconstructions. Hillenbrand and Roa
(2012) designed an algorithm to transfer functional grasps
through contact warping and local replanning. Ben Amor
et al. (2012) developed an imitation learning approach for
learning and generalizing grasping skills based on human
demonstrations. Aleotti and Caselli (2011, 2012) proposed
a part-based planning algorithm to generate stable grasps.
Sahbani and El-Khoury (2009) proposed a method to plan
grasps on handles of objects by training a classifier on syn-
thesized data. Varadarajan and Vincze (2011a,b) used pro-
posed methods to recognize functional parts of objects for
robotic grasping.

It is widely accepted that many everyday objects are
designed with a graspable part. However, with certain knowl-
edge of where the graspable part is, it is still difficult to
determine how to grasp the graspable part appropriately. In
fact, looking solely at the stability of the grasp, the poten-
tial task wrench space, or the location of the graspable part
of an object leaves out some important semantic constraints
for object grasping in the context of a specific manipulation
task, which include (1) how a robot hand is oriented and
shaped with respect to the object and (2) the locations of the
contacts established between the hand and the object. Dif-
ferent from the work above, we will take these aspects into
consideration.
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Grasp Domain

stable task-specificsemantic

Fig. 2 A topological categorization of the domain of robotic grasps [a
robotic grasp is specified by a combination of (i) position and orientation
of a robot hand with respect to an object and (ii) joint angles of a robot
hand. Robot arm kinematics is not considered]. There is a subset of
grasps which are stable. There is also a subset of grasps which are task-
specific. Task-specific grasps may or may not be stable. The intersection
of the stable grasp domain and the task-specific task domain is a subset
of grasps that are both stable and task-specific, which we call semantic
grasps. In this work, we focus on planning semantic grasps

3 Semantic grasping

3.1 Semantic constraints and robotic grasping

Most robotic grasps are used for an intended manipu-
lation task. To perform a specific manipulation task, some
constraints are required to be satisfied by the robotic grasp.
For a mug, Pick-and-Place and Pour-Water are two possible
manipulation tasks. For Pick-and-Place, stability is one con-
straint. This constraint requires a grasp to be able to resist pos-
sible external disturbances during the manipulation process.
For Pour-Water, stability is still necessary, but in addition to
this, an extra constraint might require the robot hand to avoid
blocking the opening area of the mug or to grasp the handle
of the mug.

In order to plan appropriate grasps for different tasks, it
is essential to satisfy semantic constraints. Figure 1 shows
some examples of robotic grasps on a mug that are evaluated
as stable grasps according to the epsilon quality metric in
Ferrari and Canny (1992). All the grasps in Fig. 1 are stable
in terms of force/form closure and they are all suitable for
a Pick-and-Place task. However, if we consider using these
grasps for a Pour-Water task, only grasps shown in Fig. 1c, d
are suitable because in the first two grasps the palm blocks the
opening area of the mug conflicting with the second seman-
tic constraint required by a Pour-Water task. This example
demonstrates that semantic constraints for grasps should be
considered in grasp planning procedures.

Figure 2 shows a topological categorization of the domain
of robotic grasps. Stable grasps only consider the stability of a
grasp in resisting external disturbances. Task-specific grasps
may not require the stability. In this work, we focus on the
intersection of these two sub-domains of grasps, which are

Fig. 3 A typical grasping pipeline considering semantic constraints.
In the grasp planning phase, semantic grasps are planned and stored
into a semantic grasp database. In the grasp execution phase, a planned
semantic grasp is retrieved and executed based on requested manipula-
tion tasks. Once a semantic grasp is executed, a manipulation chain as
proposed in Dang and Allen (2010) could be executed to accomplish a
manipulation task

both stable and task-specific. We refer to this subset of grasps
as semantic grasps.

In general, a grasping pipeline consists of three phases:
grasp planning, grasp execution, and task execution. Figure 3
illustrates a typical grasping pipeline where our method fits
in: compared to a traditional robotic grasping pipeline, our
method considers semantic constraints in the grasp planning
phase while keeping the rest of the pipeline intact. In the
grasp planning phase, our grasp planning method is used
to build a semantic grasp database. In the grasp execution
phase, semantic grasps are retrieved and applied to the objects
according to requested manipulation tasks. Once a semantic
grasp is executed, a robot can proceed to the following manip-
ulation task. We follow such a grasping pipeline where grasp
planning and execution are separated and focus on develop-
ing a grasp planning method that considers semantic con-
straints.

3.2 Embedding semantic constraints

Semantic constraints are high-level concepts that are difficult
to describe and difficult to generalize. Instead of representing
semantic constraints explicitly, we attempt to specify seman-
tic constraints using a predefined example grasp and use the
example grasp to infer corresponding semantic constraints.

Many everyday objects are designed such that their
geometries are appropriate for the corresponding manipula-
tion tasks that they are associated with. For example, a mug
has a handle and a body which are designed to be grasped.
For a Pour-Water task, it is always a good strategy to grasp
the body of the mug or to grasp the handle from the direc-
tion in which it stretches away from the body, because these
two grasps satisfy the two semantic constraints a Pour-Water
task requires: (1) grasp stability and (2) avoid blocking the
opening area of the mug.

