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Abstract
This paper deals with the automated creation of ge-

ometric and photometric correct 3-D models of the
world. Those models can be used for virtual reality, tele–
presence, digital cinematography and urban planning ap-
plications. The combination of range (dense depth esti-
mates) and image sensing (color information) provides
data–sets which allow us to create geometrically correct,
photorealistic models of high quality.

The 3-D models are first built from range data using a
volumetric set intersection method previously developed
by us. Photometry can be mapped onto these models
by registering features from both the 3–D and 2–D data
sets.

Range data segmentation algorithms have been de-
veloped to identify planar regions, determine linear fea-
tures from planar intersections that can serve as features
for registration with 2-D imagery lines, and reduce the
overall complexity of the models. Results are shown for
building models of large buildings on our campus using
real data acquired from multiple sensors.

1 Introduction
The recovery and representation of 3–D geometric

and photometric information of the real world is one of
the most challenging problems in computer vision re-
search. With this work we would like to address the
need for highly realistic geometric models of the world,
in particular to create models which represent outdoor
urban scenes. Those models may be used in applications
such as virtual reality, tele-presence, digital cinematog-
raphy and urban planning.

Our goal is to create an accurate geometric and pho-
tometric representation of the scene by means of inte-
grating range and image measurements. The geome-
try of a scene is captured using range sensing technol-
ogy whereas the photometry is captured by means of
cameras. We have developed a system which, given a
set of unregistered depth maps and unregistered pho-
tographs, produces a geometric and photometric correct
3–D model representing the scene.

We are dealing with all phases of geometrically cor-
rect, photorealistic 3–D model construction with a mini-
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mum of human intervention. This includes data acquisi-
tion, segmentation, volumetric modeling, viewpoint reg-
istration, feature extraction and matching, and merging
of range and image data into complete models. Our fi-
nal result is not just a set of discrete colored voxels or
dense range points but a true geometric CAD model
with associated image textures.

The entire modeling process can be briefly summa-
rized as follows:

1. Multiple Range scans and 2-D images of the scene
are acquired.

2. Each range scan is segmented into planar regions
(section 3.1)

3. 3-D linear features from each range scan are auto-
matically found (section 3.2).

4. The segmented range data from each scan is regis-
tered with the other scans (section 3.3).

5. Each segmented and registered scan is swept into
a solid volume, and each volume is intersected to
form a complete, 3-D CAD model of the scene (sec-
tion 4)

6. Linear features are found in each 2-D image using
edge detection methods (section 3.4).

7. The 3-D linear features from step 3 and the 2-D
linear features from step 6 are matched and used
to create a fully textured, geometrically correct 3-D
model of the scene (sections 3.5 and 4).

Figure 1 describes the data flow of our approach. We
start with multiple, unregistered range scans and pho-
tographs of a scene, with range and imagery acquired
from different viewpoints. In this paper, the locations
of the scans are chosen by the user, but we have also
developed an automatic method described in [22] that
can plan the appropriate Next Best View. The range
data is then segmented into planar regions. The pla-
nar segmentation serves a number of purposes. First, it
simplifies the acquired data to enable fast and efficient
volumetric set operations (union and intersection) for
building the 3-D models. Second, it provides a conve-
nient way of identifying prominent 3-D linear features



which can be used for registration with the 2-D images.
3–D linear segments are extracted at the locations where
the planar faces intersect, and 2–D edges are extracted
from the 2–D imagery. Those linear segments (2–D and
3–D) are the features used for the registration between
depth maps and between depth maps and 2–D imagery.
Each segmented and registered depth map is then trans-
formed into a partial 3–D solid model of the scene using
a volumetric sweep method previously developed by us.
The next step is to merge those registered 3–D models
into one composite 3–D solid model of the scene. That
composite model is then enhanced with 2–D imagery
which is registered with the 3–D model by means of
2–D and 3–D feature matching.
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Figure 1: System for building geometric and photomet-
ric correct solid models.

2 Related work
The extraction of photorealistic models of outdoor

environments has received much attention recently in-
cluding an international workshop [14, 29]. Notable
work includes the work of Shum et al. [24], Becker [1, 2],
and Debevec et al. [8]. These methods use only 2–D im-
ages and require a user to guide the 3-D model creation
phase. This leads to lack of scalability wrt the number of
processed images of the scene or to the computation of
simplified geometric descriptions of the scene which may
not be geometrically correct. Teller [6, 18, 26, 5] uses
an approach that acquires and processes a large amount
of pose–annotated spherical imagery of the scene. This
imagery is registered and then stereo methods are used
to recreate the geometry. Zisserman’s group in Oxford
[11] works towards the fully automatic construction of
graphical models of scenes when the input is a sequence
of closely spaced 2–D images (video sequence). Both
of the previous methods provide depth estimates which

depend on the texture and geometric structure of the
scene and which may be quite sparse.

Our approach differs in that we use range sensing to
provide dense geometric detail which can then be reg-
istered and fused with images to provide photometric
detail. It is our belief that using 2-D imagery alone (i.e.
stereo methods) will only provide sparse and unreliable
geometric measures unless some underlying simple ge-
ometry is assumed. A related project using both range
and imagery is the work of the VIT group [28, 3, 9]

The broad scope of this problem requires us to use
range image segmentation [4, 13], 3–D edge detection
[15, 19], 3–D Model Building [7, 27, 20] and image reg-
istration methods [16] as well.

3 System Description
In our previous research, we have developed a method

which takes a small number of range images and builds a
very accurate 3-D CAD model of an object (see [23, 21]
for details). The method is an incremental one that in-
terleaves a sensing operation that acquires and merges
information into the model with a planning phase to de-
termine the next sensor position or “view”. The model
acquisition system provides facilities for range image ac-
quisition, solid model construction and model merging:
both mesh surface and solid representations are used to
build a model of the range data from each view, which is
then merged with the model built from previous sensing
operations.

For each range image a solid CAD model is con-
structed. This model consists of sensed and extruded
(along the sensing direction) surfaces. The sensed sur-
face is the boundary between the inside and the out-
side (towards the sensor) of the sensed object. The ex-
truded surfaces are the boundary between empty sensed
3-D space and un-sensed 3-D space. The merging of
registered depth maps is done by means of volumet-
ric boolean set intersection between their corresponding
partial solid models

We have extended this method to building models
of large outdoor structures such as buildings. We are
using a Cyrax range scanner which has centimeter level
accuracy at distances up to 100 meters to provide dense
range sampling of the scene. However, these point data
sets can be extremely large (1K x 1K) and computation-
ally unwieldy. The buildings being modeled, although
geometrically complex, are comprised of many planar
regions, and for reasons of computational and modeling
efficiency, these dense point sets can be abstracted into
sets of planar regions. In section 4 we present our results
of extending this method of automatically building 3-D
models to buildings with significant geometry. First we
discuss our segmentation methods.
3.1 Planar Segmentation of Range Data

We group the 3–D points from the range scans into
clusters of neighboring points which correspond to the



same planar surface. In the Point Classification phase
a plane is fit to the points vi which lie on the k × k
neighborhood of every point P . The normal np of the
computed plane corresponds to the smallest eigenvector
of the 3 by 3 matrix A = ΣNi=1((vi −m)T · (vi −m))
where m is the centroid of the set of vertices vi. The
smallest eigenvalue of the matrix A expresses the devi-
ation of the points vi from the fitted plane, that is it
is a measure of the quality of the fit. If the deviation
is below a user specified threshold Pthresh the center of
the neighborhood is classified as locally planar point.

A list of clusters is initialized, one cluster per locally
planar point. The next step is to merge the initial list
of clusters and to create a minimum number of clusters
of maximum size. Each cluster is defined as a set of 3–D
points which are connected and which lie on the same
algebraic surface (plane in our case).

We have to decide if the point P and its nearest
neighborsAj could lie on the same planar surface. If this
is the case the clusters where those two points belong
are merged into one new cluster. Two adjacent locally
planar points are considered to lie on the same planar
surface if their corresponding local planar patches have
similar orientation and are close in 3D space.
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Figure 2: Coplanarity measure. Two planar patches
fitted around points P1 and P2 at a distance |r12|
.