Semantic constraints imply requirements on the following
aspects:
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– Graspable part of the object to be approached
– Hand-object relative orientation
– Hand posture
– Contact locations on the hand

The graspable part of an object to be approached by a
robot hand can be encoded using 3D depth images of the
object from the approach direction of the hand. The depth
images describe the partial geometry in view. It also indi-
cates the orientation of this part of the object with respect to
the hand. Hand posture can be derived directly from the joint
values of the hand and contact information can be extracted
from a set of tactile sensor arrays on the hand. Thus, we pro-
pose embedding semantic constraints into the related sensory
data. Given an example grasp which has already satisfied spe-
cific semantic constraints, we can compare these quantities to
those of grasp candidates on the same object or novel objects
of the same class. If they are similar, we consider the cor-
responding semantic constraints as satisfied. Otherwise, we
consider the semantic constraints as unsatisfied.

3.3 Semantic grasp

We define the semantics of a robotic grasp as the intended
manipulation task whose semantic constraints are satisfied
by the grasp. It is a symbolic label or a phrase that uniquely
identifies a task of the object (e.g. “pour-water”).

A semantic grasp is a robotic grasp that satisfies the
semantic constraints imposed by a manipulation task. We
write a semantic grasp formally as

SG =< S,K, T >, where

S is the semantic label of the grasp, e.g. “pour-water”; K is
the hand kinematic data of the grasp, e.g. a set of joint angles
and the orientation and location of the wrist with respect to
the object; T is the tactile contacts of the grasp, e.g. arrays
of tactile sensor readings.

3.4 Semantic affordance map

In Sect. 3.2, we discussed that the semantic constraints can be
indirectly embedded in the object depth images, hand kine-
matic data, and tactile contacts. We now introduce a semantic
affordance map MC , which encapsulates all the related infor-
mation and associates semantic grasps with an object class
C.

A semantic affordance map MC is a set of triples:

MC = {< P,F(D),B >}, (B = {SG}), where

P is the hand approach direction to the object; D is a depth
image of the object from P; F(·) is a function that extracts
features from D, which will be explained in Sect. 4.2; B is
a set of semantic grasps associated with P , which can be

defined with different robot hands. Two relations are estab-
lished in this map:

1. F(D) → P , given an image feature descriptor F(D) of a
depth image of an object from a particular viewing angle
(approach direction), this mapping tells us the current
approach direction of the hand to the object. If the object
is symmetric, this mapping can be one to many.

2. F(D) → B, given an image feature descriptor F(D) of
a depth image of the object from a particular viewpoint,
this mapping tells us the possible semantic grasps on the
corresponding geometry.

A semantic affordance map is considered as a manual for
semantic usage of an object. In a semantic affordance map, it
is probable that many triples have an empty set of semantic
grasps. This is because there are many approach directions
that are not good for any manipulation tasks. So, only a few
B’s in a semantic affordance map contain semantic grasps.
We will discuss a way to build a semantic affordance map in
Sect. 4.

3.5 Planning method overview

Before we get into the details, we now provide an overview
of our method. Our planning method is inspired by Castiello
(2005) who showed that both cognitive cues and knowledge
from previous experience play major roles in visually guided
grasping. We use an example-based approach to mimic this
experience-based procedure. By analogy, MC acts like an
experience base of grasping objects of class C. B records all
the successful grasps that are experienced before. P and D
are used to mimic human knowledge of object geometry.

To plan a grasp with semantics S on a target object of class
C, we assume a semantic affordance map on this object class,
MC , has been built using a representative object of this class.
The representative object and the target object are similar in
shape. With this semantic affordance map, a semantic grasp
of semantics S is retrieved as a reference. Then, an initial
approach direction to the target object is arbitrarily chosen
and a depth image of the target object from this approach
direction is taken. With the depth image, the current hand
approach direction to the target object is estimated by look-
ing up in the semantic affordance map. Utilizing this esti-
mated approach direction, along with the tactile and kine-
matic information stored in the predefined semantic grasp,
our method adjusts the hand to the ideal approach direction
and searches along the ideal approach direction for stable
grasps that have similar tactile contact formation and hand
kinematics. With all these similarities being achieved, we
consider the semantic constraints specified by the predefined
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Fig. 4 An example of semantic affordance map built on a mug model
(shown in the middle). In this example, we show three entries of this
semantic affordance map, labeled as Entry a, Entry b, and Entry c
at the upper left corner of each box. Each entry is associated with an
approach direction to the mug model indicated by an arrow next to the
box. In each entry, we show (1) the approach direction P in the form of
a latitude-longitude combination, (2) the depth image D of the object
from the approach direction, (3) the shape context feature F(D)based

on the depth image, and (4) the bag of semantic grasps B along the
approach direction. The color of a depth image goes from light green
(close) to red (far). For Entry a and Entry c, only one semantic grasp
is recorded in the bag of semantic grasps B. For Entry b, there is no
appropriate semantic grasp associated. The reason is that the robot hand
is approaching the mug in an inappropriate direction towards the handle
of the mug, which can be seen from the depth image in this entry. So
the bag of semantic grasps of this entry is empty (Color figure online)

semantic grasp are also satisfied by the newly planned grasp
on the target object.

In the following sections, we discuss in detail how to build
a semantic affordance map for an object class and the steps
our grasp planner takes to plan semantic grasps for a specific
manipulation task.