We introduce a metric of co–normality and co–
planarity of two planar patches. Figure 2 displays two
local planar patches which have been fit around the
points P1 and P2 (Point Classification). The normal
of the patches are n1 and n2 respectively. The points
P ′i are the projections of the points Pi on the patches.
The two planar patches are considered to be part of the
same planar surface if both conditions are met. The
first condition is that the patches have identical ori-
entation (within a tolerance region), that is the angle
α = cos−1(n1 · n2) is smaller than a threshold αthresh
[co–normality measure]. The second condition is that
the patches lie on the same infinite plane [co–planarity
measure]. The distance between the two patches is de-
fined as d = max(|r12 · n1|, |r12 · n2|). This distance
should be smaller than a threshold dthresh. r12 is the
distance between the projections of P1 and P2 onto their

corresponding local planes.
Finally we fit a plane on all points of the final clusters.

We also extract the outer boundary of this plane, the
convex hull of this boundary and the axis-aligned three-
dimensional bounding box which encloses this boundary.
These are used for fast distance computation between
the extracted bounded planar regions whichis described
in the next section.

Figure 3a is a 2–D image of a building on our cam-
pus. Figure 3b shows a point data set from a range
scan of this building by a Cyrax scanner from a single
view (992 by 989 points). If this data is triangulated
into facets, it creates an extremely large, unwieldy, and
unnecessarily complex description of an object that is
composed of many tiny, contiguous planar surfaces. Our
algorithm tries to recover and preserve this structure
while effectively reducing the data set size and increas-
ing computational efficiency. Figure 3c shows the seg-
mentation of this data set into planar regions, resulting
in a large data reduction - approximately 80% less trian-
gular facets (reduction from 1, 005, 004 to 207, 491 range
points) are needed to model this data set. The param-
eters used were Pthresh = 0.08, αthresh = 0.04 degrees
and dthresh = 0.01 meters. The size of the neighbor-
hood used to fit the initial planes was 7 by 7. Points
which didn’t pass the first stage of the planar segmen-
tation algorithm and have been classified as non–locally
planar are displayed as red.
3.2 3–D Line Detection

The segmentation also provides a method of finding
prominent linear features in the range data sets. The
intersection of the planar regions provides three dimen-
sional lines which can be used both for registering multi-
ple range images and matching 3-D lines with 2-D lines
from imagery. Extraction of 3-D lines is done in three
stages:

1. We compute the infinite 3–D lines at the inter-
section of the extracted planar regions. We do
not consider every possible pair of planar regions
but only those whose three-dimensional bounding
boxes are close wrt each other (distance threshold
dbound). The computation of the distance between
two bounding boxes is very fast. However this mea-
sure may be inaccurate. Thus we may end up with
lines which are the intersection of non-neighboring
planes.

2. In order to filter out fictitious lines which are pro-
duced by the intersection of non-neighboring planes
we disregard all lines whose distance from both pro-
ducing polygons is larger than a threshold dpoly .
The distance of the 3–D line from a convex poly-
gon (both the line and the polygon lie on the same
plane) is the minimum distance of this line from
every edge of the polygon. In order to compute the



distance between two line segments we use a fast
algorithm described in [17].

3. Finally we need to keep the parts of the infinite 3–
D lines which are verified from the data set (that
is we extract linear segments out of the infinite 3–
D lines). We compute the distance between every
point of the clusters Π1 & Π2 and the line L (Π1

& Π2 are the two neighboring planar clusters of
points whose intersection produces the infinite line
L). We then create a list of the points whose dis-
tance from the line L is less than dpoly (see previous
paragraph). Those points (points which are close
wrt the limit dpoly to the line) are projected on the
line. The linear segment which is bounded by those
points is the final result.

Figure 3d shows 3-D lines recovered using this method
and Figure 3e shows these lines overlaid on the 2-D im-
age of the building in Figure 3a after registering the
camera’s viewpoint with the range data.
3.3 Registering Range Data

To create a complete description of a scene we need
to acquire and register multiple range images. The reg-
istration (computation of the rotation matrix R and
translation vector T) between the coordinate systems
of the nth range image (Cn) and the first image (C0) is
done when a matched set of 3–D features of the nth and
first image are given. The 3–D features we use are infi-
nite 3–D lines which are extracted using the algorithm
described in the previous section. A linear feature f is
represented by the pair of vectors (n,p), where n is the
direction of the line and p a point on the line. A solu-
tion for the rotation and translation is possible when at
least two line matches are given. The rotation matrix
R can be computed according to the closed form solu-
tion described in [10]. The minimization of the error
function Σ||ni

′ −Rni||2 (where ni
′,ni is the ith pair of

matched line orientations between the two coordinate
systems) leads to a closed form solution of the rotation
(expressed as a quaternion).

Given the solution for the rotation we solve for the
translation vector T. We establish a correspondence
between two arbitraty points on line < n,p >, pj =
p + tj n and two points on its matched line < n′,p′ >,
pj
′ = p′ + t′j n′. Thus we have two vector equations

pj
′ = Rpj +T which are linear in the three components

of the translation vector and the four uknown parame-
ters (tj , t′j) (2x3 linear equations and 7 uknowns). At
least two matched lines provide enough constraints to
solve the problem through the solution of a linear over-
constrained system of equations. Results of the regis-
tration are presented in section 4.
3.4 2–D Line Detection

The computation of 2–D linear image segments is
done in the following manner:

1. Application of Canny edge detection with hystere-
sis thresholding. That provides chains of 2–D edges
where each edge is one pixel in size (edge tracking).
We used the program xcv of the TargetJr distribu-
tion [25] in order to compute the Canny edges.

2. Segmentation of each chain of 2–D edges into lin-
ear parts. Each linear part has a minimum length
of lmin edges and the maximum least square de-
viation from the underlying edges is nthresh. The
fitting is incremental, that is we try to fit the maxi-
mum number of edges to a linear segment while we
traverse the edge chain (orthogonal regression).

3.5 Registration of Range and Image Data
We now describe the fusion of the information pro-

vided by the range and image sensors. These two sensors
provide information of a qualitatively different nature
and have distinct projection models. While the range
sensor provides the distance between the sensed points
and its center of projection, the image sensor captures
the light emitted from scene points. The fusion of infor-
mation between those two sensors requires the knowl-
edge of the internal camera parameters (effective focal
length, principal point and distortion parameters) and
the relative position and orientation between the centers
of projection of the camera and the range sensor. The
knowledge of those parameters allows us to invert the
image formation process and to project back the color
information captured by the camera on the 3–D points
provided by the range sensor. Thus we can create a
photorealistic representation of the environment.

The estimation of the unknown position and orien-
tation of an internally calibrated camera wrt the range
sensor is possible if a corresponding set of 3–D and 2–D
features is known. Currently, this corresponding set of
feature matches is provided by the user but our goal is
its automatic computation (see section 5 for a proposed
method).

We adapted the algorithm proposed by Kumar &
Hanson [16] for the registration between range and 2–D
images. The input is a set of corresponding 3–D and
2–D line pairs. The internal calibration parameters of
the camera are assumed to be known.

Let Ni be the normal of the plane formed by the ith
image line and the center of projection of the camera
(figure 4). This vector is expressed in the coordinate
system of the camera. The sum of the squared per-
pendicular distance of the endpoints e1

i and e2
i of the

corresponding ith 3–D line from that plane is

di = (Ni · (R(e1
i ) + T))2 + (Ni · (R(e2

i ) + T))2, (1)

where the endpoints e1
i and e2

i are expressed in the co-
ordinate system of the range sensor. The error function
we wish to minimize is

E1(R,T) = ΣNi=1di. (2)



Figure 3: a) 2-D Image of the scene, b) Range data scan, c) Planar Segmentation (different planes correspond to
different colors), d) Extracted 3D lines generated from the intersection of planar regions, e) 3-D lines projected on
the image after registration.

This function is minimized with respect to the rotation
matrix R and the translation vector T. This error func-
tion expresses the perpendicular distance of the end-
points of a 3–D line from the plane formed by the per-
spective projection of the corresponding 2–D line into
3–D space (figure 4). The exact location of the end-
points of the 2–D image segment do not contribute to
the error metric and they can move freely along the im-
age line without affecting the error metric. In this case
we have a matching between infinite image lines and
finite 3–D segments.

In the next section we will present results for the
complete process of integrating multiple views of both
range and imagery.