4 Building a semantic affordance map

A semantic affordance map is dedicated to one object
class. It is built in simulation and is designed to be an expe-
rience base that stores semantic grasps suitable for possible
manipulation tasks an object of this class could be involved
in. It also provides information to our grasp planner about
how to satisfy these semantic constraints by relating semantic
grasps with partial object geometry and approach direction.
To build a semantic affordance map, we first choose a repre-
sentative object of an object class and collect depth images
from different approach directions to this object. This will
provide all the P’s and D’s of a semantic affordance map.
Then, these depth images are encoded and all the F(D)’s
are obtained. As the last step, exemplar semantic grasps are
manually defined and stored in the B’s where they are asso-
ciated with the ideal approach directions. In the rest of the
paper, we use the term source object to refer to the represen-
tative object of an object class in order to distinguish it from
a target object.

Figure 4 illustrates a semantic affordance map of mugs
using a representative mug model shown in the middle. We
show detailed components of an entry as defined in Sect. 3.4.
Although there are many entries in this semantic affordance
map associated with different approach directions, we only
show three of them here: Entry a, Entry b, and Entry c.
Entry a is associated with an approach direction from the
top of the mug. It stores the depth image of the mug from the
top, the corresponding shape context feature, and a semantic
grasp with a semantic label “pick-and-place”. This grasp can
be used for “pick-and-place” tasks. Entry c is another exam-
ple storing related information for a semantic grasp labeled
with semantics “pour-water”. This grasp is suitable for Pour-
Water tasks. Entry b is an entry with whose approach direc-
tion there is no valid semantic grasp associated since a robot
hand will have to interact with the handle and the body of the
mug from an inappropriate approach direction. In this spe-
cific semantic affordance map, we do not specify a semantic
grasp on the handle of the mug. The reason is that the robot
hand we used in our work is relatively too big to grasp the
handle properly.

4.1 Sampling strategy

To sample around an object model in simulation and obtain
the object’s partial geometry information, we first create a
unit sphere centered at the geometrical center of the object
model. Along the latitude lines and the longitude lines, every
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(a) (b)

Fig. 5 Shape context computation and examples. a Illustrates the coor-
dinate systems we used to compute shape context features. C − xyz is
the camera coordinate system with its origin at point C . In an eye-on-
hand system, C is also the origin of the palm. The three dimensions
of the spherical coordinate system for our shape context feature are as
follows: d is the depth from the origin of the camera; α is the latitude in
the camera coordinate system; β is the longitude in the camera coordi-
nate system. b Shows two examples of our shape context features based

on the depth images of the object obtained from the approach direction
specified by the arrow. From left to right show the approach direction
with a black arrow, the depth image from the approach direction, the
point cloud reconstructed from the depth image, and our shape context
feature of the depth image. a The spherical coordinate system for com-
puting our shape context feature, b two examples of our shape context
feature

2◦, we collect a depth image of the object model using
OpenGL. The virtual camera in OpenGL is placed at the
crossing of the longitude and latitude with its horizontal axis
aligned with the latitude line and its depth axis aligned with
the radius of the unit sphere. We also move the virtual cam-
era along the radius such that the bounding box of the object
model is contained within the field of view. By doing this,
we make sure that the entire object model is in the view.

4.2 Encoding a depth image

Given a set of sampled depth images using the strategy above,
we encode them such that they can be used as keys to index all
the samples effectively. Then, using the relation F(D) → P
as in Sect. 3.4, we can estimate the approach direction of a
robot hand given the depth image from its angle. To encode
a depth image, we use a similar idea from the shape context
method by Belongie et al. (2002).

4.2.1 Shape context in 3D

Shape context is originally designed to measure the relation-
ship of contour points on a shape with respect to a reference
point on the contour. It captures the geometrical distribution
of other points relative to the reference in a pre-designed his-
togram space, e.g. log-polar space in Belongie et al. (2002).
So, it can be used as a global discriminative feature. In our
problem, we want to capture the geometry feature of the par-
tial object which is approached by the hand. We also want
to distinguish the pose of the hand with respect to the partial
object. To this end, we choose the origin of the palm, which

is also where a virtual camera is placed to take a depth image
of the object model, as the reference point to compute our
shape context feature.

To compute our shape context feature from a depth image,
we first transform each point of the object in the reconstructed
point cloud from the Cartesian space into a 3-dimensional
spherical coordinate space. One dimension is the radial dis-
tance (d) from the camera origin to a point on the object.
This data is stored directly in the depth image. The other
two dimensions are the latitude (α) and the longitude (β) of
each point in the camera coordinate system. In Fig. 5a, we
illustrate these dimensions graphically. The camera is placed
at point C looking towards the object’s center of gravity T
with its x, y, z axes oriented as drawn in the figure. Then,
for a given point P sensed from a depth image, its latitude
α is calculated as the angle between the z axis and ray C P’s
projection on plane xCz. Its longitude β is measured as the
angle between the z axis and ray C P’s projection on plane
yCz.

4.2.2 Normalization

In our sampling strategy, the distance at which a depth image
is taken is determined by the actual size of the object in the
field of view. So, for objects of different sizes, the distances
at which the camera is placed would be different. We do not
want this difference to influence our encoding. So we normal-
ize the depth of each point such that their values are rescaled
to between zero and one. For the other two dimensions: the
longitude and latitude, we also normalize them so that their
values are rescaled to between zero and one.
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(a) (b)

Fig. 6 Tactile sensor configuration of a Barrett hand. 96 tactile sensors,
illustrated in red, are distributed on the surface of the palm and three
fingertips. a Palm, b finger

After we have normalized the spherical coordinates for
each point, all the values in each dimension range from zero
to one. Then, we divide the normalized 3-dimensional spher-
ical space into different sub-regions similar to Fig. 5a. We
calculate the percentages of points in each sub-region and
build a histogram out of it. Figure 5b shows two examples of
our shape context feature. Using this feature, we can estimate
approach direction based on a depth image. We will explain
our method to estimate approach direction in Sect. 5.2.

4.3 Recording semantic grasps

From the previous sampling step, we have already computed
all the P’s and F(D)’s of a semantic affordance map. To
complete a semantic affordance map, we need to input sets
of semantic grasps and associate them with ideal approach
directions. To do this, we manually select a good approach
direction for each possible manipulation task. Along this
approach direction, a semantic grasp is specified manually.
Then, the following three components are recorded and asso-
ciated with this semantic grasp. The first component is the
semantic label of the grasp. This can be a short phrase such
as “pick-and-place” or “to-drill”. The second component is
the hand kinematic data, which indicate the shape of the hand
when the grasp is applied. To store the hand kinematics, we
store the angle value for each joint. The third component is
the tactile contacts. To record them, we store the location
and the orientation of the active contacts when a grasp is
being applied on an object. As an example, Fig. 6 illustrates
the distribution of tactile sensors on a Barrett hand. Figure 7
shows one grasp and the three components that are stored
with the grasp in the semantic affordance map. Throughout
this process, we have defined a semantic grasp and associ-
ated it with one approach direction to the object. If there is
more than one approach direction for a specific manipulation
task, we apply the same method to define additional semantic
grasps along other approach directions.

Fig. 7 A semantic grasp example and the related grasp information
stored. In this example, the grasp semantic label (S) is a phrase “pour-
water” which specifies the robotic task this grasp is suitable for. The
hand kinematic data (K) is represented by the array of seven numbers
which correspond to the seven joint angles of the robot hand. The tactile
sensor readings (T ) record the simulated force values sensed on each of
the sensors which are distributed on the fingertips and the palm. Based
on K and T , the location and orientation of each tactile contact can be
calculated

5 Planning semantic grasps

Given a manipulation task and a semantic affordance map,
planning a semantic grasp on a target object can be thought
of as a search for stable grasps that satisfy the semantic con-
straints indicated by an exemplar semantic grasp predefined
on a source object. Figure 8 illustrates the three steps of our
planning procedure. In the following, we will explain each
of the three steps in detail.

5.1 Step 1: retrieve a semantic grasp

The first step is to retrieve a predefined semantic grasp from
the semantic affordance map. This is done by searching
within the semantic affordance map and looking for semantic
grasps with an appropriate semantic label according to the
requested manipulation task. In the following steps of the
pipeline, we will use this semantic grasp as a reference for
planning. In Fig. 8, we are trying to plan a semantic grasp on
a drill (shown as the target object on the top of Fig. 8). The
intended task is “to-drill”. Thus, the semantic grasp which
has a semantic label “to-drill” is retrieved from the semantic
affordance map (shown in “Step 1” in Fig. 8).

It is worth noting that it is possible that there are more
than is semantic grasp associated with a required task. In this
situation, more information should be given and considered
in the decision making process, such as kinematic feasibility
of the robot arm.

5.2 Step 2: achieve the ideal approach direction

Once the exemplar semantic grasp is retrieved, the first
semantic constraint we need to satisfy on the target object is
the geometric constraint which requires a specific part of the
target object to be grasped. This constraint can be inferred
by the approach direction of the hand. So, in order to get
to the most appropriate approach direction required by the
semantic constraints, we first estimate the current approach
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Fig. 8 Process of planning a semantic grasp on a target object (i.e., a
drill) with a given grasping semantics “to-drill” and a semantic affor-
dance map built on a source object (i.e., another drill shown in Step
1, which is similar to the target drill). Step 1 is to retrieve a seman-
tic grasp that is stored in the semantic affordance map. This semantic
grasp is used as a reference in the next two steps. Step 2 is to achieve the

ideal approach direction on the target object according to the exemplar
semantic grasp. Once the ideal approach direction is achieved, a local
grasp planning process starts in Step 3 to obtain stable grasps on the
target object which share similar tactile feedback and hand posture as
that of the exemplar semantic grasp

direction of the hand with respect to the object, which is done
by using the relation F(D) → P as we discussed in Sect. 3.4.
To do this, a depth image of the target object is taken from
the hand’s current approach direction. We encode the depth
image as in Sect. 4.2 to generate our shape context feature.
Then, we look up in the semantic affordance map and search
for k nearest neighbors based on this feature vector.