4 Results
In this section we present results of the complete pro-

cess: 3–D model acquisition, planar segmentation, volu-
metric sweeping, volume set intersection, range registra-
tion, and range and image registration for a large, geo-
metrically complex and architecturally detailed building
on our campus. The bulding is pictured in Figure 5a.

Three range scans of the building were acquired at a
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resolution of 976 by 933 3D points. Figures 6a-c show
each of these scans, with each data point colored accord-
ing to the planar region it belongs to from the segmen-
tation process. The parameters used for the segmenta-
tion were Pthresh = 0.08, αthresh = 0.04 degrees and
dthresh = 0.08 meters. Figure 6d shows the integrated
range data set after registering the range images. The
range images were registered by manually selecting cor-
responding 3-D lines generated by the method in section
3.3.

Figures 6e-g show the volumetric sweeps of each seg-
mented range scan. These sweeps are generated by ex-
truding each planar face of the segmented range data
along the range sensing direction. Volumetric set inter-
section is then used to intersect the sweeps to create
the composite geometric model which encompasses the
entire building and is shown in Figure 6h.

Figure 6i shows one of the 2-D images of the building
(the image shown in Figure5a) texture-mapped on the
composite model of Figure 6h. We are calculating the
relative position and orientation of the camera wrt to
the model as follows: a) the user selects a set of auto-
matically extracted 2–D lines on the 2–D image and its
corresponding set of 3–D lines which have also been au-
tomatically extracted from the individual depth maps
b) the algorithm described in section 3.5 provides the
extrinsic parameters of the camera wrt the 3–D model.
The internal camera parameters were approximated in
this example.

5 Discussion
We have described a system for building geomet-

rically correct, photorealistic models of large outdoor
structures. The system is comprehensive in that in-
cludes modules for data acquisition, segmentation, vol-
umetric modeling, feature detection, registration, and
fusion of range and image data to create the final mod-
els. The final models are true solid CAD models with
texture mapping and not just depth maps or sets of col-
ored voxels. This allows these models to be more easily
used in many upstream applications, and also allows
modeling a wide range of geometry.

There are still some areas in which the system can
be improved. In some cases our depth maps have gaps
due to missed values in transparent parts of the scene
(e.g. windows). We handle this by filling the missing
data through linear interpolation between the samples
that border the gap along a scanline.

We would like to extend the system towards the di-
rection of minimal human interaction. At this point the
human is involved in two stages: a) the internal cali-
bration of the camera sensor and b) the selection of the
matching set of 3–D and 2–D features. We have imple-
mented a camera self–calibration algorithm when three
directions of parallel 3–D lines are detected on the 2–D
image based on [2]. The automated extraction of lines

of this kind is possible in environments of man–made
objects (e.g. buildings) and a result can be seen in fig-
ure 5b. More challenging is the automated matching
between sets of 3–D and 2–D features. Again the ex-
traction of three directions of parallel 3–D lines (using
the automated extracted 3–D line set) and the corre-
sponding directions of 2–D lines (using the automated
extracted 2–D line set) can be the first step in that
procedure. The knowledge of those directions can be
directly used for the solution of the relative orientation
between the two sensors. On the other hand extraction
of pattern of lines that form windows (which are promi-
nent in the 3–D line set) can lead to the computation
of the translation between the two sensors.

We have already started incorporating measurements
of data uncertainty in our algorithms. Uncertainty in
individual range measurements can propagate to the ex-
tracted 3–D planes and 3–D lines. Thus, we can have
measures of confidence in our extracted features, some-
thing that can be used in the automated matching pro-
cess.

As a final step in automating this process, we have
also built a mobile robot system which contains both
range and image sensors which can be navigated to ac-
quisition sites to create models (described in detail in
[12]).

Figure 5: a) Image of building, b) Extracted sets of 2–D
lines which correspond to parallel 3–D lines. Each set of
2–D lines converges to a distinct vanishing point. The
three large axes in the middle of the image point to the
corresponding vanishing points.
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Figure 6: Model Building Process: a) First segmented depth map, b) Second segmented depth map, c) Third
segmented depth map, d) Registered depth maps, e) First volumetric sweep, f) Second volumetric sweep, g) Third
volumetric sweep, h) Composite solid model generated by the intersection of the three sweeps, i) Texture-mapped
composite solid model.