To match against the entries in the semantic affordance
map, we used χ2 distance to calculate the difference between
two feature vectors. Since k could be larger than one, we
need to use some rules to decide a neighbor that is most
widely agreed among these k nearest neighbors. To do this,
we calculate a cumulative distance for each neighbor from
the remaining neighbors. This cumulative distance indicates
the extent to which other neighbors agree with it. If the cumu-
lative distance is very small, it means this neighbor is very
close to all the other neighbors, thus it is agreed by all the
other neighbors. If the cumulative distance is large, it indi-
cates that there are some neighbors far away from this one
and they do not agree with this neighbor. We illustrate this
scheme in Algorithm 1. In this algorithm, D(·) denotes a dis-
tance function that calculates the actual angle between the
approach directions represented by the two neighbors. The
most agreed neighbor is used as an indication to the current
approach direction of the robot hand to the object.

Once the current approach direction is estimated, adjust-
ment can be done by calculating the transform between the
current approach direction and the ideal approach direction
that satisfies the semantic constraints.

5.3 Step 3: refine to a stable grasp

Based on the previous two steps, a promising hand
approach direction has been achieved for the specific manip-
ulation task. This is only a good start to satisfy all the seman-
tic constraints embedded in the predefined semantic grasp,
because solely relying on the approach direction is not suf-

Algorithm 1: Find the most agreed neighbor
Input: k nearest neighbors N = {n1, . . . , nk}
Output: the most agreed neighbor nm

1 Initialize array v with k entries for cumulative distances
2 foreach ni ∈ N do
3 foreach n j ∈ N − {n j } do
4 //D(nx , ny) measures the angle between the two approach

directions associated with nx , ny
5 v[i]+ = D(ni , n j );
6 v[ j]+ = D(n j , ni );
7 end
8 end
9 nm = arg mini (v[i])

10 return nm

ficient. For example, the stability of the grasp, similar kine-
matics, and tactile contacts of the hand cannot be guaranteed
simply by approaching the object from an ideal direction.
We consider them in a grasp refinement step. In this step, we
use the Eigengrasp planner by Ciocarlie and Allen (2009)
to generate a sequence of stable grasps along the approach
direction. We then sort them according to their similarities
with the predefined semantic grasp. We will explain these
methods below.

5.3.1 The eigengrasp planner

The Eigengrasp planner is a stochastic grasp planner that
searches for stable grasps in a low-dimensional hand pos-
ture space spanned by eigenvectors called Eigengrasps. As
an example, for a Barrett hand which was used in our experi-
ments, it has seven joints and 4◦ of freedom. Two Eigengrasps
E =< e1, e2 > were used to describe the hand posture. One
controls the spread angle and the other controls the finger
flexion as illustrated in Fig. 9. The wrist pose is sampled
locally around the initial grasping pose using a complete
set of six parameters: P =< roll, pitch, yaw, x, y, z >.
These six parameters generates a hand offset transformation
from the initial hand pose. Thus, the search space for the
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Fig. 9 Two Eigengrasps used to specify the hand posture of a Barrett hand, e1 and e2. e1 controls the spread angle between two fingers. e2 controls
the finger flexion of all the three fingers. Interested readers could refer to Ciocarlie and Allen (2009) for more details about Eigengrasps

Eigengrasp planner in our case is an eight-dimensional space
S = {E, P}. The stability of a grasp is evaluated using the
epsilon quality, ε, which measures the minimum magnitude
of external disturbance to break the grasp Ferrari and Canny
(1992).

In order to generate grasps with similar hand kinemat-
ics as the exemplar semantic grasp, during this refinement
step, we place a constraint on the hand kinematics, i.e. the
DOF’s of the hand. We use the corresponding Eigengrasps
of the DOF values recorded in the semantic grasp as a kine-
matic reference and probabilistically limit the search region
to be around this kinematic reference. More detailed explana-
tion about grasp neighbor generation and the stochastic grasp
planner can be found in Ciocarlie and Allen (2009). Based on
this setup, the output grasps of the planner should share sim-
ilar kinematics of the exemplar semantic grasp, maximumly
preserving a similar hand posture during grasping.

5.3.2 Grasp ranking

The Eigengrasp planner generates a list of stable grasps
which share similar hand kinematics with the exemplar
semantic grasp. In this step, we would also like to have a
more detailed evaluation of their similarity to the exemplar
semantic grasp. Our similarity measurement considers both
the tactile contacts and the hand kinematics. With similar
tactile contacts and hand kinematics, we expect the hand to
touch similar parts of the object which improves the possibil-
ity that the planned grasp holds the object in the way which
is defined in the exemplar semantic grasp. To measure the
similarity between a newly found grasp candidate and the
exemplar semantic grasp, we designed a distance function as
follows.

dist (G1,G2) = 1

2
·

N1∑

m=1

min
n

(||c1
m − c2

n||)

+ 1

2
·

N2∑

m=1

min
n

(||c2
m −c1

n||)+α|| js1− js2||

(1)

where ci
m is the mth contact of the grasp i, Ni is the number of

contacts of grasp i , and jsi is the joint values for the selected
DOFs of the grasp i . α is a scaling factor for the euclidean
distance between the joint angles of the selected DOFs. The
first two parts of the right side of the equation measure the
euclidean distance between the two sets of contacts in terms
of their Cartesian positions. The third part measures the dif-
ference between the joint angles for the selected DOFs. The
smaller the distance is, the more similar the two grasps are.
More detailed explanation about the similarity evaluation can
be found in our work in Dang and Allen (2014).

6 Experiments

In this section, we show the experiments we have conducted.
We first explain how we built our semantic affordance maps
on several everyday objects. We present evaluation results
of the performance of our method to estimate the approach
direction based on the shape context feature described in
Sect. 4.2. Then, we show our experiments on planning seman-
tic grasps inside the GraspIt! simulator by Miller and Allen
(2004) and grasping objects with the planned semantic grasps
using a physical robot. The last two sets of experiments cor-
respond to the first two levels of the grasping pipeline shown
in Fig. 3. The object classes are manually determined in our
current experimental setup. In the future, object classification
algorithms can be exploited to automate this process.

6.1 Semantic affordance maps

The first step of our experiments was to build semantic affor-
dance maps for different object classes. We chose four source
objects (shown in Fig. 10) from four object classes which
we frequently encounter in our everyday life: mugs, phones,
handles, and drills. In table-top object manipulation tasks,
objects are usually placed in their canonical upright orienta-
tions. So, we assumed that all the object models are defined
in their canonical upright orientations with respect to a com-
mon plane. In a physical experiment, this common plane is
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Fig. 10 Source objects selected as representatives of four object
classes: mugs, phones, handles, and drills. A semantic affordance map
is built based on each of these objects

the surface of a table. For each of these source objects, we
built a semantic affordance map using the method discussed
in Sect. 4. In the sampling step, we collected depth images
of each object model from 8100 different approach direc-
tions. To encode a depth image, we empirically discretized
the spherical coordinate space by 10 steps along dimension d,
6 steps along dimensionα, and 6 steps along dimensionβ (see
Fig. 5a). Thus, the length of our shape context feature vector
is 10×6×6 = 360. To define exemplar semantic grasps, the
Graspit! simulator was used to record stable grasps suitable
for related tasks, which were specified and determined by a
human user. Tactile sensors were simulated based on the soft
finger model proposed by Ciocarlie et al. (2007). Detailed
explanation about our tactile simulation process can be found
in our previous work Dang et al. (2011). As an example, Fig. 4
shows three entries of a semantic affordance map on mugs.

6.2 Time for building a semantic affordance map

Building a semantic affordance map involves two steps. The
first step is to generate partial object geometries. The sec-
ond step is to associate semantic grasps with ideal approach
directions. In our work, the machine we used to compute
depth images was equipped with an Intel Core 2 Quad Q8300
processor, an Nvidia Quadro FX1500 GPU, and 4 GB RAM.
To generate 8100 depth images for an object model, it took
about 45 min without any code optimization. It is worth not-
ing that this step takes place offline and the generated depth
images can be stored and reused. To define a semantic grasp,
it took<3 min for a user to specify hand kinematics, test grasp
stability, and associate the grasp with an approach direction.

6.3 Estimating an approach direction

In our method, the “Step 2” as described in Sect. 5 and Fig. 8
is to estimate the current approach direction and use the esti-
mated pose information to adjust the hand to achieve the ideal
approach direction from which a grasp refinement procedure
takes place in “Step 3” (see Sect. 5; Fig. 8). In “Step 3”,
the search for stable grasps is probabilistically constrained
within the neighborhood of the adjusted approach direction
achieved in “Step 2”, so it is beneficial to see how accurate the
approach direction estimation is. This could help us decide

Fig. 11 Target objects selected in our experiments. Each of these target
objects belongs to one of the object classes represented by the source
objects shown in Fig. 10. These target objects are different from the
source objects in shape and size

the size of the search space around the adjusted approach
direction. To evaluate the performance of our approach direc-
tion estimation method, we used the semantic affordance
maps built in Sect. 6.1. We chose k = 5 in “Step 2” as
described in Sect. 5. We then selected seven target objects as
test objects (shown in Fig. 11). Each of these target objects
belongs to one object class represented by one source object
shown in Fig. 10. Compared to the source objects which
were used to build the semantic affordance maps of each
object class, the target objects have different sizes and shapes.
The objects mug3, phone2, and drill1 are modeled using a
NextEngine 3D scanner. In the experiment, we first took a
depth image at each of the sampling approach directions as
we did on the source object. We encoded each depth image
using the method we discussed in Sect. 4.2. Then, we applied
our method in Sect. 5.2 to estimate the approach direction.
The error was measured by the angle between the estimated
approach direction and the true approach direction.

Figure 12 shows the experimental results on the accuracy
of the estimation of the approach direction on the test objects:
mug1, mug3, phone1, handle1, and drill1. Out of these five
objects, more than 90 % of the tests have errors <20◦. Four of
these five objects have more than 76 % of the tests with errors
less than 10◦. For target objects which have larger variance
in shape and size from the source objects, we observed that
our method has difficulties predicting the accurate approach
direction. Figure 13 shows the performance of our experi-
ments on two target objects: mug2 and phone2. Compared to
the source object mug, object model mug2 is concave and is
much thinner. Compared to the source object phone, object
model phone2 is shorter, fatter, and does not have a thin han-
dle between the speaker and the microphone. These factors
make it difficult to have an accurate prediction based on the
statistics of the point distributions. We think that considering
surface normal at each sampling point would help alleviate
this issue.

6.4 Planning semantic grasps

Our grasp planning experiments are summarized in
Table 1. It presents the object classes we used, the intended
task a planned grasp is used for, and the corresponding
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Fig. 12 Accuracy of approach
direction estimation using our
shape context feature on several
everyday objects. Horizontal
axis shows the brackets of error
ranges (in degree). Vertical axis
shows the percentage (%) of test
trials whose errors are within
each error range indicated on the
horizontal axis 0
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Table 1 Objects, manipulation tasks, and semantic constraints

Object class Manipulation task Semantic constraints

Mug Pour water Not blocking the open area

Phone Answer a call Grasping the handle

Handle Pull/push the handle
backward/forward

Power grasping the mid-point

Handle Push the handle
sideway

Hook grasping the mid-point

Drill Hold and drill Grasping the handle

semantic constraints of each task the grasp should satisfy.
We used the seven objects shown in Fig. 11 as the target
objects. We applied our planning algorithm to plan semantic
grasps for each target object. For object class mug, we tested
our planning method on three different target mug models.
For object class handle, we tested our planning method for
two different manipulation tasks.

In Fig. 14, we show experimental results of planning
semantic grasps on these target objects. In each row, the

second column shows a predefined semantic grasp that was
stored in the semantic affordance maps. The third col-
umn shows the comparison of the geometry between the
source(left) and the target(right) objects. The source objects
are those ones that were used for building semantic affor-
dance maps. They are different from the target objects, but
similar in shape. The last two columns show the top two
ranked grasps generated by our planning method according
to their tactile and hand posture similarities. The experimen-
tal results indicate that, by using our planning algorithm,
semantic grasps can be synthesized from similar objects with
predefined exemplar semantic grasps.

6.5 Semantic grasping with a physical robot

Following the planning experiments, we connected our plan-
ning method to a grasp execution system and tested our entire
grasping pipeline from modeling a physical object using an
off-the-shelf 3D scanner to planning a semantic grasp on
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Fig. 14 Semantic grasps planned on typical everyday objects. From
left to right: experiment ID, the predefined semantic grasps stored in
the semantic affordance map, a pair of source object and target object
for each experiment, and top two grasps generated. Last two columns

for the top two grasps were obtained within 180 s and are both sta-
ble in terms of their epsilon quality. Some objects are displayed with
transparency to show the grasp

the model and to executing a semantic grasp for a requested
manipulation task on a physical object.

We chose a mug, a phone, and a drill as target objects,
shown in experiments 3, 5, and 8 in Fig. 14 respectively. The

geometrical models of the physical objects obtained using a
NextEngine 3D scanner are shown in the right part of the third
column of each experiment. Using our proposed method, we
planned semantic grasps and stored them in a semantic grasp
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(a)

(b)

Fig. 15 Experimental setup. a A NextEngine 3D scanner scanning a
drill, b the robot platform used in our experiments. A Barrett hand is
attached to the end of a Staubli arm. A Kinect sensor is used to obtain
point clouds of the work space

database. In the grasp execution stage, a target object was
placed in front of the robot. A Kinect sensor acquired a 3D
point cloud of the scene. The recognition method proposed
by Papazov and Burschka (2010) was used in our perception
system, which uses partial geometry of an object to recover
its full 6D pose. Once the pose of an object was recovered,
a planned semantic grasp was retrieved from the semantic
grasp database according to the object name and the semantic
label. Finally, the OpenRave planner by Diankov and Kuffner
(2008) generated a collision-free trajectory to the final grasp-
ing pose and the hand moved to the target pose and executed
the grasp.

Figure 15a shows a snapshot of a NextEngine 3D scanner
scanning a drill. Figure 15b shows the setup of our robot
platform. The robot arm we used was a Staubli arm, which
is a six-DOF robot arm. A Barret hand is attached to the end
of the Staubli arm.

Figure 16 shows snapshots of the process of the grasping
pipeline using semantic grasps in the experiments. The first

two columns show the predefined semantic grasps on the
source objects and the generated semantic grasps on the target
objects. The third column shows the physical objects placed
in the robot workspace. The fourth column shows the point
clouds of the workspace reconstructed from a Kinect sensor.
The fifth column shows the final grasp of a Barrett hand. To
examine pose estimation, we placed the full 3D models of
the physical objects (shown as pink points) at the estimated
pose from the perception algorithm and overlaid them on the
point clouds of the workspace.

7 Discussion

As our first step towards planning task-specific grasps, our
work focuses on using the hand kinematics, tactile feedback,
and object geometry to encode semantic constraints, there
are also other attributes we would like to consider in our
future work, such as the potential force and torque space. We
believe this can be integrated into the refinement step of our
grasp planning algorithm.

The determination of representative object models and
object classes is done by human beings. Thus, human intel-
ligence is involved in this process. There has been research
work focusing on shape classification, e.g. Ling and Jacobs
(2007). By integrating with these algorithms, it is possible
to automate the process of object selection and classification
and finally minimize the dependence on human intelligence.

Although we used a Barrett hand in our work, the pre-
sented framework can be applied to other robot hands as
well. Semantic grasps in B can be defined with different
robot hands. To add semantic grasps defined with a new robot
hand into an existing semantic affordance map, we need to
first specify semantic grasps with the new robot hand model
and then store the newly generated semantic grasps into the
semantic affordance map. In our current work, we manually
define semantic grasps inside our GraspIt! simulator. As our
future work, we will explore other approaches to automate the
grasp recording process, making it less dependent on human
users.

A model of the object may not be necessary. For a sys-
tem where grasp planning and executing are separated, it
is ideal to get the model of the object beforehand. If the
object model is not obtained in advance, some existent mod-
eling algorithms can be used to reconstruct the object from
the real scene using depth sensors, such as a Kinect sensor.
Another approach can be to connect our algorithm with a
physical robot system, obtaining depth images directly from
physical depth sensors and making hand movements with the
robot. In this case, Step 2 of Fig. 8 takes place in the physical
world instead of the virtual simulation environment. Then,
we are merging the virtual world and the physical world.
The planning process which used to be in a virtual world
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Fig. 16 Grasping physical objects with semantic grasps. From left to
right: predefined semantic grasps on source objects, semantic grasps
on target objects generated using the proposed method, a snapshot of
the physical object in the workspace, reconstructed point cloud of the

object in the workspace, and the final grasp of a Barrett hand attached to
a Staubli arm. Pink points in the point clouds are object models placed
with the estimated pose (Color figure online)

now becomes an exploration process in the physical world,
defining a control process to achieve a semantic grasp spec-
ified in a predefined exemplar grasp, making this planning
algorithm more like a control algorithm.

Currently, the refinement step in our method consists of (1)
planning a sequence of stable grasps using a stochastic grasp
planner and (2) sorting planned grasps based on their sim-
ilarities to predefined semantic grasps. However, stochastic
planning may not be the ideal solution. It can take more time
than necessary to find an appropriate grasp. One potential
alternative approach is to integrate task-related information
with local geometry information and make hand adjustments
as developed by Hsiao et al. (2011).

Symmetric objects may raise challenges for our matching
method which estimates the approach direction of the hand:
multiple views of a symmetric object could produce the same
depth image, thus the approach direction estimation method
will face difficulty in deciding an accurate approach direc-
tion from a depth image. In these situations, our method may
have difficulties in “Step 2” to generate the ideal hand adjust-
ment and adjust the hand to the ideal approach direction.
We believe that by utilizing more sophisticated localization
methods these problems could be alleviated.

Although we assumed that objects have canonical upright
orientations, our work can be extended to deal with objects
without canonical upright orientations. One approach is to
sample the object in a more comprehensive way such that we
can cover many potential orientations. Once these samples

are generated, we can store them into the semantic affordance
map and use them for approach direction estimation.

The robustness of our method is closely related to the per-
formance of the feature which we used to encode a depth
image. This controls the requirement of similarity between
objects so that this method can succeed in transferring seman-
tic grasps between them. We have shown in our experiments
that our method can deal with objects with similar shapes.
With large shape variance, our method may have difficul-
ties in providing accurate predictions of approach directions.
However, this issue can be alleviated by using a larger search
space in the grasp refinement step. Thus, our method remains
relatively robust overall. As our next step, to further improve
the robustness and capability of our method to deal with
objects with large shape variance, we will be exploring more
advanced features to estimate approach directions towards
an object.

Our current shape context feature focuses on global object
shapes. This to some extent limits the capability of our
method to deal with objects with large shape variance. How-
ever, with careful modification, we can improve the gener-
ality of our method. For objects within the same class, they
may have large overall shape variance, but they usually share
similar functional parts. These functional parts should be
grasped in similar ways. For example, two mugs may have
dramatically different global shapes, but their handles can be
very similar and we can grasp the handles in a similar way.
Thus, if we define semantic grasps on these similar func-
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tional parts and build semantic affordance maps based on
these functional parts instead of the complete object models,
our method will be able to transfer semantic grasps across
functional parts. In this sense, we will be able to improve our
method to deal with objects with large overall shape variance.
To realize this approach, a segmentation method is necessary
to recognize and separate functional parts in the range scan
of the object, e.g. Varadarajan and Vincze (2011b).

In our work, we do not consider the kinematic feasibility
of a grasp. For example, a planned semantic grasp may not
be kinematically feasible in a real environment due to colli-
sions or other workspace constraints. This could be solved by
using collision checking to filter out infeasible grasps after
a number of good semantic grasps are produced or utiliz-
ing algorithms such as in Chang et al. (2008) to achieve the
required pre-grasp pose of the object.

8 Conclusion

In this paper, we develop an example-based grasp planning
method to plan stable robotic grasps which satisfy semantic
constraints required by a specific manipulation task. We pro-
pose using partial object geometry, hand kinematic data, and
tactile contacts to embed semantic constraints. To this end,
we introduce a semantic affordance map which relates par-
tial geometry features to semantic grasps and records grasp
related information. Using this map, our method considers
the semantic constraints imposed by a specific task and plans
semantic grasps accordingly. We show experiments of plan-
ning and executing semantic grasps on everyday objects.

For the next step, we will be considering possible ways to
generalize the semantic affordance map so that it would be
easier to transfer grasping knowledge between objects and
tasks while preserving their semantic affordance. Although
we have shown our approach with a Barrett hand, our method
can be applied to different robot hands. The overall frame-
work and workflow will remain the same as described in this
paper. We will also expand the classes of objects and shape
features to fit into our framework.
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